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Abstract— Current trends of software refactoring involve 

tools and techniques to eliminate code smells that hinder the 

software from achieving quality goals. This is carried out 

manually as the developer is required to analyse the system 

in order to identify how a particular quality attribute is 

being affected. This approach to software development is 

inefficient as a majority of software engineers lack this skill 

and it prolongs the time allocated for the software’s 

implementation and maintenance. This dissertation outlines 

the need for Artificial Neural Networks to support software 

refactoring in order to enhance the system’s quality. This 

justification is emphasized by means of illustrating the 

issues that arise when software quality is affected by the 

presence of codes smells that have been overlooked by the 

developers. By adhering to a research methodology that 

comprises of SEVEN major phases, an ANN model is able 

to measure software quality in terms of efficiency, 

maintainability, and reusability. This calculation is based 

off inputs that are generated through SciTools whereby an 

application is decomposed into metric parameters such as 

Cyclomatic Complexity (CC). The results of the quality of 

ELEVEN JAVA projects were quantified in order to 

further analyse patterns of code smells; this provides an 

insight on how the model may be utilized to enhance 

software quality. Furthermore, the performance of the 

model is evaluated relative to other Machine Learning (ML) 

models. 

 
Index Terms—Software Quality, Software Refactoring, Neural 

Networks, Code Smells, Refactoring Techniques 

 

 Introduction 

Software products that are produced by traditional or agile 

methodologies often require a prolonged implementation, 

testing, and maintenance phase. This is due to the coding style 

that several developers adopt by which unnecessary Lines of 

Code (LOC) are present in the system. This imposes a delay in 

the software’s start-up and may degrade its performance. In 

addition, such systems do not meet the quality criteria based on 

McCall’s Factor Model by which a system should attain 

specific quality standards that are categorized as product 

operation, product revision, and product transition factors. 

Ideally, the term quality is defined based on the user’s 

perception of a quality system. However, general features 

influence this ideology of a quality system; such aspects include 

each classification of McCall’s Factor Model respectively: 

efficiency, maintainability, and reusability. The core of 

degraded quality commences with programming concepts that 

have been implemented incorrectly.  

Software refactoring is the process of reorganizing the code 

that makes up a software, it involves improving the internal 

structure of the system to enhance its non-functional properties 

without any modification to its behaviour (Satwinder Singh, 

2018). This process is supported by a series of techniques that 

identifies defects that hinder the system from executing. 

Although current trends of software refactoring assist 

developers to identify and fix bugs and errors within the system, 

these techniques are applied manually which leads to the 

excessive consumption of time, effort, and resources (Alotaibi, 

2018).  

Developers are limited to identifying errors and defects with 

regards to the desired output from the code during its execution. 

Code smells are characteristics of a program that is a result of 

design issues which hinders the program from achieving 

particular quality goals (M. Mohan, 2019). Such characteristics 

continue to exist among the various classes and methods of the 

system regardless of whether manual refactoring has been 

performed. Artificial Intelligence (AI) is an approach 

considered to automate refactoring. Various studies on an AI 

subset known as Machine Learning (ML) have been conducted 

to critically analyse its effectiveness towards addressing issues 

in refactoring. Specifically, Artificial Neural Networks (ANN) 

have been designed to execute aspects of software refactoring. 

The following section aims to discuss problems that are not 

addressed by current software refactoring techniques. 

 Problem Statement 

The current use of software refactoring improves the design 

of an application. However, it does not eliminate code smells; 

such as data clumps, long method, refused bequest, and God 

class; that have an adverse effect on software quality goals. 

These code smells violate the SOLID design principles 

resulting in an increased time, cost, and effort to cater novel 

requirements while simultaneously failing to achieve quality 

standards. The support of ANN specifically to measure 

software quality may be investigated to provide the developer 

with appropriate refactoring options to achieve quality goals 

that are hindered by code smells. 

 Aim 

The aim of this research is to propose an ANN model that 

measures the quality of an application in order to manually 
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identify code smells affecting a specified set of quality goals. 

This assists in justifying the model’s support for refactoring as 

this enhances software quality. 

