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Abstract—Dense Simultaneous localization and mapping has
attracted people’s attention in recent years. However,it always
consists a large map which led to an increase in storage space and
generates incomplete map. In this paper, we designed a semantic
SLAM system which reduce map storage space while improving
integrity. The key idea is to segment objects from the background
to individual models using deep neural network and reconstruct
the models of same class with a common map storage space. We
built a complete dense semantic system and propose a method
to match two same objects in large distance.

Index Terms—SLAM, semantic segmentation, model share,
dense map

I. INTRODUCTION

With the maturity of automation technology, demand for
robotic autonomous navigation increases rapidly. In the past,
control commands to robots from human were often directly
controlling of the underlying actuators. Nowadays, with the
development of artificial intelligence technology, computer
have a better comprehension of the environment. Meanwhile,
robots also meet the needs to accept complex and unclear
instructions. For example, people put an order on the robot,
”give me the cup”. After receiving the command, the robot
needs to locate the location of the ’water cup’ and the ’sender’
to distinguish it from the background environment, so they can
plan a path from the robot to the cup and then from the cup
to the sender.

There are several ways to locate the robot by themselves [1–
3], and those methods have achieved good results in practice.
Besides localization, in order to accomplish this task, the
robots also need to fully understand the environment where
they work at. And it calls for two essential conditions: firstly,
building a complete map reconstruction of the surrounding
environment, and secondly, semantic segment the object from
background in the three-dimensional map.

To accomplish this task, we are committed to developing a
system that segment objects from environment and reconstruct

them into individual models, and we fuse the models which
are the same class into a common shared model to reduce the
storage space while improve the integrity of them.

The contributions of this paper are summered as follows:
• We build a system that process the dense SLAM and the

semantic segmentation in real time.
• We make an improvement on over segmentation method,

which pick out the edge of objects much precisely.
• We propose a novel method to build object models, which

reduce the storage space of the map and increase integrity
of models.

We will expand this paper in the following order: SectionII
will introduce some relative work of our system. SectionIII
overview the whole paper and introduce the framework of
our slam system, explaining the running process of each
module. SectionIV will introduce how to get the segmentation
results we want from the output of the deep neural network
and the over-segmented image. SectionV will briefly describe
how to estimate the current camera pose using the existing
models and the new frame. And sectionVI will illustrate
how to incorporate the current frame into the model using
the estimated camera pose. Finally, sectionVII will show the
experiment result that we get from our system.

II. RELATIVE WORK

Since the concept of SLAM was proposed, it has gradually
become a popular hot topic, and many excellent researchers
keep emerging. There are some efficient slam systems pro-
posed recently, which target on building 3d maps. Each of
them achieved good results in specific field. We will highlight
some of the works that our sysetem is related to next.

A. Dense SLAM

Only when the environment map is fully modeled will it be
possible for the machine to make its own path planning. So



the dense SLAM method is essential for robot autonomous
navigation. KinectFusion [4] predicted the current position
and posture of the camera based on the point cloud of the
current frame and the previous frame. Then, the TSDF value
is updated according to the camera position and attitude, and
the point cloud is fused. Finally, the surface is estimated
according to TSDF value. Kintinuous [5] is an improvement
of KinectFusion. The pose estimation is realized by ICP and
direct method using GPU. With loop closure detection, the
deformation graph is used for the first time to perform non-
rigid transformation of 3D rigid body reconstruction, so that
the results of the two reconstructions in the loop closure can
coincide.

However, these method calls for a huge storage space, it’s
not practical if you want to deploy it for long-term use.
ElasticFusion [6] use surfel model to construct the map, which
require less storage space than others. With the form of
deformation graph, the accuracy of reconstruction and pose
estimation can be improved by constantly optimizing the way
of rebuilding the map.

B. Semantic Segmentation

In recent years, deep learning is developing rapidly.The
algorithm of image semantic segmentation is updated by time,
and the result gets more and more precise. Faster-RCNN [7]
use RPN to generate proposal Windows for each picture. Map
the proposal Windows to the convolution feature map at the
last layer of CNN. And use the softmax loss and smooth
L1 Loss for classification and Bounding box regression joint
training. Mask R-CNN [8] is an improved version of Faster-
RCNN, which contain a two-stage framework. In the first
stage, the image is scanned and proposals (areas that may
contain a target) are generated. In the second stage, proposals
are classified and boundary boxes and masks are generated.

