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THE DISPERSIONLESS INTEGRABLE SYSTEMS AND
RELATED CONFORMAL STRUCTURE GENERATING

EQUATIONS OF MATHEMATICAL PHYSICS

OKSANA E. HENTOSH, YAREMA A. PRYKARPATSKY, DENIS BLACKMORE,
AND ANATOLIJ K. PRYKARPATSKI

Abstract. Based on the vector �elds on the complexi�ed torus and the
related Lie-algebraic structures, we devise an approach to constructing
multidimensional dispersionless integrable systems, describing conformal
structure generating equations of mathematical physics. As examples,
we have analyzed Einstein�Weyl metric equation, the modi�ed Einstein�
Weyl metric equation, the Dunajski heavenly equations, �rst and second
conformal structure generating equations, inverse �rst Shabat reduction
heavenly equation, �rst Plebański heavenly equation, modi�ed Plebański
equation and

Husain heavenly equation.

1. Vector fields on the complexified torus TnC and the related

Lie-algebraic properties

It is well known [13] that the loop Lie algebra ~G := ]diff(Tn); consisting
of the set of smooth mappings fC1 � S1 �! G = diff(Tng; extended, re-
spectively, holomorphically from the circle S1 � C1 on the disc D1+ of the
internal points � 2 D1 and on the disc D1� of the external points � 2 CnD1;
can be centrally extended as bG := (]diff(Tn);R1); where for elements (~a;�)
and (~b;�) 2 bG the commutator

(1.1) [(~a;�); (~b;�)] = ([~a;~b];!2(~a;~b)) 2 ~G
and the 2-cocycle !2 : ~G � ~G ! R1 satis�es the condition
(1.2) !2([~a;~b]; ~c) + !2([~b; ~c]; ~a) + !2([~c; ~a];~b) = 0

for any ~a;~b and ~c 2 ~G: For arbitrary n 2 Z+ the cocycle !2 : ~G � ~G ! R1 can
be taken in the unique Cartan-Maurer form

(1.3) !2(~a;~b) = res
�2C

Z
Tn�S1

(< a(x; y;�); @b(x; y;�) > dxdy;

where have denoted by < �; > the standard scalar product in the Euclidean
space En and parametrized the Lie algebra ~G = ]diff(Tn) by means of an
additional spatial parameter y 2 S1: For the case n = 1 the cocycle (1.3)
above can be extended by means the Gelfand�Fuchs 2-cocycle [6]

(1.4) ~!2(~a;~b) = res
�2C

Z
T1�S1

��p
@2a(x;�)

@x2
@b(x;�)

@x
dxdy

for any vector �elds ~a = a(x; y;�) @@x ;
~b = b(x; y;�) @@x 2 ~G on T1; parameterized

by means of the spatial parameter y 2 S1 and a �xed integer p 2 Z:
Yet, the scheme, based on the central extension technique, does not allow

[7] to construct e¤ectively commuting to each other spatially multidimensional
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linear di¤erential expressions and, thereby, generate completely integrable non-
linear equations in partial derivatives. Taking into account this fact, we will
describe below a direct scheme of describing in�nite hierarchies of commuting to
each other spatially multidimensional linear vector �eld equations, generating
completely integrable nonlinear Hamiltonian systems on functional manifolds,
many of which are important for applications in modern mathematical physics.

2. The Lie-algebraic structures and integrable Hamiltonian
systems

The integrable dynamical systems related to the central extension, men-
tioned above, were described in detail in [9]. Concerning a further gen-
eralization of the multi-dimensional case related to the loop group ~G for
n 2 Z+ one can proceed in the following [7] natural way: as the Lie alge-
bra ~G = ]diff(Tn) consists of the elements, depending additionally on the
�spectral� variable � 2 C1; one can extend the basic Lie structure on ~G =
]diff(Tn) to the generalized Lie algebra �G := diffhol(TnC) of vector �elds
on the complexi�ed torus TnC: This Lie algebra has elements representable

as �a(x;�) :=< a(x;�); @@x >=
nP
j=1

aj(x;�)
@
@xj

+ a0(x;�)
@
@� 2 �G for some

holomorphic in � 2 D1� vectors a(x;�) 2 E � En for all x 2 Tn; where
@
@x := (

@
@� ;