 Objective 

▪ To design an ANN model that measures software quality 

based on parameters that are prone to creating code smells 

▪ To acquire and pre-process the data set using a repository 

tool known as GitHub 

▪ To analyze the data set for object-oriented metrics using 

SciTools 

▪ To assess testing strategies that enable the researcher to 

test the proposed ANN model and measure its impact on 

software quality 

▪ To evaluate the ANN model relative to existing ML 

models 

 Significance of the study 

Often coding errors with regard to the software’s structure 

are created during implementation; however, these errors are 

overlooked and/or unidentifiable. This is costly to amend once 

the software has been deployed and will require double the 

effort and man hours to identify and eliminate the error 

(HaitaoZhao, 2019). Existing studies on ML models concluded 

a tainted quality as the system’s complexity increased. 

Therefore, these models are applicable to support software 

refactoring to an extent. The study of ANN models to support 

software refactoring is significant as it is able to quantify 

software quality in order to recognize patterns of code smells 

regardless of a system’s complexity (Chen, 2018). This is ideal 

in the specified context as several patterns of code smells are 

overlooked due to the system’s complexity. Such complexity is 

commonly experienced in the software industry. Furthermore, 

the model may act as a tool to alert the developer of a decline 

in a particular quality in order to perform the corresponding 

refactor. The selection of ANN minimizes the effort, cost, and 

time required during software development and achieves 

software quality goals by embedding quality that is based on 

each category of McCall’s Factor Model into the system. 
 

 Literature Review  

Software refactoring is a major role in the implementation 

phase of the Software Development Life Cycle (SDLC). 

Existing software refactoring techniques are not automated 

hence resulting in an excessive consumption of time, effort, and 

resources (Alotaibi, 2018). Additionally, developers are limited 

to identifying errors and defects by means of monitoring the 

desired output from the code during its execution. Numerous 

experimental researches have been conducted to analyze the 

ability of a software refactoring technique to eliminate a 

particular code smell.  

The presence of code smells hinders the software from being 

maintainable and expandable. Current software refactoring 

techniques do not promote a full elimination of the code smell. 

This suggests that code smells continue to exist among the 

various classes and methods of the system regardless of whether 

refactoring has been performed. Therefore, utilizing a set of 

algorithms intended for recognizing patterns, known as neural 

networks, may be used to improve the software refactoring 

process in order to accommodate particular quality attributes.  

Using neural networks to support refactoring techniques is 

vital as it assists in minimizing the time, cost, and effort 

required to carry out the software refactoring process. 

Additionally, automating software refactoring has been proven 

to be complex and may result in added ramification to the code 

(O.Deryugina, 2019). Therefore, the use of neural networks 

rather than automating the process would provide the developer 

with a series of predictions of the software’s quality in order to 

apply the appropriate refactoring techniques to the code. 

This systematic literature review aims to identify and 

critically evaluate commonly utilized refactoring techniques 

that are applied manually or with the aid of tools. In addition, 

approaches to how neural networks may be used to support the 

process shall be analysed. The impact of neural networks used 

to enhance the quality of the system in the implementation and 

maintenance phases of the Software Development Life Cycle 

shall then be assessed. In order to understand the reliability of 

neural networks and its utilization with software refactoring, the 

following research questions shall be pursued. 

RQ1. How is software quality impacted by the support of 

neural networks in refactoring techniques? 

RQ2. How can neural networks be integrated with existing 

refactoring tools? 

RQ3. What training algorithm can be applied to the neural 

network to assist software refactoring?  

The structure of this chapter is as follows: The following 

section outlines related works and the search strategy employed 

to recognize the relevance of the work with consideration of the 

area of study. Subsequently, a discussion of the various 

software refactoring techniques shall be outlined to answer 

RQ1 and RQ2 respectively. Furthermore, a solution to RQ3 

shall be explored prior to identifying the research gap and 

providing a conclusion to this literature review. 
 

2.1 Related Works  

Studies were carried out to analyse the impact of software 

refactoring in order to detect and eliminate code smells and anti-

patterns. Several systematic literature surveys in the area of 

software refactoring to eliminate code smells have been carried 

out. In the discipline of software refactoring, specific 

milestones have been presented by several authors such as 

(Alotaibi, 2018), (Satwinder Singh, 2018), and (M. Mohan, 

2019). A summary of the results presented by the systematic 

literature survey gathered by the respective authors is outlined 

in Table 1. 

