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Abstract 

 

In this chapter, we consider pensions funds not sufficiently auto financed and 

systematically maintained with an outside financing effort, usually non-

autonomous pension’s funds. This financial effort, made by the managing entity, 

translates as capital injections into the fund. The objective of this work is to develop 

a tool that allows predicting the appropriate moments to carry out these 

interventions and the respective amounts. So, we propose to represent the 

unrestricted reserves value process of this kind of funds, through a time 

homogeneous diffusion process with finite expected time till the ruin. A financial 

tool that regenerates the diffusion is also admitted, at some level with positive value 

every time it hits a barrier at the origin. Then the financing effort may be modeled 

as a renewal-reward process if the regeneration level is kept constant. The perpetual 

maintenance cost expected values evaluation and of the finite time maintenance 

cost are studied. Then, we focus on a particular situation of this approach, arising 

when the unrestricted reserves value process behaves as a generalized Brownian 

motion process. 
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1 Introduction 
 

Pension funds represent savings collected along people’s working life. Pension 

funds that support personal pension plans are intended to be autonomous. They 

represent the highest level of protection to the beneficiary from the bankruptcy of 



the sponsor, especially when the custodian is involved. Non-autonomous pension 

funds are not legally separated from the plan sponsor but are kept on its balance 

sheet. In this case, there is the lowest protection level to the beneficiary from 

bankruptcy of the sponsor, since the sponsor can use pension’s assets to fund its 

business, see Impavido (2012). 

The financial problem of asset-liability management scheme of a pensions fund 

requires a management program that demands a set of decisions. In particular, the 

amounts and the instants at which it is necessary to inject money in the fund in order 

to keep it sustainable. Sponsors are obviously interested in an appropriate 

management of the risk for their pension funds. Well and balanced funded pension 

funds result essential in this process of funds management.  

Through this chapter we develop a mathematical tool that allows predicting, in 

a probabilistic mode, the appropriate moments to carry out these money injections 

and the respective amounts.  

This issue is particularly relevant since we know that pension funds are 

continuously exposed to the market’s situation. And the recent financial crises and 

turbulent stock markets circumstances made the problem of pension’s funds 

management to receive an enormous attention. Many pensions’ funds suffered 

dramatic losses, and this is a problematic issue that managers want to overcome the 

best they can. So, managerial tools allow a better decision-making.   

 

The protection cost present value expectation for a non-autonomous pensions’ 

fund is considered in this work. Two contexts are considered:  

• The protection effort is perpetual, 

• The protection effort happens for a finite time period. 

 

It is admitted that the unrestricted fund reserves behavior may be modeled as a 

time homogeneous diffusion process. Then a regeneration scheme of the diffusion 

to include the effect of an external financing effort is used. 

This chapter is an updated and enlarged version of Ferreira (2012), where was 

mainly considered the diffusion process. 

In Gerber and Parfumi (1998) a similar work is presented. A Brownian motion 

process conditioned by a reflection scheme was considered. With less constraints, 

but in different conditions, exact solutions were then obtained for both problems. 

The work presented in Refait (2000), on asset-liability management aspects, 

also motivated the use of the Brownian motion application example in that domain. 

So, in this chapter we extend the results presented in Ferreira (2012), better 

specifying the diffusion process mathematical details, and deeply exploring the 

Brownian motion process situation 

Other works on this subject are Figueira and Ferreira (2003) and Figueira (2003), 

both dealing with the diffusion process case. The works Filipe, Ferreira and 

Andrade (2012), Andrade et al. (2012), Andrade et al. (2012), Ferreira et al. (2011) 

and Ferreira et al. (2012) deal with other financial problems, slightly different from 

the presently considered here, but relevant to their understanding and framing. In 



particular Andrade et al. (2012) and Ferreira et al. (2012) present the problem of 

state pension funds, in which workers 'contributions are currently insufficient to 

pay pensioners' pensions due to demographic imbalances that occur in modern 

societies. In this case, state budgets have to include capitals to balance these funds. 

The tool that we are going to develop can be applied in this situation, contributing 

for the transfers to be made in a scheduled manner, at the times and amounts due, 

in a more efficient way. 

