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ABSTRACT 

Artificial Super Intelligence or ASI that is more potent and refined than human’s 

intelligence. ASI is based on the ideas that machines can imitate the human mind, 

their way of working to the extent that they can even supersede them. As a first 

step, ASI aims to improve the intelligent abilities of the machines and to achieve 

this, the ASI will have to make an AI which makes better AI’s recursively for 

achieving high-level intelligence. In this paper, we discuss classic R-CNN model 

with different SVM architectures/algorithms for object detection implementation to 

get varying outcomes which in turn results in better AI’s with varying degree of 

accuracy recursively. However, for simplicity we have taken CNN-SVM 

combination where an AI algorithm( CNN ) passes intelligence to fast machine 

learning( SVM ) algorithm recursively for solving multiclass problems from large 

data sets that implements object detection for designing a better AI machine. The 

test results are encouraging with high accuracy and the model is therefore shown 

that a lesser AI is making a better AI when combined with intelligent vector 

algorithm recursively resulting in very high level of intelligence. 

INTRODUCTION 

"Superintelligence" refers to the idea that steady advances in artificial 

intelligence, or machine (computer) intelligence, might one day result in creating a 

machine vastly superior to humans in reasoning and decision-making abilities. 

Artificial Super Intelligence or ASI that has the capability to perform the tasks that 

are impossible for the human mind to think or do. It is that aspect of intelligence 

that is more potent and refined than a human’s intelligence. Superintelligence is 

capable of outperforming human intelligence; it is extremely powerful in doing 

that. The human brain is made of neurons and is limited to some billion neurons. 

Superintelligence, therefore challenges this trait, which knows no limit.  

The road to endless possibilities of Artificial Super Intelligence is paved by the 

ideas that machines can imitate the human mind, their way of working to the extent 

that shortly they can even supersede them. Under these circumstances, it is 



inevitable that ASI will be much better in concluding tasks that humankind would 

fail to achieve, and will function in better ways compared to the human.  

Object Recognition 

Object recognition is a general term to describe a collection of related computer 

vision tasks that involve identifying objects in digital photographs. 

Image classification involves predicting the class of one object in an image. Object 

localization refers to identifying the location of one or more objects in an image 

and drawing abounding box around their extent. Object detection combines these 

two tasks and localizes and classifies one or more objects in an image. 

When a user or practitioner refers to “object recognition“, they often mean “object 
detection“. 

As such, we can distinguish between these three computer vision tasks: 

 Image Classification: Predict the type or class of an object in an image.  

o Input: An image with a single object, such as a photograph. 

o Output: A class label (e.g. one or more integers that are mapped to 

class labels). 

 Object Localization: Locate the presence of objects in an image and 

indicate their location with a bounding box.  

o Input: An image with one or more objects, such as a photograph. 

o Output: One or more bounding boxes (e.g. defined by a point, width, 

and height). 

 Object Detection: Locate the presence of objects with a bounding box and 

types or classes of the located objects in an image.  

o Input: An image with one or more objects, such as a photograph. 

o Output: One or more bounding boxes (e.g. defined by a point, width, 

and height), and a class label for each bounding box. 

One further extension to this breakdown of computer vision tasks is object 

segmentation, also called “object instance segmentation” or “semantic 

segmentation,” where instances of recognized objects are indicated by highlighting 

the specific pixels of the object instead of a coarse bounding box. 

From this breakdown, we can see that object recognition refers to a suite of 

challenging computer vision tasks. 



 

Overview of Object Recognition Computer Vision Tasks. 

Support Vector Machine( SVM ) 

Linear SVM is the newest extremely fast machine learning (data mining) 

algorithm for solving multiclass classification problems from ultra large data sets 

that implements an original proprietary version of a cutting plane algorithm for 

designing a linear support vector machine. 

In machine learning, Support Vector Machine (SVM) is a non-probabilistic, 

linear, binary classifier used for classifying data by learning a hyperplane 

separating the data. Classifying a non-linearly separable dataset using a SVM – a 

linear classifier: However, it can be used for classifying a non-linear dataset also. 