(Alotaibi, 2018) revealed various perspectives of the impact 

of software refactoring and the challenges that arise during the 

implementation and maintenance phases due to the current form 

of refactoring. More than 30 papers were filtered from search 

engines such as ScienceDirect and Elsevier to extract and 

analyse the findings of the paper. This was carried out to grasp 

a deeper understanding of the influence of the current mode of 

refactoring to the Software Development Life Cycle. 
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A systematic literature survey was conducted by (Satwinder 

Singh, 2018) on the study of refactoring techniques to eliminate 

smells in the code. 1053 research items between 2015 and 2018 

were reviewed to understand uniform methods to optimize the 

code by eliminating code smells. These items were filtered and 

gathered from IEEE, Elsevier, ACM, and Springer. 

Approximately 200 articles were refined after applying an 

inclusion-exclusion criterion to the research items. 

Similar to the systematic literature survey conducted by 

(Alotaibi, 2018), (M. Mohan, 2019) exhibits the opportunities 

that emerges to counteract the challenges faced in the current 

utilization of software refactoring. 58 papers dated between 

2012 to 2017 were reviewed on the basis of the investigation. 

These papers were published by leading Journals such as 

Springer and IEEE. Based on the systematic literature survey, 

the author concluded that the current trend of software 

refactoring (manual) affects other aspects of the code. This is 

exemplified in a scenario whereby a software refactor in one 

class causes errors to arise within the same class or another 

class. 

2.2 Search Strategy 

The process of refining research articles commences by 

specifying essential keywords related to the area of study. 

Additionally, numerous leading Journals; such as IEEE and 

Elsevier; were identified to commence the search. These papers 

then went through two levels of refinements in order to filter 

appropriate papers that added valuable knowledge to the area of 

study. Initially, 50 papers were filtered based on the relationship 

between the title of the paper and the research area. The 

research papers were further refined to 25 papers on the basis 

of its abstract. The final concentrated research articles were 

then reviewed and analysed to identify similarities between the 

papers and limitations to the study. Based on the acquired 

papers, the researcher was able to justify the use of neural 

networks to aid software refactoring techniques in order to 

enhance software quality. The outcome of the papers reviewed 

is discussed in the following section. 

2.3 Software Refactoring Technique Analysis 

The following section aims to discuss possible solutions to 

the research questions outlined in the introduction section of 

this paper. Three software refactoring techniques have been 

selected to focus on the problems that it addresses and 

challenges that are faced with the current delivery of the 

technique. These techniques shall be evaluated on the basis of 

how the software’s quality is influenced as a result of the 

refactor. Furthermore, the possible integration of neural 

networks with these techniques shall be critically analysed to 

justify its ability to enhance the software’s quality with focus to 

improving productivity in the Software Development Life 

Cycle. 

2.3.1 Encapsulate Field 

A key feature that object-oriented programming comprises of 

is encapsulation. This feature is used to encourage the 

utilization of access specifiers rather than allowing all objects 

to be public. Code is refactored using this technique by 

suggesting the use of getter and setter methods for a particular 

field; the field is then converted from public to private. 

Additionally, data class is the code smell that this refactoring 

technique addresses whereby a newly created class comprises 

of objects containing only data (Giovanni Grano, 2019). This 

code smell violates the Single Responsibility Principle as a 

class that comprises of numerous objects containing data to be 

utilized by other classes would require multiple reasons to 

change and will involve major reworks to the system to 

accommodate the necessary changes. The violation of this 

principle degrades the system’s maintainability quality 

attribute. 

Visual Assist is a refactoring tool embedded within 

Microsoft Visual Studio that implements Encapsulate Field. 

Figure 1 illustrates how this tool is utilized during the 

implementation phase. However, the use of this tool only 

enhances the system’s security and integrity attributes rather 

than eliminating code smells that violate the Single 

Responsibility Principle. Neural networks may be integrated 

with this tool by assessing the nature of the program in order to 

provide suggestions to the developer to apply the Encapsulate 

field. This ensures that unauthorized parties do not have direct 

access to the field. 
 

Table 1 Summary of systematic literature survey 

Figure 1 Refactoring using Encapsulate Field in Visual Assist 
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2.3.2 Extract Method 

Code fragments that are grouped together into a single 

method should be separated into a new method. Likewise, the 

existing method should include a method call to the new 

method, this is performed using a refactoring technique known 

as Extract Method. This technique improves the code 

readability and decreases code duplication and the probability 

of errors occurring within the class. Extract method addresses 

several code smells that affects the program’s design and 

implementation such as data clumps, long method, refused 

bequest, and duplicate code.  