 

 

2 Pensions Fund Reserves Behavior Stochastic Model 
 

Be X(t), t ≥ 0 the reserves value process of a pensions fund given by an initial 

reserve amount a, a > 0  added to the difference between the total amount of 

contributions received and the total amount of pensions paid both up to time t. It is 

assumed that  X(t)   is a time homogeneous diffusion process, with X(0) = a, 
defined by drift and diffusion coefficients μ(x) and σ2(x),  respectively. 

  Call Sa the first passage time of X(t) by 0, coming from a. The funds to be 

considered in this work are non-autonomous funds. So 

 

                  E[Sa] < ∞, for any a > 0       (2.1). 

 

That is: funds where the pensions paid consume in finite expected time any initial 

positive reserve and the contributions received. Then other financing resources are 

needed in order that the fund survives. 

The condition (2.1) may be fulfilled for a specific diffusion process using 

criteria based on the drift and diffusion coefficients. In this context, here the work 

presented in Bhattacharya and Waymire (1990), pg. 418-422, is followed. So, 

accept that P(Sa < ∞) = 1  if the diffusion scale function is q(x) =

∫ e
− ∫

2μ(y)

σ2(y)
dy

z
x0 dz,

x

x0
 where x0  is a diffusion state space fixed arbitrary point, 

fulfilling q(∞) = ∞.  

 Then the condition (2.1) is equivalent to p(∞) < ∞,  where p(x) =

∫
2

σ2(z)
e

∫
2μ(y)

σ2(y)
dy

z
x0 dz,

x

x0
 be the diffusion speed function. 

It is admitted that whenever the exhaustion of the reserves happens an external 

source place instantaneously an amount θ, θ > 0 of money in the fund so that it 

may keep on performing its function. 

The reserves value process conditioned by this financing scheme is denoted 

by the modification X̌(t) of  X(t) that restarts at the level θ whenever it hits 0. 

As X(t) was defined as a time homogeneous diffusion, X̌(t) is a regenerative 

process. Call T1, T2, T3, … the sequence of random variables where Tn denotes the 

nth   X̌(t) passage time by 0. It is obvious that the sequence of time intervals 

between these hitting times D1 = T1, D2 = T2 − T1, D3 = T3 − T2, … is a sequence 

of independent random variables where D1 has the same probability distribution 



as Sa and D2, D3, … the same probability distribution as Sθ.  

 

 

3 First Passage Times Laplace Transforms  
 

Call fa(s)  the probability density function of Sa(related to D1) . The 

corresponding probability distribution function is denoted by Fa(s). The Laplace 

transform of Sa is denoted φa(λ). 

Consequently, the density, distribution and transform of Sθ 
(related to  D2, D3, … )will be denoted by fθ(s), Fθ(s) and φθ(λ), respectively. 

The transform φa(λ) satisfies the second order differential equation 

 

             

1

2
σ2(a)uλ

´´(a) + μ(a)uλ
´ (a) = λuλ(a),

uλ(a) = φa(λ), uλ(0) = 1, uλ(∞) = 0,
       (3.1). 

 

See Feller (1971), pg. 478, Karlin and Taylor (1981), pg. 243 and Bass (1998), pg. 

89. 

 

4 Perpetual Maintenance Cost Present Value  
 

Consider the perpetual maintenance cost present value of the pension’s fund given 

by the random variable V(r, a, θ) = ∑ θe−rTn∞
n=1 , r>0, where r represents the 

appropriate discount rate. Note that V(r, a, θ) is a random perpetuity. What matters 

is its expected value which is simple to calculate through Laplace transforms. Since 

the Tn Laplace transform is 

 

E[e−λTn] = φa(λ)φθ
n−1(λ), 

vr(a, θ) = E[V(r, a, θ)] =
θφa(r)

1 − φθ(r)
        (4.1). 

 

It is relevant to note that 

 

lim
θ⟶0

vr(a, θ) =
ur(a)

−ur
´ (0)

           (4.2). 

 

5 Finite Time Period Maintenance Cost Present Value  
 

Define the renewal process N(t)  as  N(t) = sup{n: Tn ≤ t}  , generated by the 

extended sequence  T0 = 0, T1, T2, … . The present value of the pensions fund 

maintenance cost up to time t is represented by the stochastic process 

W(t; r, a, θ) = ∑ θe−rTn , W(t; r, a, θ) = 0 if 
N(t)
n=1  N(t) = 0. 