@
@x1

; @
@x2

; :::; @
@xn

)| is the generalized Euclidean vector gradient with
respect to the vector variable x := (�; x) 2 TnC:
It is now important to mention that the Lie algebra �G also naturally splits

into the direct sum of two subalgebras:

(2.1) �G = �G+ � �G�;

allowing to introduce on it the classical R-structure:

(2.2) [�a;�b]R := [R�a;�b] + [�a;R�b]

for any �a;�b 2 �G; where

(2.3) R := (P+ � P�)=2;

and

(2.4) P� �G := �G� � �G:

The space �G� ' �1(TnC); adjoint to the Lie algebra �G of vector �elds on TnC;
can be functionally identi�ed with �G subject to the metric

(2.5) (�l; �a) =
1

2�i

I
S1

d�(l; a)H ;

for arbitrary �l :=< l(x;�); dx >:=
X
j=0;n

lj(x;�)dxj 2 �G�; �a :=<

a(x;�); @=@x>=<
X
j=0;n

aj(x;�);
@
@xj

2 �G; where (l; a)H =
R
Tn
dx <

l(x;�); a(x;�) > :
Now for arbitrary f; g 2 D( �G�); one can determine two Lie�Poisson type

brackets

(2.6) ff; gg := (�l; [rf(�l);rg(�l)])

and

(2.7) ff; ggR := (�l; [rf(�l);rg(�l)]R) ;

where at any seed element �l 2 �G� the gradient element rf(�l) and rg(�l) 2 �G
are calculated with respect to the metric (2.5).
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Now let us assume that a smooth function 
 2 I( �G�) is a Casimir invariant,
that is

(2.8) ad�r
(�l)
�l = 0

for a chosen seed element �l 2 �G�: As the adjoint mapping ad�rf(�l)�l for any

f 2 D( �G�) can be rewritten in the reduced form as

(2.9) ad�rf(�l)(
�l) =

�
@

@x
;rf(l)

�
�l +

nX
j=1

��
l;

@

@x
rf(l)

�
; dx

�
;

where rf(�l) :=< rf(l); @@x > : For the Casimir function 
 2 D( �G�) the condi-
tion (2.8) is then equivalent to the equation

(2.10) l

�
@

@x
;r
(l)

�
+

�
r
(l); @

@x

�
l +

�
l; (

@

@x
r
(l))

�
= 0;

which should be solved analytically. In the case when an element �l 2 �G� is
singular as j�j ! 1; one can consider the general asymptotic expansion

(2.11) r
 := r
(p) � �p
X
j2Z+

r
(p)j ��j

for some suitably chosen p 2 Z+; and upon substituting (2.11) into the equation
(2.10), one can proceed to solving it recurrently.
Now let h(y); h(t) 2 I( �G�) be such Casimir functions for which the Hamil-

tonian vector �eld generators

(2.12) rh(y)+ (l) := ( r
(py)(l))+; rh(t)+ (l) := ( rh(pt)(l))+
are, respectively, de�ned for special integers py; pt 2 Z+: These invariants gen-
erate, owing to the Lie�Poisson bracket (2.7), the following commuting �ows:

(2.13) @l=@t = �
�
@

@x
;rh(t)+ (l)

�
l �

�
l; (

@

@x
rh(t)+ (l))

�
and

(2.14) @l=@y = �
�
@

@x
;rh(y)+ (l)

�
l �

�
l; (

@

@x
rh(y)+ (l))

�
>;

where y; t 2 R are the corresponding evolution parameters. Since the invari-
ants h(y); h(t) 2 I( �G�) commute with respect to the Lie�Poisson bracket (2.7),
the �ows (2.13) and (2.14) also commute, implying that the corresponding
Hamiltonian vector �eld generators

(2.15) �Arh(t)+
:=

�
@

@x
;rh(t)+ (l)

�
; �Arh(y)+

:=

�
@

@x
;rh(y)+ (l)

�
satisfy the Lax compatibility condition

(2.16)
@

@y
�Arh(t)+

� @

@t
�Arh(y)+

= [ �Arh(t)+
; �Arh(y)+

]

for all y; t 2 R: On the other hand, the condition (2.16) is equivalent to the
compatibility condition of two linear equations