Code Smell What is it? Quality factors 

impacted 

Data 

Clumps 

Code that comprises 

of identical groups 

of variables that 

were the effect of 

copying and pasting 

open source code 

snippets 

Flexibility, 

Reliability 

Long 

Method 

An oversized 

method that 

comprises of too 

many Lines of Code 

(LOC) (Gupta, 

2019) 

Efficiency, 

Maintainability, 

Reusability 

Refused 

Bequest 

Creating inheritance 

to use objects in a 

parent class, 

however, both the 

child and parent 

classes are entirely 

dissimilar 

Testability, 

Reliability 

Duplicate 

Code 

Redundant code 

within the same 

method, class, or 

program 

Efficiency, 

Maintainability, 

Reusability, 

Flexibility, 

Reliability, 

Testability 

 

Table 2 summarizes the code smells that Extract method 

discloses and its influence to software quality. Extract method 

is supported in a refactoring tool known as Smalltalk 

Refactoring Browser whereby code is restructured without any 

modifications to its behaviour. In contrast to Visual Assist, this 

refactoring tool requires the programmer to select a method’s 

component that should be extracted as a separate method 

relative to the code smells that are addressed. This tool does not 

enhance the productivity of novel programmers that are not able 

to recognize the code smells. Therefore, neural networks many 

be integrated with this technique by initially recognizing the 

code smells that exist within the program. Once these smells 

have been detected, the developer may be notified to apply the 

extract method to the area where the code smell exists. The 

application of neural networks will uphold software quality as 

it assists in immediate detection of the code smells to apply the 

extract method.  

 

2.3.3 Pull Up Field 

Problems arise when two or more classes comprise of the 

same field as redundant changes are required when 

functionalities are added to the system. Pull up field is a 

refactoring technique that is used to counteract this problem by 

moving the same field to a superclass that extends the 

corresponding classes and removing redundant code. 

Additionally, long parameter list and duplicate code are the 

main code smells that are addressed by pull up field.  

Long parameter list is a common code smell that is 

encountered by several programmers for several reasons that 

are dependent on the nature of the class. The primary cause of 

long parameter lists from arising is due to the necessity of a 

series of algorithms to be utilized in order to obtain a particular 

result. This is recurrent when using different algorithms to 

capture and extract random features of an image. Long 

parameter lists may also arise when classes are constructed 

more independently, this decreases the dependency among the 

various classes and affects the efficiency of passing parameters 

between classes. 

Similar to long parameter list, duplicate code is a code smell 

that commonly occurs in the programming industry whereby 

several programmers are working on various segments of a 

program simultaneously (Sievi-Korte, 2019). Programmers are 

unaware of the same code being applied within the same 

program at the same time; this affects the testability, 

maintainability, and efficiency of the program. Testability is 

affected as it would introduce redundant errors and bugs which 

will result in an increase in testing efforts. Similarly, it 

replicates the need to maintain the same set of code rather than 

maintaining and applying novel functionalities once. 

Furthermore, the time taken to execute the program would be 

prolonged due to the compiling and execution of duplicate 

code.  

The Eclipse IDE 

comprises of a 

refactoring tool that 

implements the Pull Up 

Field technique by 

declaring abstract 

methods in a parent class 

and/or relocating a field 

to a parent class, this is 

illustrated in Figure 2. 

This tool provides the 

developer with an 

insight of the refactoring 

results prior to executing 

a refactor. This is 

previewed as a tree that 

displays each component within the program that will be 

affected by the refactor. By integrating neural networks, the 

developer is able to be notified of overlooked code smells such 

as redundant code as they are required to manually detect code 

Table 2 Impact of code smells to software quality 

Figure 2 Pull Up Field implemented in the 

Eclipse IDE 
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smells and utilize the tool to refactor the code. The integration 

of neural networks with the Pull Up Field technique contributes 

to the software’s testability, maintainability, and efficiency.  

2.4 Using Neural Networks to detect code smells 

Neural networks can be utilized to support several software 

refactoring techniques by recognizing patterns of code smells 

in order to perform a refactor (Ouni, 2017). This will decrease 

the effort required and improve the productivity of the 

developers during the implementation and maintenance phases. 