C. Semantic SLAM

Semantic SLAM is a hot topic in current research, various
methods are also emerging. VSO [9] take use of semantic re-
projection error to derive a new cost function and minimize it
using the expectation maximization (EM) scheme. Their work
can maintain matching consistency under long-distance large-
scale movements. But the framework they proposed cannot
work independently and can only be embedded on other
SLAM systems. To make full use of the semantic information
of input frame, individual models of objects has become a
new interest in research. Li, Peiliang etc.[10] treat different
objects as different maps, and track them while reconstructing
them. In terms of semantic fusion, they constructed four
optimization terms and achieved satisfactory results. But the
tracking method used is still the traditional Local Feature,
which can not construct dense map.

Meanwhile, some researchers are also starting to look at
applications of semantic SLAM. Stenborg etc.[11] solve the
problem on how to use a 3D map to locate when already have a
good one. Its map contains three-dimensional point cloud and
object classification of each point. With such a semantic level

of constraint, it achieves a good positioning effect with more
stable semantics than local features.The downside, however, is
that it require a rich semantic information in observations.

III. SYSTEM OVERVIEW

Our SLAM system build a dense map with multiple objects
in real-time.To be more specific, our system combined the out
put of semantic segment pipeline and dense slam pipeline to
build a dense 3D map with multiple models which can be
tracked independently.

A. surfel

We use surfel as the basic unit of map construction. Dif-
ferent from other map representations, surfel contain an area
unit instead of volume. It can simply represent the surface
features of an object, regardless of the internal composition of
the object. Each surfel in the map is consisted of a position
P ∈ R3,a normal vector n ∈ R3,a color vector c ∈ N3,a
weight w ∈ R, a radius r ∈ R, an initialization timestamp t0
and a last updated timestamp t.

Psurfel = {−→p ,−→n , (r, g, b), w, r, t0, t} (1)

Required for the parallel computing, we run our system
mainly on the GPU. We use OpenGL as the storage, updat-
ing, fusion and render tool, as it has powerful capabilities
to process spatial point, and store them without redundant
information of empty area. And we use CUDA to be the main
compute tool, as it is good at processing the surface texture.

B. Framework

Our system is designed to contain two threads, one for slam
pipeline and the other for semantic segmentation pipeline. As
the semantic segmentation step for a single frame takes much
more time than slam pipeline, it requires a time delay between
them to make sure the output label could be fully utilized.
Inspired by [12], we design a system with a queue that contain
Q newest frames, as the Fig. 1 shows.

The yellow square indicates an original frame with RGB-
D information.and the orange squares indicate that beside the
RGB-D images it also has additional semantic information.
The SLAM pipeline expressed as green rectangle always
process the frame at the head of the queue Q, while semantic
segmentation pipeline expressed as orange rectangle always
get the input image from the back of queue. In order to
facilitate the update of the queue, the SLAM pipeline take
control of the movement of the queue. Due to the different
rate of processing frames. The frame that put color image
to semantic segmentation pipeline has moved forward several
steps in the queue when the correspond label image is pro-
duced. The distance of movement at the n-th segmentation
output is recorded as Dn, and apperently, Dn differs from
time to time.



Fig. 1. Overview of running order of our system over frame queue

IV. SEGMENTATION

We mean to build a 3D semantic model based map, in order
to distinguish each other, every surfel in the map should be
assigned with specific model id. To achieve this target, we
need to segment each pix in each new frames before fusing
it into global map.We adopt Mask-RCNN to perform the
semantic segmentation task. Semantic segmentation methods
like Mask-RCNN and deep-lab perform well in detecting
objects, however, they share some common flaws. 1)Low
process speed, SLAM require process new frames in real time,
generally with high frame rate. However, the DNN pipeline
which generate the mask of object usually perform slowly
on most civilian computers. 2)The direct output of semantic
segmentation DNN usually perform unsatisfactorily, missing
object pixels or contain wrong pixels.

Inspired by Co-Fusion[13] and Mask-Fusion[12], we use
two threads to process the DNN and SLAM pipeline simul-
taneously. After obtain the semantic segmentation of current
frame, we combine it with the over segmentation image to get
a preciser result. Fig. 2 is one of the frame in the dataset,
which we will used to demonstrate our work.

A. Segmentation with DNN

In this section, we use the color image from the newest
frame as the input of deep neural network.The DNN used here
are replaceable, as long as it generates the outline of detected
objects. In our paper, we adopt the state-of-art method Mask-
RCNN which is pre-trained over PASCAL VOC2012 dataset.
In order to eliminate the influence of other objects, we could
only pick the labels of interest for output. For example, we
pick out the label of the chair here, and the result is shown in
Fig. 4.

B. Segmentation with raw information

For every input frame, we suppose to segment the image
using RGB-D information. We use the local information to

detect the edge of each object.Martin etc use deep and normal
differ to segment area, which may lead to a miss segmentation
if two objects close to each other. Different from their work,
we combine color information with depth and normal ,which
helps detect the edge of objects meanwhile keep pixs in one
area if they only differ in colors (e.g. painting and texture on
one object).