(2.17) (
@

@t
+ �Arh(t)+

) = 0; (
@

@y
+ �Arh(y)+

) = 0

for a function  2 C2(TnC;C) for all y; t 2 R and any � 2 C:
The above can be formulated as the following key result:

Proposition 2.1. Let a seed vector �eld be �l 2 �G� and h(y); h(t) 2 I( �G�) be
Casimir functions subject to the metric (�; �) on the loop Lie algebra �G and the
natural coadjoint action on the loop co-algebra �G�: Then the following dynamical
systems

(2.18) @�l=@y = �ad�rh(y)+ (�l)
�l; @�l=@t = �ad�rh(t)+ (�l)

�l
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are commuting Hamiltonian �ows for all y; t 2 R: Moreover, the compatibility
condition of these �ows is equivalent to the vector �elds representation

(2.19) (@=@t+ �Arh(t)+
) = 0; (@=@y + �Arh(y)+

) = 0;

where  2 C2(R2 � TnC;C) and the vector �elds �Arh(y)+

; �Arh(t)+
2 �G are given

by the expressions (2.15) and (2.12).

Remark 2.2. As mentioned above, the expansion (2.11) is e¤ective if a chosen
seed element �l 2 �G� is singular as j�j ! 1: In the case when it is singular as
j�j ! 0; the expression (2.11) should be replaced by the expansion

(2.20) r
(p)(l) � ��p
X
j2Z+

r
(p)j (l)�j

for suitably chosen integers p 2 Z+; and the reduced Casimir function
gradients then are given by the Hamiltonian vector �eld generators

(2.21) rh(y)� (l) := �(��py�1r
(py)(l))�; rh(t)� (l) := �(��pt�1r
(pt)(l))�
for suitably chosen positive integers py; pt 2 Z+ and the corresponding Hamil-
tonian �ows are, respectively, written as @�l=@t = ad�

Oh(t)� (�l)
�l; @�l=@y =

ad�
Oh(y)� (�l)

�l:

It is also worth of mentioning that, following Ovsienko�s scheme [10, 11],
one can consider a wider class of integrable heavenly equations, realized as
compatible Hamiltonian �ows on the semidirect product of the holomorphic
loop Lie algebra �G of vector �elds on the torus TnC and its regular co-adjoint
space �G�; supplemented with naturally related cocycles.

3. The Lax-Sato type integrable systems and related conformal
structure generating equations

3.1. Example: Einstein�Weyl metric equation. De�ne �G� = diffhol(T1C)
and take the seed element

~l = (ux�� 2uxvx � uy) dx+
�
�2 � vx�+ vy + v2x

�
d�;

which generates with respect to the metric (2.5) the gradient of the Casimir
invariants h(pt); h(py) 2 I( �G�) in the form

rh(pt)(l) � �2(0; 1)| + (�ux; vx)|� + (uy; u� vy)| +O(��1);(3.1)

rh(py)(l) � �(0; 1)| + (�ux; vx)| + (uy;�vy)|��1 +O(��2)
as j�j ! 1 at pt = 2; py = 1: For the gradients of the Casimir functions
h(t); h(y) 2 I( �G�); determined by (2.12) one can easily obtain the corresponding
Hamiltonian vector �eld generators

~Arh(t)+
=

�
rh(t)+ (l);

@

@x

�
= (�2 + �vx + u� vy)

@

@x
+ (��ux + uy)

@

@�
;

~Arh(y)+

=

�
rh(y)+ (l);

@

@x

�
= (�+ vx)

@

@x
� ux

@

@�
;(3.2)

satisfying the compatibility condition (2.16), which is equivalent to the set of
equations

(3.3)

8<: uxt + uyy + (uux)x + vxuxy � vyuxx = 0;

vxt + vyy + uvxx + vxvxy � vyvxx = 0;
describing general integrable Einstein�Weyl metric equations [4].
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As is well known [8], the invariant reduction of (3.3) at v = 0 gives rise to
the famous dispersionless Kadomtsev�Petviashvili equation

(3.4) (ut + uux)x + uyy = 0;

for which the reduced vector �eld representation (2.17) follows from (3.2) and
is given by the vector �elds