This is due to the automated detection of code smells rather than 

developers analysing the code to detect such code smells. 

Similarly, the utilization of neural networks in software 

refactoring would assist novel programmers to recognize 

patterns of code smells and enhance their skills with regards to 

writing quality code. In order to recognize patterns of code 

smells, the neural network shall segregate the program into n 

number of sections to conduct a predictive analysis that 

forecasts when a particular form of code smell will appear. 

Based on this analysis, the developer is notified of the potential 

code smell to perform the respective refactor. 

 

2.4.1 Newton’s Method 

Newton’s method is an algorithm that uses the Hessian 

matrix to train neural networks for optimization (Oliveira, 

2019). This algorithm searches for a finer training direction by 

using the second derivatives of a function that plots an event 

onto a real number in order to represent a “cost” that is linked 

to the event, this is known as a loss function (Ting, 2019). The 

premier Newton’s training direction is initially acquired in 

order to augment the performance of the parameters and 

training rate. This training algorithm is preferred over several 

training algorithms due its ability to converge to the root 

promptly (Mujtaba Alshakhouri, 2018). This is essential during 

the development of the software as it increases the productivity 

of the developers and improves the quality of the code with 

regards to catering for efficiency, testability, and 

maintainability. Furthermore, the expression below depicts 

Newton’s method with regards to training the neural network to 

recognize code smells whereby 𝒂 = the first Newton’s training 

direction. 

𝒂 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
−

(𝑥𝑘)2

2

𝑓"(𝑛𝑘)

𝑓′(𝑥𝑘)
 

𝑥 = 𝑉𝑒𝑐𝑡𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 

𝑛 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 

𝑘 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

2.4.2 Variable Learning Rate Backpropagation 

Variable Learning Rate Backpropagation is a training 

algorithm that iteratively processes a set of training data in order 

to learn (Ting, 2019). To implement this algorithm, the input 

pattern (Xi) and target outputs (Xo) are expressed as (Xi, Xo). The 

input pattern requires specific outputs of each neuron 

throughout the layer. The output layer is responsible for 

presenting a certain output based on the inputs; therefore, the 

actual and target outputs provide an error signal that 

differentiates the two from each other (Ting, 2019). 

Furthermore, the value that each neuron and weight carries 

influence this error signal. The error is propagated backwards 

after calculating its value; this updates the values of the weights 

and bias in order to achieve a better accuracy. As outlined in the 

equation below, the error is continuously adjusted until the 

validation dataset ensures that the model is underfitted (Davide 

Arcelli, 2018). 

𝑬𝒋 = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝐸𝑖𝑊𝑖𝑗

𝑖=0

 

𝐸 = 𝐸𝑟𝑟𝑜𝑟 

𝑂 = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑊 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 

𝑖 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑗 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

 

2.4.3 Levenberg-Marquardt 

By computing a matrix, known as the Jacobian Matrix, that 

contains the first-order partial derivative of a vector valued 

function, the Levenberg-Marquardt algorithm (represented in 

the expression below) is able to proceed towards a second-order 

training rate (Almas Hamid, 2018). The algorithm offers dual 

possibilities to converge in different directions for a single 

iteration, this enforces a more robust execution. Although, input 

parameter spaces may be at loss in this algorithm, it is able to 

identify optimal solutions in order to attain high accuracy 

(Almas Hamid, 2018). Furthermore, this allows the algorithm 

to achieve a better performance, speed, and accuracy in 

comparison to Variable Learning Rate Backpropagation and 

Newton’s method algorithm. 

𝑺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑[𝑦𝑖 − 𝑓(𝐽𝑖 , 𝛽)]2

𝑚

𝑖=1

 

𝑆 = 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑞𝑖𝑜𝑛𝑠 

𝛽 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑓 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

𝐽 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

𝑚 = 𝐸𝑚𝑝ℎ𝑖𝑟𝑎𝑐𝑎𝑙 𝑃𝑎𝑖𝑟𝑠 

 

 Research Gap and Summary 

Software refactoring is a major role in the implementation 

phase of the Software Development Life Cycle. This process 

has not evolved to result in an automated procedure as 

developers are required to manually analyze the program to 

recognize code smells that have to be eliminated using software 

refactoring. However, several code smells remain within the 

program as they have been overlooked by developers due to the 

lack of skill or refactoring tool constraints. Neural networks are 

an agile approach to recognizing patterns of code smells in 

order to perform a refactor and enhance the quality of the 

software. This approach to support the refactoring process may 

be supported by utilizing training algorithms such as Newton’s 

method, Variable Learning Rate Backpropagation, or 

Levenberg-Marquardt to understand the nature of the program 

and recognize code smells rapidly. This study is limited to 

common refactoring techniques and commonly utilized training 

algorithms that are able to predict outputs based on novel 

inputs. Future research with regard to automating software 



 

6 

refactoring or utilizing evolutionary computations to enhance 

the application of software refactoring may be required. 