We set a fixed size adjacent area N for every pixel. We
calculate the distance from each pixel in N , and find the
farthest one as εd.Similarly, calculate the max differ in normal
εn and the max differ in color εc. Then, use the assigned
weight of each wd, wnand wc, to get the final difference value
εf . If εf > Tedge, we consider it as the edge of objects, where
Tedge is a given threshold. The formulas are as follows:

εd = max
i∈N
{(vi − v) ∗ n} (2)

εn = max
i∈N∫

{
{
1− ni ∗ n if(vi − v) ∗ n > 0

0 else
(3)

εc = max
i∈N
{ max
c∈r,g,b

{
∣∣ci − c∣∣} − min

c∈r,g,b
{
∣∣ci − c∣∣}} (4)

εf = (wd ∗ εd + wn ∗ εn) ∗ (wc ∗ εc + 1) (5)

C. Fuse segmentation result

Due to the low rate of deep neural networks, it’s not feasible
to obtain segmentation result of the DNN every frame. While
the incoming surfels increase per frame with the high rate of
SLAM pipeline, it will lead to an incorrect classify of point
if we don’t assign the label information in time. The semantic
information process is divided into two cases:

1) if current frame contain a DNN output, we combine it
with the result of over segmentation in (IV-B). To be more
specifically, we traverse every over segmentation area Si, and
statistic the amount of point ni and the point number of each



Fig. 2. Color image Fig. 3. Over segment image

Fig. 4. DNN semantic image Fig. 5. Fused image

label nci , and compare the proportion of them with a given
threshold Tseg as (6) shows.

2) If current frame comes without DNN output, we re-
project the model that already build in the map to the pixel
coordinate. Then, perform a linear interpolation to fill the
empty area surround by effective point. After that, we match
it to the raw segmentation result same as above.

li =

{
c

nci
ni
> Tseg

0 else
(6)

After getting the label of area, we assign it to each pixel in
the area. Meanwhile, comparing with the former state of the
model label, we will know if there are new objects detected.

V. TRACKING

In this section, we elaborated the method to track the camera
position. Without keeping the history key frame, we re-project
the dense 3D model to the last camera coordinate instead.
When there comes a new frame, we use bilateral filter to get
rid of the noise. We perform the direct model with the filtered
image and the re-project texture.

The basic idea is to use the Lie algebra to represent transfor-
mation matrice between the current and previous frame, and
then calculate the ICP error term (7) and photometric error
term (8) between the two frames.

ICP error term: where vkt means the position of k-th surfel
on the time t.

Eicp =
∑
k

((
vkt − exp(ξ̂)Tvkt−1

)
· nkt

)2

(7)

Photometric error term: where Ct refer to the color texture
of time t, and Pm refer to the surfel position in the model.

Ergb =
∑
u∈Ω

(
Ct (u)− Ct−1

(
π
(
K exp(ξ̂)TPm

)))2

(8)

Next we use the Gauss-Newton nonlinear least-squares
method to iteratively minimize the joint cost function (9), and
obtain the optimal Lie algebra.Finally, we use it to generate
a transformation matrix, and then get the current camera
position.

Etrack = Eicp + wrgbErgb (9)

T′ = exp(ξ̂)T (10)

In the system, we use the fern method to detect the global
loop closure, and then use the deformation map to update the
entire Map. Since these tasks are not the main contribution of
this article, we will not elaborate on it here.

VI. MAPING

When a new surfel is observed, We initialize it in the
background. When a new frame track the camera position
successfully, we re-project every model to the camera coordi-
nate, assign the semantic segmentation result to every visuable
surfel and reclassify them to each model.

Every model own a model-id which differs form model to
model and a class-id which is same with ones in common
label. If there are more than one area that won common label
in the segmentation image, we construct them into global map
coordinate and caculate the minise distance between the surfel
clouds to judge if they are the different part of a singal object
or just two individual objects.

We divide the model into two types, one is the origin model,
which maintains an independent surfels collection and the pose
of the model, and the other is what we called shared model,
which maintains an independent pose but no independent
surfels space, instead of what is a tag pointing to a specific
origin model.

A. build origin model

When detecting a new object, We first allocate a model with
an independent space for it. We initialize the model pose as
identity matrix,in other worlds, set the current camera position
as model coordinate orign. We caculate the transformation
matrix and transform the global surfels that own the specific
label into model coordinate .

B. match shared model

Tracersing the origin model list, if there are different origin
models with same class id, we supose a petential shared model
may exist. We perform a match task every K frame (we set
K = 5 in our experiment). Considering the different lighting
conditions and shadow positions, the color texture of two
objects may differ a lot. To make matter worse, the direction
of color gradient we used to optimize results perhaps exactly
the opposite if the light source is between two objects.