�Arh(t)+
= (�2 + u)

@

@x
+ (��ux + uy)

@

@�
;(3.5)

�Arh(y)+
= �

@

@x
� ux

@

@�
;

satisfying the compatibility condition (2.16), equivalent to the equation (3.4).
In particular, one derives from (2.17) and (3.5) the vector �eld compatibility
relationships

(3.6)

@ 
@t + (�

2 + u)@ @x + (��ux + uy)
@ 
@� = 0

@ 
@y + �

@ 
@x � ux

@ 
@� = 0;

satis�ed for  2 C2(R2 � T1C;C) and any y; t 2 R; (x; �) 2 T1C:

3.2. The modi�ed Einstein�Weyl metric equation. This equation system
is

uxt = uyy + uxuy + u
2
xwx + uuxy + uxywx + uxxa;(3.7)

wxt = uwxy + uywx + wxwxy + awxx � ay;

where ax := uxwx�wxy; and was recently derived in [14]. In this case we take
also �G� = diffhol(T1C); yet for a seed element ~l 2 �G we choose the form

~l = [�2ux + (2uxwx + uy + 3uux)�+ 2ux@
�1
x uxwx + 2ux@

�1
x uy +(3.8)

+ 3uxwx
2 + 2uywx + 6uuxwx + 2uuy + 3u

2ux � 2aux]dx+

+[�2 + (wx + 3u)�+ 2@
�1
x uxwx + 2@

�1
x uy + wx

2 + 3uwx + 3u
2 � a]d�;

which with respect to the metric (2.5) generates two Casimir invariants 
(j) 2
I( �G�); j = 1; 2; whose gradients are

r
(2)(l) � �2[(ux;�1)| + (uux + uy;�u+ wx)|��1 +(3.9)

+ (0; uwx � a)|��2] +O(��1) ;

r
(1)(l) � �[(ux;�1)| + (0; wx)| ��1] +O(��1);

as j�j ! 1 at py = 1; pt = 2: The corresponding gradients of the Casimir
functions h(t); h(y) 2 I(G�); determined by (2.12), generate the Hamiltonian
vector �eld expressions

rh(y)+ := r
(1)(l)j+ = (ux�;��+ wx)|;
(3.10)

rh(t)2;+ = r
(2)(l)j+ = (ux�
2 + (uux + uy)�;��2 + (wx � u)�+ uwx � a)|:

Now one easily obtains from (3.10) the compatible Lax system of linear equa-
tions
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@ 

@y
+ (��+ wx)

@ 

@x
+ ux�

@ 

@�
= 0;

(3.11)

@ 

@t
+ (��2 + ( wx � u)�+ uwx � a)

@ 

@x
+ (ux�

2 + (uux + uy)�)
@ 

@�
= 0;

satis�ed for  2 C2(R2 � T1C;C) and any y; t 2 R; (x; �) 2 T1C:

3.3. Example: The Dunajski heavenly equations. This equation, sug-
gested in [3], generalizes the corresponding anti-self-dual vacuum Einstein equa-
tion, which is related to the Plebański metric and the celebrated Plebański
[12, 5] second heavenly equation. To study the integrability of the Dunajski
equations

ux1t + uyx2 + ux1x1ux2x2 � u2x1x2 � v = 0;(3.12)

vx1t + vx2y + ux1x1vx2x2 � 2ux1x2vx1x2 = 0;

where (u; v) 2 C1(R2 � T2;R2); (y; t;x1; x2) 2 R2 � T2; we de�ne �G� :=
diff�hol( T2C) and take the following as a seed element �l 2 �G�
(3.13)
~l = (�+vx1�ux1x1+ux1x2)dx1+(�+vx2+ux2x2�ux1x2)dx2+(��x1�x2)d�:
With respect to the metric (2.5), the gradients of two functionally independent
Casimir invariants h(py); h(py) 2 I( �G�) can be obtained as j�j ! 1 in the
asymptotic form as

rh(py) (l) � �(0; 1; 0)| + (�vx1 ;�ux1x2 ; ux1x1)| +O(��1);(3.14)

rh(pt) (l) � �(0; 0;�1)| + (vx2 ; ux2x2 ;�ux1x2)| +O(��1)
at pt = 1 = py: Upon calculating the Hamiltonian vector �eld generators

rh(y)+ := rh(py) (l)j+ = (�vx1 ; �� ux1x2 ; ux1x1)|;(3.15)

rh(t)+ := rh(pt) (l)j+ = (vx2 ; ux2x2 ;��� ux1x2)|;
following from the Casimir functions gradients (3.14), one easily obtains the
following vector �elds