 

 Research Methodology 

This section presents a suitable research methodology that 

encourages a systematic approach to conducting an 

experimental research based on quantitative data. The 

methodology consists of SEVEN distinct phases that produces 

minor deliverables to document the administration of the 

research accordingly. The phases include data collection, data 

pre-processing, design, implementation, testing, validation, and 

evaluation. 

 Data Collection 

The datasets that are required during the testing phase of the 

research will be acquired from GitHub. It acts as a public code 

repository that allows users to upload various projects that 

varies in consideration of programming languages that were 

used for its development. FIFTEEN Java Projects that have 

been uploaded into the repository were collected with varying 

complexity, LOC, and various legacy systems that comprises of 

code smells; this assists the researcher in justifying the use of 

ANN to enhance software quality. The selected projects 

become the input of the subsequent phase. 

 Data Pre-Processing  

Subsequently after the Java Projects have been collected, the 

data shall be analysed to identify any missing data. The 

execution of the projects in the NetBeans IDE assists in 

identifying any missing data that involves absent dependencies 

between classes and/or loss of values/variables in a 

method/class. Noisy, missing, and inconsistent data shall be 

discarded from the acquired data set. The refined projects were 

then analysed using SciTools in order to identify the 

independent variables; this is outlined in Table 3.  The refined 

and analysed dataset shall be stored in an Excel spreadsheet for 

the implementation and testing phases of the research. 

 Design 

The formulation of ANN specific to enhance software 

efficiency, maintainability, and reusability is designed during 

this phase. As illustrated in Figure 3, the ANN comprises of a 

Single Layer Architecture that is embodied by THREE distinct 

layers: input, hidden, and output layer. This architecture 

receives metric parameters that are organized in different 

columns. This input enters the hidden layer and is dependent on 

the set bias and weights. SIX neurons form the hidden layer; the 

output it produces is relative to the activation function initiated. 

The data produced in the output layer is then utilized to quantify 

the efficiency, maintainability, and reusability of the 

corresponding application in consideration of the metric 

parameters that have been extracted. 

 Implementation 

MATLAB is the IDE that shall be used to simulate the ANN 

model, this is due to the deep learning toolbox that is offered in 

the platform. The analysed dataset that was stored during data 

pre-processing shall be imported to IDE in order to act as an 

input for the ANN model. In order to ensure that the neural 

network is able to accept the imported inputs, it is essential to 

convert the numerical values in the spreadsheet into binary 

values in an array. 

As stated in the design phase, the hidden layer comprises of 

SIX neurons. These neurons act as a mathematical function that 

receives n-number of inputs that are mathematically weighted 

separately. The sum of this computation subsequently passes 

through an activation function. The selected activation function 

comprises of a hyperbolic tangent function, 𝑥(𝑗) =
tanh(𝛽1 + 𝛽0 ∑ 𝑗, 𝑘𝑗𝑖 ), as it is useful for classification issues. 

Additionally, the use of this activation function ensures that the 

probability of the network getting wrapped remains at a 

minimal as it avoids slowing down the network’s classification. 
The output layer as a similar design to the hidden layer. 

However, the further computation with its neuron provides a 

predicted probability of the software’s necessary coefficient. 

This value is inserted into the respective quality metrics to 

quantify the software’s efficiency, maintainability, and 

reusability. Furthermore, the results from the output layer 

undergoes a Variable Learning Rate Backpropagation 

algorithm that applies a chain rule. This minimizes the 

network’s chance of error by calculating the direction of the 

steepest descent and executing a backward pass in order to 

adjust the parameters of the model. 
MATLAB comprises of a Machine Learning Toolbox that 

assists in visualizing the network’s architecture, progress, and 

plots. However, the results of this feature are subject to the 

Figure 3 Single Layer Architecture 

Table 3 Extracted metric parameters of the refined Java Projects 
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IDE’s pre-programmed training algorithm: Levenberg-

Marquardt that may result in a different performance and error 

histogram. 