To calculate the expected value function of the process 



evaluation: wr(t; a, θ) = E[W(t; r, a, θ)], begin noting that it may be expressed as a 

numerical series. Indeed, evaluating the expected value function conditioned 

by N(t) = n, it is obtained E[W(t; r, a, θ)|N(t) = n] = θφa(r)
1−φθ

n(r)

1−φθ(r)
. 

Repeating the expectation: 

wr(t; a, θ) = E[E[W(t; r, a, θ)]|N(t)] = θφa(r)
1−γ(t,φθ(r))

1−φθ(r)
     (5.1). 

 

Here γ(t, ξ) is the probability generating function of N(t). 

Denote now the Tn probability distribution function by Gn(s) and assume 

G0(s) = 1, for s ≥ 0. Recalling that P(N(t) = n) = Gn(t) − Gn+1(t), the above 

mentioned probability generating function is 

 

 γ(t, ξ) = ∑ ξn∞
n=0 P(N(t) = n) = 1 − (1 − ξ) ∑ ξn−1∞

n=1 Gn(t)      (5.2). 

 

Substituting (5.2) in (5.1), wr(t; a, θ) is expressed in the form of the series 

 

wr(t; a, θ) = θφa(r) ∑ φθ
n−1(r)

∞

n=1

Gn(t)                  (5.3). 

 

Call the wr(t; a, θ)  ordinary Laplace transform ψ(λ) . The probability 

distribution function Gn(s), of Tn, ordinary Laplace transform is given 

φa(λ)
φθ

n−1(λ)

λ
 and performing the Laplace transforms in both sides of (5.3) it is 

obtained ψ(λ) =
θφa(r)φa(λ)

λ(1−φθ(r)φθ(λ))
 or 

 

ψ(λ) = θφa(r)
φa(λ)

λ
+ ψ(λ)φθ(r)φθ(λ)         (5.4). 

 

Inverting Laplace transforms in both sides of (5.4) the following defective 

renewal equation is got: 

wr(t; a, θ) =  θφa(r)Fa(t) + ∫ wr(t − s; a, θ)φθ(r)fθ(s)ds       (5.5)
t

0

. 

 

Now an asymptotic approximation of wr(t; a, θ) will be obtained through the 

key renewal theorem, see Bhattacharya and Waymire (1990), pg. 376. 

If in (5.5) t → ∞ 

      wr(∞; a, θ) =  θφa(r) + wr(∞; a, θ)φθ(r)               (5.6). 

 

Or wr(∞; a, θ) =
θφa(r)

1−φθ(r)
= vr(a, θ). 

This is the expression (4.1) for vr(a, θ). Subtracting each side of (5.6) from 

each side of (5.5), and performing some elementary calculations the following, still 



defective, renewal equation 

 

      J(t) = j(t) + ∫ J(t − s)φθ(r)fθ(s)ds       (5.7)
t

0
. 

 

Here J(t) = wr(∞; a, θ) −  wr(t; a, θ) and j(t) =  θφa(r)(1 − Fa(t)) +
θφa(r)φθ(r)

1−φθ(r)
(1 − Fθ(t)). 

 

Now, to obtain a common renewal equation from (5.7), it must be admitted the 

existence of a value k > 0 such that ∫ eksφθ(r)fθ(s)ds =
∞

0
φθ(r)φθ(−k) = 1. 

So, the transform φθ(λ) is defined in a domain different from the initially 

considered. That is, a domain including a convenient subset of the negative real 

numbers. 

Multiplying both sides of (5.7) by ekt the common renewal equation desired 

is finally obtained:  ektJ(t) = ektj(t) + ∫ ek(t−s)J(t − s)ekst

0
φθ(r)fθ(s)ds from 

which, by the application of the key renewal theorem, it results 

 

            lim
t→∞

ektJ(t) =
1

k0
∫ eksj(s)

∞

0
ds     (5.8). 

 

And k0 = ∫ seks∞

0
φθ(r)fθ(s)ds = φθ(r)φθ

´ (−k) , since ektj(t)  is directly 

Riemann integrable. The integral in (5.8) may expressed in terms of transforms as 

∫ eksj(s)
∞

0
ds =

θφa(r)φa(−k)

k
  . 