Linear classifier (SVM) is used when number of features are very high, e.g., 

document classification. This is because Linear SVM gives almost similar 

accuracy as non linear SVM but Linear SVM is very very fast in such cases and  

non-linear classifier is useful when data is not linearly separable. 

METHODOLOGY 

SUPERINTELLIGENCE 

However, for AI to lead to superintelligence, we don’t necessarily need to develop 

superintelligent AI ourselves and we only need to develop an AI that is marginally 

better at developing AI’s than we are. 

When that happens, we have an AI that makes better AI’s that make better AI’s — 

all in the blink of a human eye. 

This is known as recursive self-improvement, and when AI’s master this, 

superintelligence might be just around the corner. 



Now that we are familiar with the problem of object localization and detection, 

let’s take a look at one top-performing deep learning models. 

R-CNN Model Family 

The R-CNN family of methods refers to the R-CNN, which may stand for 

“Regions with CNN Features” or “Region-Based Convolutional Neural Network,” 

developed by Ross Girshick, et al. 

This includes the techniques R-CNN, Fast R-CNN, and Faster-RCNN designed 

and demonstrated for object localization and object recognition. 

Let’s take a closer look at the highlights of R-CNN  technique. 

R-CNN 

The R-CNN was described in the 2014 paper by Ross Girshick, et al. from UC 

Berkeley. 

It may have been one of the first large and successful application of convolutional 

neural networks to the problem of object localization, detection, and segmentation. 

The approach was demonstrated on benchmark datasets, achieving then state-of-

the-art results on the VOC-2012 dataset and the 200-class ILSVRC-2013 object 

detection dataset. 

Their proposed R-CNN model is comprised of three modules; they are: 

 Module 1: Region Proposal. Generate and extract category independent 

region proposals, e.g. candidate bounding boxes. 

 Module 2: Feature Extractor. Extract feature from each candidate region, 

e.g. using a deep convolutional neural network. 

 Module 3: Classifier. Classify features as one of the known class, e.g. linear 

SVM classifier model. 

The architecture of the model is summarized in the image below, taken from the 

paper. 



 

The feature extractor used by the model was the AlexNet deep CNN. The output of 

the CNN was a 4,096 element vector that describes the contents of the image that 

is fed to a linear SVM for classification, specifically one SVM is trained for each 

known class. 

It is a relatively simple and straightforward application of CNNs to the problem of 

object localization and recognition. A downside of the approach is that it is slow, 

requiring a CNN-based feature extraction pass on each of the candidate regions 

generated by the region proposal algorithm. This is a problem as the paper 

describes the model operating upon approximately 2,000 proposed regions per 

image at test-time. 

SVM 

What are the types of SVM? 

According to the form of the error function, SVM models can be classified into 

four distinct groups: Classification SVM Type 1 (also known as C-SVM 

classification); Classification SVM Type 2 (also known as nu-SVM classification); 

Regression SVM Type 1 (also known as epsilon-SVM regression); Bayesian 

SVM( also known as variational inference (VI) Bayesian SVM ). 

The methodology is to find the optimal program following  RSI( Recursive Self-

Improvement ) procedure defined by given scores and program generation 

probabilities using Markov chain.  

We define following structure of R-CNN model for applying RSI procedure to 

achieve optimal method of object localization and recognition. 

 

 

 



 

     

 

     

     

OPTIMAL PROGRAM FOLLOWING RSI 

Recursive Self Improvement : Define an improving sequence with respect to G as 

an infinite sequence of programs P1, P2, P3,... such that for all i > 0, Pi+1 

improves on Pi with respect to goal G and  G be the identity goal.  

Definition: P1 is a recursively self improving (RSI) program with respect to G if 

and only if Pi(-1) = Pi+1 for all  i > 0  and the sequence Pi, i = 1, 2, 3...is an 

improving sequence with respect to G. 

