
EasyChair Preprint
№ 6936

Scalable Hybrid Parallel ILU Preconditioner to
Solve Sparse Linear Systems

Raju Ram, Daniel Grünewald and Nicolas R Gauger

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2021

Scalable hybrid parallel ILU preconditioner to
solve sparse linear systems

Raju Ram1,2, Daniel Grünewald1, and Nicolas R Gauger2

1 Fraunhofer ITWM, Competence Center High Performance Computing,
Kaiserslautern, Germany

2 Chair for Scientific Computing, Technische Universität Kaiserslautern, Germany

Abstract. Incomplete LU(ILU) preconditioners are widely used to im-
prove the convergence of general-purpose large sparse linear systems in
computational simulations because of their robustness, accuracy, and us-
ability as a black-box preconditioner. However, the ILU factorization and
the subsequent triangular solve are sequential for sparse matrices in their
original form. Multilevel nested dissection (MLND) ordering can resolve
that issue and expose some parallelism. This work investigates the par-
allel efficiency of a hybrid parallel ILU preconditioner that combines a
restricted additive Schwarz (RAS) method on the process level with a
shared memory parallel MLND Crout ILU method on the core level.
We employ the GASPI programming model to efficiently implement the
data exchange on the process level. We show the scalability results of
our approach for the convection-diffusion problem.

Keywords: Sparse linear systems · Parallel ILU preconditioner · Do-
main decomposition · GASPI · METIS · Task-level parallelism

1 Research problem

Solution of the large sparse linear system Ax = b, arising after discretization
of the partial differential equations (PDE), is one major computational task of
chemistry, physics, and engineering-based simulations. Krylov subspace-based
iterative methods are preferred over direct methods due to lesser time complexity
and memory requirements. These solvers use preconditioners to accelerate their
convergence. Incomplete LU (ILU) is widely used as a preconditioner because of
its robustness, accuracy, and usability as a black-box preconditioner for general
purpose (asymmetric, indefinite) linear systems. On the other hand, parallel
Krylov solvers with good scalability features are required to fully exploit the
increasing parallelism provided by modern hardware. Scalability measures the
parallel efficiency of implementation. Better scalability allows simulation of more
detailed models, more precise parameter studies, and more cost-efficient resource
utilization. The scalability of ILU-based Krylov solvers is restricted due to the
sequential nature of preconditioner operations such as factorization and solution
to the triangular systems. We combine the thread-level parallelism approach
described in [1] with Schwarz preconditioners at the distributed level to address
the scalability challenges in ILU preconditioner on modern hardware.

2 R. Ram et al.

2 Methodology

We propose a two-level domain decomposition (DD) preconditioner following
a hybrid execution model which fits the memory hierarchies of modern hard-
ware architectures well. For distributed memory parallelism, we use the GASPI
communication API [3] since it provides fine-grained communication across pro-
cesses. The communication is single-sided, asynchronous, and is complemented
by lightweight synchronization primitives. For shared-memory parallelism, we
use data dependency-driven task-based parallelism using pthreads.

2.1 Distributed memory parallelism

We use the Additive Schwarz (AS) method at the first level of DD and asso-
ciate one sub-domain with each GASPI process. Thereby, the vertex set V of
the graph corresponding to the matrix A is decomposed into N non-overlapping
sub-domains V 0

i such that V =
⋃N
i=1 V

0
i and V 0

i

⋂
V 0
j = ∅ for i 6= j. This

decomposition may be augmented by a so called δ-overlap to generate parti-
tions V δi (δ ≥ 1), where V δi ⊃ V 0

i is obtained by including all the immediate
neighboring vertices of the vertices in V 0

i up to distance δ. Restriction operators

Rδi ∈ R|V
δ
i |×|V | and scaling operators Dδ

i ∈ R|V
δ
i |×|V

δ
i | associated with each V δi

and can be defined such that a partition of unity 1 =
∑N
i=0(Rδi)

TDδ
iR

δ
i is formed.

Here, the transpose (Rδi)
T corresponds to the expansion operator. Then, AS de-

composes the global problem Ax = b into sub-domain solve problems Aixi = bi,
which can be solved in parallel and whose solutions are patched together a pos-
teriori. The sub-domain matrix Ai is defined as Ai := (RδiA(Rδi)

T). Depending
on the sub-domain partitioning, different preconditioners can be implemented:

1) Non-overlapping AS preconditioner : M−1AS =
∑N
i=1(R0

i)
TA−1i R0

i

2) Restricted AS (RAS) preconditioner: M−1RAS =
∑N
i=1(R0

i)
TDδ

iA
−1
i Rδi .

We use δ = 1 in RAS which is known to converge faster than AS method [2].