 

 So, an asymptotic approximation, in the sense of (5.8) was obtained: 

 

       wr(t; a, θ) ≈ vr(a, θ) − cr(a, θ)e−kr(θ)t  (5.9). 

           

Here kr(θ) is the positive value of k that fulfills:  

 

         φθ(r)φθ(−k) = 1               (5.10). 

 

And 

                                     

 cr(a, θ) =
θφa(r)φa(−kr(θ))

−kr(θ)φθ(r)φθ
´ (−kr(θ))

             (5.11). 

 

 

6 Brownian motion Example 
               

Suppose the diffusion process X(t) , underlying the reserves value behavior of the 

pension’s fund, is a generalized Brownian motion process, with drift μ(x) = μ, μ <



0 and diffusion coefficient  σ2(x) = σ2, σ > 0. Observe that the setting satisfies 

the conditions that were assumed above in this work. Namely  μ < 0  implies 

condition (2.1). Everything else remaining as previously stated, it will be proceeded 

to present the consequences of this particularization. In general, it will be added   
(∗) to the notation used before because it is intended to use these specific results 

later.  

To obtain the first passage time Sa  Laplace transform, remember (3.1), it 

must be solved the equation: 
1

2
σ2(a)uλ

∗´´(a) + μ(a)uλ
∗´(a) = λuλ

∗ (a), uλ
∗ (a) =

φa(λ), uλ
∗ (0) =1  uλ

∗ (∞) = 0 . This is a homogeneous second order differential 

equation with constant coefficients, which general solution is uλ
∗ (a) = β1eα1a +

β2eα2a, with α1, α2 =
−μ±√μ2+2λσ2

σ2 . 

Condition uλ
∗ (∞) = 0 implies β1 = 0 and  uλ

∗ (0)=1 implies β2=1 so that 

the solution is achieved: 

 

uλ
∗ (a) = e−Kλa (= φa

∗ (λ)), Kλ =
μ + √μ2 + 2λσ2

σ2
       (6.1). 

 

In this case, the perpetual maintenance cost present value of the pensions fund 

is given by, following (4.1) and using (6.1),  

 

vr
∗(a, θ) =

θe−Kra

1 − e−Krθ
        (6.2). 

 

Note that vr
∗(a, θ)  is a decreasing function of the first variable and an 

increasing function of the second. Proceeding as before, in particular: 

 

lim
θ⟶0

vr
∗(a, θ) =

e−Kra

Kr
           (6.3). 

 

This expression has been obtained in Gerber and Parfumi (1998), in a different 

context and using different methods but, obviously, with identical significance. In 

Gerber and Parfumi (1998), the authors acted with a generalized Brownian motion, 

with no constraints in what concerns the drift coefficient, conditioned by a 

reflection scheme at the origin. 

 

A way to reach an expression for the finite time period maintenance cost 

present value, is starting by the computation of kr
∗(θ), solving (5.10). This means 

to determine a positive number k satisfying e−Krθe−K−λθ = 1 or  Kr + K−λ = 0. 
This identity is verified for the value of k:  

              

            kr
∗(θ) =

μ2−(−2μ−√μ2+2rσ2)
2

2σ2
, if μ < −√

2rσ2

3
      (6.4). 



 

Note that the solution is independent of θ  in these circumstances. A 

simplified solution, independent from  𝑎 and 𝜃 , for cr
∗(a, θ) was also obtained. 

Using (5.11) the result is  

cr
∗(a, θ) =

2σ2(−2μ − √μ2 + 2rσ2)

μ2 − (−2μ − √μ2 + 2rσ2)
2           (6.5). 

 

Combining these results, (6.4) and (6.5), as in (5.9) it is observable that the 

asymptotic approximation for this particularization reduces to  wr
∗(t; a, θ) ≈

vr
∗(a, θ) − πr(t), where the function πr(t) is, considering (6.4) and (6.5), 

 

 

πr(t) =
2σ2(−2μ − √μ2 + 2rσ2)

μ2 − (−2μ − √μ2 + 2rσ2)
2  e

−
μ2−(−2μ−√μ2+2rσ2)

2

2σ2 t
, if μ

< −√
2rσ2

3
        (6.6). 