Definition (RSI system).Given a finite set of programs P and a score function S 

over P. Initialize p from P to be the system’s current program. Repeat until certain 

criterion satisfied, generate    ∈ P using p. If    is better than p according to S, 

replace p by     . 

From this definition, one needs to decide how p ∈ P generates a program. In 

general, we should allow the RSI system to generate programs based on the history 

of the entire process.  The way a program generates a new program is independent, 

and each program defines a fixed probabilistic distribution over P. This procedure 

defines a homogeneous Markov chain. We will see that even with this restriction, 

with some score function, the model is able to achieve a desirable performance. 

We illustrate the proposed formulation by an example. Consider a set of programs 

P={p1, p2, p3, p4} and a score function S over P such that S(pi) =i. According to 

our formulation, each program can be abstracted as a probabilistic distribution over 

P. To specify the distributions, let    be a vector of probabilistic weights of length 

4 that represents the probabilistic distribution over P corresponding to pi. In this 

example we set  w1= [0.97,0.01,0.01,0.01], w2= [0.75,0,0.25,0],      w3= 

[0.25,0.25,0.25,0.25],       w4= [0,0.58,0,0.42].Then a possible RSI procedure may 

do the flowing. It starts from p3. First p3 generates p4. Since S(p4)> S(p3), the 

current program is not updated. Then p3 generates p2. The current program is 

CNN 
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  nu-SVM 

 epsilon-SVM 

 Bayesian-SVM 



updated to p2 because S(p2)< S(p3). Next p2 generates p1, and the current 

program updates to p1. Since p1 has the lowest score (highest order), no future 

program will be updated. Figure 1 shows the corresponding Markov chain. 

 

 

                                                                           
                                                                   

                      Figure 1 The Markov chain corresponding to the RSI 
      
   

                         

Fig. 1: The Markov chain corresponding to the RSI procedure defined by given 

scores and program generation probabilities. 

 

A reasonable utility measure is the expected numbers of steps starting from a 

program to find the optimal program following our RSI definition. Furthermore, 

the score function needs to be consistent with the expected numbers of steps from 

programs to the optimal program following the process defined by itself. We mean 

that a score function S is consistent if for all p, p′∈P, S(p)> S(p′) implies that the 

expected number of steps to reach the optimal program from p is greater than 

starting from p′. More generally, if one takes some measure for a programs’ ability 

to generate future programs, the score function needs to be consistent with this 

measure. 

 

Two nice properties hold for this construction. First, the programs are added in a 

non-decreasing order of scores. Second, the score function equals the expected 

numbers of steps to reach the optimal program defined by this score function. We 



will prove the first property. The second property and the consistency of the score 

function are straightforward from the first property.  We describe an example of 

how such score function is computed given the distributions to generate programs 

of each program and the optimal program. Consider the same abstraction of 

programs as the above example, where P={p1, p2, p3, p4} with corresponding 

probabilistic weights w1= [0.97,0.01,0.01,0.01], w2= [0.75,0,0.25,0],                  

w3= [0.25,0.25,0.25,0.25], w4= [0,0.58,0,0.42]. Fix p1 to be the optimal program. 

Initially set S(p1) = 0 and S(pi) =∞, i=2,3,4. The transition function of initial 

Markov chain is 

                                                                        
 

At the first step, the expected number of steps from p2, p3, p4 following the 

current Markov chain are 4/3,4,∞. Hence we update S(p2) = 4/3. Because of the 

change of score, transition of the Markov chain change to 

                                                                             
 

Then we compute the expected number of steps from p3 and p4 following the 

updated Markov chain. By some arithmetic we get the expectation are 8/3 for p3 

and (approximately) 3.057 for p4. Since 8/3<3.057, update S(p3) = 8/3. By similar 

procedures, one can compute the score for S(p4). 

As shown above, the  R-CNN model with different SVM architectures/algorithms 

to get range of outcomes to get better AI’s with varying degree of accuracy when it 

is done recursively. 