2.2 Shared memory parallelism

The global matrix A loses coupling information across sub-domains in the first
level of DD approach. This effect becomes more severe with increasing number
of sub-domains. To prevent this, we introduce the second level of DD that parti-
tions the distributed memory subdomain further using multilevel nested dissec-
tion(MLND) as described in [1]. MLND preserves the information of the matrix
Ai and allows to obtain fine granular parallelism. We use the multi-threading
version of METIS to generate the MLND permutation Π in our implementation.
MLND reorders Ai into Ai,perm such that Ai,perm = ΠTAiΠ. Independent local
matrices are extracted from Ai,perm which are then factorized in a task-parallel
way. Similarly, we solve the triangular system using the same MLND task tree
structure exploiting the local dependency in the tasks. We provide a custom
implementation for performance critical sparse vector, used during serial Crout
ILU factorization. Our sparse vector implementation is significantly faster than
C++ STL based data structures such as std::map and std::unordered map [4].

Scalable hybrid parallel ILU preconditioner to solve sparse linear systems 3

3 Preliminary results

We discretize the following 3D convection-diffusion PDE using second order finite
differences on a regular rectangular mesh in an unit cube (x, y, z) ∈ Ω = (0, 1)3.

∆u+ k2 ∗ x2(
∂u

∂x
+
∂u

∂y
+
∂u

∂z
) = f(x, y, z), k2 = 100 (1)

We set f(x, y, z) such that the solution u(x, y, z) of the above PDE is equal
to exp(xyz) ∗ sin(πx) ∗ sin(πy) ∗ sin(πz) and use Dirichlet boundary conditions
as u(∂Ω) = f(∂Ω). We solve the linear system using GMRES(30) solver with
termination criteria of relative residual as 10−9. The performance is evaluated
on a cluster of 2.4 GHz Intel(R) Xeon(R) Gold 6148 CPU dual socket nodes,
each socket with 20 cores which are connected by EDR Infiniband interconnects.
We start one GASPI process per socket in our experiments.

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
se

c)

Number of cores

Shared memory parallel implementation

No Preconditioner
Crout ILU Preconditioner

Fig. 1: GMRES runtime(s) for matrix size 8 million and MLND tree height as 5

First, we investigate the shared memory performance. On 1 GASPI process
with 20 cores, MLND Crout ILU preconditioned GMRES achieves the parallel
efficiency of 47.21%. This allows to obtain 3.58x gain in preconditioned GMRES
run-time compared to plain GMRES on 20 cores (fig. 1).

Second, we evaluate the performance of hybrid implementation. On 64 GASPI
processes each having 20 cores, RAS preconditioned GMRES(30) achieves a par-
allel efficiency of 83.61%. This is superior to the AS preconditioned GMRES(30)
parallel efficiency of 65.60% and is because RAS has limited the increase of GM-
RES(30) iterations for higher number of GASPI processes (table 1). We obtain
3.88x gain in GMRES(30) run-time using MLND Crout ILU based RAS pre-
conditioner in comparison to no preconditioner on 64 processes each having 20
cores (fig. 2).

4 R. Ram et al.

Table 1: GMRES iterations with different Schwarz preconditioners
GASPI processes # Iterations using AS # Iterations using RAS

1 326 326

8 390 333

16 452 348

32 539 378

64 724 425

 10

 100

 1000

 0 10 20 30 40 50 60 70

T
im

e(
se

c)

Number of gaspi processes

Hybrid parallel implementation

No Preconditioner
AS + Crout ILU Preconditioner

RAS + Crout ILU Preconditioner

Fig. 2: GMRES runtime(s) for matrix size 64 million and 20 cores per process

4 Future outlook

The parallel efficiency of MLND Crout ILU based RAS preconditioner is promis-
ing. To handle real-world large problems, we have introduced more robust fea-
tures such as row and col-based permutation, inverse-based droppings, and MC64
matching and currently testing them on various real-world linear systems.

References

1. Aliaga, J.I., Bollhöfer, M., Martı, A.F., Quintana-Ortı, E.S., et al.: Exploiting
thread-level parallelism in the iterative solution of sparse linear systems. Parallel
Computing 37(3), 183–202 (2011)

2. Efstathiou, E., Gander, M.J.: Why restricted additive schwarz converges faster than
additive schwarz. BIT Numerical Mathematics 43(5), 945–959 (2003)

3. Grünewald, D., Simmendinger, C.: The GASPI API specification and its imple-
mentation GPI 2.0. In: Proceedings of the 7th International Conference on PGAS
Programming Models. vol. 243 (2013)

4. Ram, R., Grünewald, D., Gauger, N.R.: Data structures to implement the Sparse
Vector in Crout ILU preconditioner (2019), Sparse Days 2019