 Testing 

The results that were gathered from the execution phase 

involves the predicted and quantified software quality with 

regard to efficiency, maintainability, and reusability. The 

metric’s parameters are analysed in order to manually identify 

code smells in consideration of Design Principles. The standard 

recognition of code smells, discovered by (Kim, 2017), is in 

reference to Table 4. These rules are established to discover the 

effect of the code smell with the corresponding quality attribute. 

The result of this phase is documented in the following chapter. 

Code Smell Rules Affected quality 

attribute 

Large Class ACU>70% || RC>20 Maintainability, 

Efficiency 

Lazy Class RC=0 || CC<3 || 

WMC<=2 

Usability, Reliability 

Data Class HV>4500 || 

WMC>50 

Flexibility, Testability 

Parallel 

Inheritance 

Hierarchies 

NCC>4 Reusability, 

Portability, Flexibility 

God Class WMC>=47 || 

HV>4900 

Efficiency, Reliability, 

Usability, 

Maintainability, 

Flexibility, 

Testability, 

Portability, 

Reusability 

Feature Envy RC>20 || WMC>50 Reusability, 

Efficiency 

Data Clumps MI>60 || ACU>50% 

|| CC >=35 

Maintainability, 

Efficiency 

Long 

Parameter List 

RC>=15 || MI>70 Maintainability, 

Reusability 

 Validation 

Validation of the neural network is carried out by calculating 

the classification error of the neural network. This is performed 

by utilizing the weights generated from the model’s training 

(model training is elaborated in the Implementation phase). In 

a scenario where the classification error is high, a higher 

threshold is declared and the process of presenting the input or 

target vectors to compute novel weights and biases for the 

network is repeated; this measure is known as epoch. This phase 

is partially demonstrated as 

“net.divideParam.valRatio = 15/100;”. The data 

fraction that is situated in the validation set is 0.15 by default. 

This may be manipulated with to identify which ratio produces 

a minimal classification error. 

 

 

 

 Evaluation 

MSE is known as a risk function that refers to the desired 

value of an error loss. As depicted in Figure 4, the MSE value 

decreased towards the end of the training phase. This signifies 

that the network had been trained accordingly. The value of 

MSE is required to be proximate to zero as the desired and 

actual outputs are obliged to be adjacent to each other.  

Table 5 illustrates 

the MSE plots for 

decision trees, SVM, 

and BBN. In 

contrast to ANN, 

BBN, and SVM; 

decision trees are not 

relative to the 

number of epochs 

(an epoch is the digit 

of repetition where 

all training vectors 

are utilized to update 

the weights) 

(Kahlon, 2015). Comparatively they correspond to the number 

of trees that constructs the model. Furthermore, it undergoes 

cross validation which requires excessive processing power and 

training time. With regard to SVM, the best performance of the 

models is attained at epoch 39. Whereas the best performance 

was 1.1132e-24 at epoch 4 in the proposed ANN, this value may 

be improved by ensuring that the input parameters are less than 

or equal to the output parameters as this will utilize less memory 

and would accelerate the model’s training as illustrated in 

BBN’s best performance that is attained at epoch 2 (Kahlon, 

2015). 

Figure 4 Performance plot of the model 

Table 4 Rules for code smell identification 

Table 5 MSE plots for various ML models 
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 Results and Analysis 

The results from the testing phase has been summarized in 

Table 5. It highlights the code smells that are present in the 

application; therefore, resulting in a decline in software quality. 

63% of the total JAVA projects comprised of code smells. The 

difference in quality amongst the projects is synthesized in this 

section. 

 

5.1 Efficiency 

Figure 5 provides a visual representation of the efficiency 

level relative to the JAVA projects tested. The lower the 

efficiency level, the higher the efficiency for the reason that the 

efficiency level represents the response time and average CPU 

utilization ratio. This suggests the speed of the application as 

the lesser the response time of the application, the increase in 

user productivity and throughput.  