Support Vector Machine (SVM) 



The support vector machine (SVM) was developed by  for binary classification. Its 

objective is to find the optimal hyperplane  f(w, x)=w·x + b to separate two classes 

in a given dataset, with features x∈R
m
. 

SVM learns the parameters w by solving an optimization problem (Eq. 1). 

   
 

 
                 

  
                                    (1) 

Where         is the Manhattan norm (also known as L1 norm), C is the penalty 

parameter (may be an arbitrary value or a selected value using hyper-parameter 

tuning),         is  the actual label, and 
 
          is the predictor function. Eq. 1 is 

known as L1-SVM, with the standard hinge loss. Its differentiable counterpart, L2-

SVM (Eq.2), provides more stable results. 

   
 

 
    

               
  

                                    (2) 

Where ∥w∥2 is the Euclidean norm (also known as L2 norm), with the squared 

hinge loss. 

ARCHITECTURE 

Recursive CNN-SVM  Architecture For Image Classification 

MNIST  is an established standard hand written digit classification dataset that is 

widely used for benchmarking deep learning models. However, we have used the 

Fashion-MNIST dataset. The said dataset consists of  images having the same 

distribution, the same number of classes, and the same color profile as MNIST. 

Also, It is having 10,000 training examples and 10,000 test cases. 

The Deep Artificial Neural Network 

We used  two convolutional layers: 

 The first layer will have 32-5 x 5 filters,  

 The second layer will have 64-5 x 5 filters  

  

In addition, there are two max-pooling layers each of size 2 x 2. 

 

We used a RELU as our activation function which simply takes the output of 

max_pool and applies RELU. 



Fully connected layer: 

Just like any other layer, we declare weights and biases as random normal 

distributions. In fully connected layer, we take all the inputs, do the standard  

operation on it. The Fully Connected Layer has 1024 Hidden Neurons. 

 

We added Dropout into the network to overcome the problem of overfitting to 

some extent and also to improve the training and validation accuracy. 

The final layer is Output Layer with  10 Output Classes. 

At the last layer of the CNN, instead of the conventional softmax function with the 

cross entropy function (for computing loss), the L2-SVM is implemented. That is, 

the output shall be translated to the following case y∈ {−1,+1}, and the loss is 

computed by Eq. 2.The weight parameters are then learned using Adam. 

Machine Learning methods for feature selection and classification have been 

playing active roles in analyzing high-throughput data. We used both normal linear 

SVM and recursive support vector machine( R-SVM ) to select input features for 

classification. The proposed R-SVM algorithm will recursively classify the 

training samples with SVM and select features according to their weights in the 

SVM classifier. 

TEST RESULTS 

Image Classification is about classifying objects in an image and the test results 

show good accuracy between training and validation data. However the CNN 

algorithm needs a lot of regions to predict accurately and hence high computation 

time. 

 

We compared two methods i.e. SVM and R-SVM , the R-SVM adopting recursive 

procedures to select features in SVM classifiers. Although the two methods( SVM 

and R-SVM ) did not differ significantly in their validation performances, it 

appears that R-SVM is more robust and can recover more informative features. 

The proposed R-SVM method is suitable for analyzing high-throughput data and it 

outperforms SVM in the robustness and in the ability to recover informative 

features. 

CONCLUSION 



Artificial Super Intelligence( ASI ) is based on idea that machines not only imitate 

the human mind but can even supersede human’s intelligence. In order to achieve 

this, ASI will have to be more intelligent by improving intelligent abilities of the 

artificial machines. In this paper, we have discussed R-CNN model for 

implementing object detection and implemented CNN-SVM architecture where a 

lesser AI pass intelligence to high level machine learning algorithm to make better 

AI recursively. The test results show that it is possible to build artificial machines 

that have high-level intelligence by combining different intelligent algorithms 

recursively which are designed to perform specified tasks. 
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