In our system, we porpose a nerval method to match two
same objects with a big spatial difference.The main idea is to
minimizing a combined geometric and mask error function:

Em = min
ξm

(
Eicpm + λEmaskm

)
(11)



C. mask error term

Inspired by [9], we use label mask to calculate the mask
error term instead of photometric error term. We define the
Error term as:

Emaskm =
∑
c∈C

w
(c)
i log (p (Sk|Tk, Xi, Zi = c))

= −
∑
c∈C

w
(c)
i ·

1

σ2
DT

(c)
k (π (Tk, Xi))

2
(12)

Where p (Sk|Tk, Xi, Zi = c) means the observation likeli-
hood, with the known camera position Tk and the surfel
location Xi. Zi ∈ C is the label of the i-th pixel. And we
define it as follows:

p (Sk|Tk, Xi, Zi = c) ∝ e−
1

2σ2
DT

(c)
k (π(Tk,Xi))

2

(13)

DT
(c)
k (p) means the distance to the nearest pixel which

own the label c from the pixel location p at k-th frame. And
π (Tk, Xi) is the projection of the point Xi with the camera
position Tk.

D. geometric error term

Similar with (7), the model geometric error term are ex-
pressed as (14).

Emicp =
∑
k

∈ m
((

vk − exp(ξ̂)Tvkt

)
· nk

)2

(14)

E. Transformation matrix initialization

The premise of this optimization is that there are enough
correct matching points. However, similar to large-scale move-
ment, the direction and position between model to model
often differ a lot. Without a good initial transformation matrix,
the matching points may be incorrect, thus diverging the
optimization results.Fortunately, due to the independence of
the two models, we can make a simple estimation of the
transformation matrix.

Firstly, we calculate the centroid position of the each model
Pm and the average of the normal vectors Nm:

Pm =

∑
i P

m
i

nm
(15)

Nm =

∑
iN

m
i

nm
(16)

Next, we figure out the rotation Angle and the axis of
rotation between the normal vectors a and b:

θ = arccos

(
Na ·N b

|Na‖N b|

)
(17)

ω = Na ×N b =

ωxωy
ωz

 (18)

Fig. 6. Total sence Fig. 7. Chair models

According to Rodrigues’ rotation formula, we derive the
rotation matrix as:

Rt = I+ ω̂ sin θ + ω̂2(1− cos θ) ∈ SO3 (19)

where:

ω̂ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (20)

the translation vector and transformation matrix can then be
derived:

tt = P a −RtP
b (21)

Tt =

[
Rt tt

0 0 0 1

]
∈ SE3 (22)

F. model fusion

Although we do not use color texture while matching, they
are supposed to combine the color information when fused
into a common shared model. We develop a strategy that if
there are surfels both origin models in one pixel, firstly we
choose the lighter one to color the shared model. After that,
we use Gaussian filter to make the color texture smoother.

VII. EXPERIMENT

We carry the experiment on a PC that have an Intel Xeon
E5-2630 v3 CPU at 2.4 GHz and a Nvidia GeForce GTX
1080Ti GPU.

The application scenarios we envision need to contain nu-
merous repetitive individuals.Since the existing public dataset
does not meet our needs, we collected and built several
datasets ourselves to test the performance of our system. We
select the Microsoft’s Kinect V2 and the ASUS Xtion pro
live as image sensors, and collect images in the lab at around
30Hz. Separately, we collect a dataset for a short time(about
20 second) and another dataset for a longer period of time
(about 3 minute). And for each dataset, we make sure that
two chairs and a teddy bear appear in the shooting range.

TABLE I
THE DATASET

Kinect V2 Xtion Pro Live
short time dataset1 dataset2
long time dataset3 dataset4



Fig. 8. The barycenter, mean normal and boundbox of models

Fig. 9. The shared model

The result shown in Fig. 6-9 is run on a sence that contain
two individual chair with common outlook. Fig. 6 is the final
image of all models and the Fig. 7 is image of models labeled
as ’Chair’. Fig. 8 visualized the barycenter and mean normal
that we used to calculate the transformation matrix of two
models. And Fig. 9 shows the shared model that fused with
two origin models.

VIII. CONCLUSIONS

This paper introduced a dense SLAM system that can
semantically segment the constructed map into object models,
meanwhile, fuse the objects of the same kind into a common
share model. We derive the segmentation, tracking and Map-
ping method and perform an experiment on our own datasets.

We get a noticeable improvement in the Repetitive Scene
compared to MaskFuion which is the state-of-Art dense se-
mantic SLAM. Further, we will try to build the independent
surfels model on the basis of the shared model to distinguish
different objects while keeping most of surfels of the origin
models shared.
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