Furthermore, the application’s efficiency is affected when 

data clumps, feature envy, God class, and/or large class are 

present in the program. These code smells exist in the following 

projects: APM, WCS, and DCS. Among these projects, DCS 

exhibits the most decline in efficiency which results in user 

dissatisfaction due to a prolonged response time. Additionally, 

the existence of this code smell violates the Interface 

Segregation Principle as the interface of a class is not separated 

into different methods (Giovanni Grano, 2019). However, this 

may be subdued by implementing an Adapter design pattern to 

decouple the system and organize the delegation of methods in 

order to improve the system’s efficiency. 

5.2 Maintainability 

Most applications that comprise of code smells often endure 

maintainability issues (Dag I.K. Sjøberg, 2019). This is due to 

the nature of code smells that forces the application to adopt a 

bad design. In contrast to the efficiency levels, the higher the 

maintainability level, the more sustainable the system. As 

illustrated in Figure 6, projects that have the highest 

maintainability levels do not contain code smells. 

Data clumps, God class, large class, and long parameter list 

are the code smells that affect maintainability in addition to 

efficiency. These code smells violate the Open-Close Principle 

whereby a system should be open for extension but closed for 

modification (Dag I.K. Sjøberg, 2019). This is due to the need 

to change existing methods/classes that have been tested in the 

earlier phases of software development. Additionally, there 

would be an increase in cost and effort to implement a single 

new feature for the reason that the maintenance phase of 

software development consumes 67% of the total effort and cost 

(Dag I.K. Sjøberg, 2019). However, the maintainability of the 

system may be improved by implementing the Strategy or 

Template pattern to avoid this design violation. 

5.3 Reusability 

Reusability levels are calculated differently than 

maintainability levels; however, they are interpreted the same 

(the higher the reusability level, the better the component’s 

reusability). Maintainability and reusability are interrelated as 

components that are tightly coupled and complex will not be fit 

to support a different system with a similar nature (Gupta, 

2019). In addition to Lazy class, the projects comprise of the 

exact code smells that affect its maintainability. The decreased 

reusability of APM, WCS, and EMS differs the projects from 

the maintainability computation; this is visualized in Figure 7. 
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Figure 5 Efficiency levels of the tested JAVA projects 
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Figure 6 Reusability levels of the tested JAVA projects 

Table 6 Quantified quality of the JAVA projects 
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In conjunction with the violation of the Open-Close 

Principle, the projects breach the Dependency Inversion 

Principle. This does not ease the process of using components 

of a class for a different project as several errors will arise 

(Almas Hamid, 2018). Code reuse is a fundamental goal that 

assists in reducing time-effort, and cost of software 

development. Therefore, the structure of the system should be 

carefully planned out to ensure it adopts a well-designed, OO 

application (Giovanni Grano, 2019). 

 Conclusion and Future Research 

This dissertation has successfully outlined issues in the area 

of study that is being addressed in this research. A software’s 

complexity decreases its efficiency, maintainability, and 

reusability; this may result in a software that does not 

accommodate changes. By recognizing issues in the system, 

ANN is the proposed solution due to its potential to support 

refactoring options that would optimize the code and augment 

several quality attributes. Additionally, a set of research 

questions were developed to assist the researcher with regard to 

investigating the proposed model to acknowledge the 

challenges faced in software development. The scope of the 

research is clearly defined to ensure that the research conducted 

is within the disclosed boundaries in order to prevent delays and 

direct the focus on the proposed solution. 

The execution of this research is procedurally documented in 

Chapter 3: Research Methodology. This enabled the researcher 

to successfully implement an ANN model that is specifically 

designed to determine software quality. The results of the 

chapter are documented in Chapter 4: Results and Analysis. The 

two sets of results included the quantified quality and 

performance measures of the proposed model. Based on the 

measured quality, it was discovered that applications that 

hosted code smells had a lesser quality than applications that 

were unrestricted from code smells. Additionally, the 

performance measures gathered were differentiated from other 

ML models. The proposed model did not have the best 

performance; however, the differentiating environment 

consisted of varying independent variables that are not able to 

solidify this conclusion. 

It is promising that the ANN model is able to predict the 

quality attributes accurately based on metric parameters 

generated by SciTools. This measure is able to support software 

refactoring by displaying the quantified quality attributes to the 

developer. Further research should be conducted to investigate 

the possibility of embedded refactoring tools in an IDE 

determining which parts of the code should be refactored in 

order to enhance the system’s quality. 
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