 

 

7 The Assets and Liability Behavior Representation 
 

In this section it is presented an application of the results obtained above to an asset-

liability management scheme of a pension’s fund. Assume that the assets value 

process of a pensions fund may be represented by the geometric Brownian motion 

process 

A(t) = bea+(ρ+μ)t+σB(t)  with  μ < 0 and  abρ + μσ > 0, where B(t) is 

A standard Brownian motion process. Suppose also that the fund liabilities value 

process performs such as the deterministic process L(t) = beρt. 

  Consider now the stochastic process Y(t)  obtained by the elementary 

transformation of A(t), Y(t) = ln
A(t)

L(t)
= a + μt + σB(t). 

This is a generalized Brownian motion process exactly as the one studied 

before, starting at a, with drift μ and diffusion coefficient σ2. Note also that the 

firs passage time of the assets process A(t)  by the mobile barrier Tn , the liabilities 

process, is the first passage time of  Y(t) by 0-with finite expected time under the 

condition, stated before, μ < 0. 
Consider also the pensions fund management scheme that raises the assets 

value by some positive constant  θn , when the assets value falls equal to the 

liabilities process by the nth time. This corresponds to consider the modification 

A̅(t) of the process A(t) that restarts at times Tn when A(t) hits the barrier L(t) 

by the nth time at the level L(Tn ) + θn. For purposes of later computations, it is a 



convenient choice the management policy where 

 

θn = L(Tn )(eθ − 1), for some   θ > 0    (7.1).     

The corresponding modification   Ỹ(t) of Y(t) will behave as a generalized 

Brownian motion process that restarts at the level ln
L(Tn)+θn

L(Tn )
= θ when it hits 0 

(at timesTn ). 

Proceeding this way, it is reproduced via  Ỹ(t) the situation observed before 

when the Brownian motion example was treated. The Laplace transform in (6.1) is 

still valid. 

Similarly, to former proceedings, the results for the present case will be 

distinguished with the symbol (#). It is considered the pensions fund perpetual 

maintenance cost present value, because of the proposed asset-liability management 

scheme, given by the random variable:V#(r, a, θ) = ∑ θne−rTn ∞
n=1 = ∑ b(eθ −∞

n=1

1)e−(r−ρ)Tn , r > ρ, where r represents the appropriate discount interest rate. To 

obtain the above expression it was only made use of the L(t) definition and (7.1). 

Note that it is possible to express the expected value of the above random variable 

with the help of (6.2) as 

 

vr
#(a, θ) =

b(eθ − 1)

θ
vr−ρ

∗ (a, θ) =
b(eθ − 1)e−Kr−ρa

1 − e−Kr−ρθ
            (7.2). 

 

As θ → 0  

              lim
θ→0 

vr
#(a, θ) =

be−Kr−ρa

Kr−ρ
   (7.3). 

 

Another expression that may be found in Gerber and Parfumi (1998). 

    In a similar way, the maintenance cost up to time t in the above-mentioned 

management scheme, is the stochastic process W#(t; r, a, θ) = ∑ b(eθ −N(t)
n=1

1)e−(r−ρ)Tn ,  W#(t; r, a, θ) = 0 if N(t) = 0, with expected value function 

 

wr
#(t; a, θ) =

b(eθ − 1)

θ
wr−ρ

∗ (t; a, θ)        (7.4). 

 

The results of section 6 with r replaced by r − ρ may be combined as in (7.4) 

to obtain an asymptotic approximation. 

 

    

8 Conclusions 
  

This chapter presents a stochastic processes tool to study the maintenance costs of 

a pension’s fund, supporting the fund managers and contributing for an adequate 

decisions planning. In general diffusion setting, the main results are formulae (4.1) 



and (5.9). The whole work depends on equation (3.1) solvability, in order to obtain 

the first passage times Laplace transforms. But the known solutions happen only in 

very rare cases. An obvious case, for which the equation solution is available, is the 

Brownian motion diffusion process. The main results concerning this 

particularization are formulae (6.2) and (6.6). Certain Brownian motion process 

transformations, that allowed to make use of the available Laplace transform, may 

be explored as it was done in section 7. Formulae (7.2) and (7.4) are this case most 

relevant results. 
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