�Arh(t)+
=< rh(t)+ ;

@

@x
>= ux2x2

@

@x1
� (�+ ux1x2)

@

@x2
+ vx2

@

@�
;(3.16)

�Arh(y)+
=< rh(y)+ ;

@

@x
>= (�� ux1x2)

@

@x1
+ ux1x1

@

@x2
� vx1

@

@�
;

satisfying the Lax compatibility condition (2.16), which is equivalent to the
vector �eld compatibility relationships

@ 

@t
+ ux2x2

@ 

@x1
� (�+ ux1x2)

@ 

@x2
+ vx2

@ 

@�
= 0;

(3.17)

@ 

@y
+ (�� ux1x2)

@ 

@x1
+ ux1x1

@ 

@x2
� vx1

@ 

@�
= 0;

satis�ed for  2 C1(R2�T2C;C); any (y; t) 2 R2 and all (x1; x2;�) 2 T2C: As
was mentioned in [1], the Dunajski equations (3.12) generalize both the dis-
persionless Kadomtsev�Petviashvili and Plebański second heavenly equations,
and is also a Lax integrable Hamiltonian system.
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3.4. First conformal structure generating equation: uyy + uxtuy �
utuxy = 0:. The seed element ~l 2 ~G� in the form

(3.18) ~l = [u�2t (1� �)��1 + u�2y �(�� 1)�1]dx;

where u 2 C2(T1 � R2;R), x 2 T1, � 2 Cnf0; 1g and "d" denotes the full
di¤erential, generates two independent Casimir functionals 
(1) and 
(2) 2
I( ~G�), whose gradients have the following asymptotic expansions:

r
(1)(l) ' uy +O(�
2);

as j�j ! 0, � := �� 1, and

r
(2)(l) ' ut +O(�
2);

as j�j ! 0. The commutability condition

(3.19) [X(y); X(t)] = 0

of the vector �elds

(3.20) X(y) := @=@y +rh(y)(l); X(t) = @=@t+rh(t)(l);

where

rh(y)(~l) := �(��1r
(1)(~l))j� = �
uy
�� 1

@

@x
;(3.21)

rh(t)(~l) := �(��1r
(2)(~l))j� = �
ut
�

@

@x
;

leads to the heavenly type equation

uyt + uxtuy � uxyut = 0:

Its Lax-Sato representation is the compatibility condition for the �rst order
partial di¤erential equations

@ 

@y
� uy
�� 1

@ 

@x
= 0;(3.22)

@ 

@t
� ut
�

@ 

@x
= 0;

where  2 C2(T1 � R2;R).

3.5. Second conformal structure generating equation: uxt + uxuyy �
uyuxy = 0:. For a seed element ~l 2 ~G� in the form

(3.23) ~l = [u2x + 2u
2
x(uy + �)�

�1 + u2x(3u
2
y + 4�uy + �)�

�2]dx;

where u 2 C2(T1 � R2;R), x 2 T1, � 2 C n f0g;and �; � 2 R; there a one
independent Casimir functional 


(1) 2 I( ~G�) with the following asymptotic as
j�j ! 0 expansion of its functional gradient:

r
(1)(l) ' c0u
�1
x + (�c0uy + c1)u�1x �+ (�c1uy + c2)u�1x �2 +O(�3);

where cr 2 R, r = 1; 2: If one assumes that c0 = 1, c1 = 0 and c2 = 0, then we
obtain two functionally independent gradient elements

rh(y)(~l) := �(��1r
(1)(~l))j� = �
1

�ux

@

@x
;(3.24)

rh(t)(~l) := (��2r
(1)(~l))j� =
�

1

�2ux
� uy
�ux

�
@

@x
:

The corresponding commutability condition (3.35) of the vector �elds (??) givse
rise to the following heavenly type equation:

(3.25) uxt + uxuyy � uyuxy = 0;
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whose linearized Lax-Sato representation is given given by the �rst order system

@ 

@y
� 1

�ux

@ 

@x
= 0;(3.26)

@ 

@t
+

�
1

�2ux
� uy
�ux

�
@ 

@x
= 0

of linear vector �eld equations on a function  2 C2(T1 � R2;R):

3.6. Inverse �rst Shabat reduction heavenly equation. A seed element
~l 2 ~G� in the form

(3.27) ~l = (a0u
�2
y u2x(�+ 1)

�1 + a1u
2
x + a1u

2
x�)dx;

where u 2 C2(T1�R2;R), x 2 T1, � 2 Cnf�1g, and a0; a1 2 R; generates two
independent Casimir functionals 
(1) and 
(2) 2 I( ~G�), whose gradients have
the following asymptotic expansions:

(3.28) r
(1)(l) ' uyu
�1
x � uyu�1x �+O(�2);

as j�j ! 0, � := �+ 1, and

(3.29) r
(2)(l) ' u�1x +O(��2);

as j�j ! 1. If wu put, by de�nition,

rh(y)(~l) := (��1r
(1)(~l))j� = �
�

�+ 1

uy
ux

@

@x
;(3.30)

rh(t)(~l) := (�r
(2)(~l))j+ =
�

ux

@

@x
;

the commutability condition (3.35) of the vector �elds (??) leads to the heav-
enly equation

(3.31) uxy + uyutx � utyux = 0;

which can be obtained as a result of the simultaneous changing of independent
variables R 3x � t 2 R, R 3y � x 2 R and R 3t � y 2 R in the �rst Shabat
reduction heavenly equation. The corersponding Lax-Sato representation is
given by the compatibility condition for the �rst order vector �eld equations
equations

@ 

@y
� �

�+ 1

uy
ux

@ 

@x
= 0;(3.32)

@ 

@t
+

�

ux

@ 

@x
= 0;

where  2 C2(T1 � R2;R).

3.7. First Plebański heavenly equation. The seed element ~l 2 ~G� in the
form

(3.33) ~l = ��1(uyx1dx1 + uyx2dx2) = ��1duy;

where u 2 C2(T2 � R2;R), (x1; x2) 2 T2; � 2 Cnf0g and "d" designates a
full di¤erential, generates two independent Casimir functionals 
(1) and 
(2) 2
I( ~G�); whose gradients have the following asymptotic expansions:

r
(1)(l) � (�uyx2 ; uyx1 ; )> +O(�);
r
(2)(l) � (�utx2 ; utx1)> +O(�);(3.34)

as j�j ! 0: The commutability condition

(3.35) [@=@y +rh(y)� (l); @=@t+rh(t)� (l)] = 0
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of the vector �elds @=@y +rh(y)� (l) and X(t) = @=@t+rh(t)� (l); where

rh(y)� (~l) := (��1r
(1)(~l))j� = �
uyx2
�

@

@x1
+
uyx1
�

@

@x2
;(3.36)

rh(t)� (~l) := (��1r
(2)(~l))j� = �
utx2
�

@

@x1
+

utx1
�

@

@x2
;

leads to the �rst Plebański heavenly equation [2]

(3.37) uyx1utx2 � uyx2utx1 = 1:

Its Lax-Sato representation (3.35) entails the compatibility condition for the
�rst order partial di¤erential equations

@ 

@y
� uyx2

�

@ 

@x1
+
uyx1
�

@ 

@x2
= 0;

@ 

@t
� utx2

�

@ 

@x1
+

utx1
�

@ 

@x2
= 0;

where  2 C1(T2 � R2;C):
Remark 1. Taking into account that the condition for Casimir invariants is

equivalent to the system of nonhomogeneous linear �rst order partial di¤erential
equations for the vector-function l = (l1; l2)|; the corresponding seed-element
can be chosen in another forms. The asymptotic expansions (3.34) are also
true for such seed-elements as

~l = ��1dut;

and
~l = ��1(duy + dut):

The above described scheme can be easily generalized for all m = 2n; where
m 2 N and n > 2: In this case one has 2n independent Casimir functionals

(j) 2 I( ~G�); where j = 1; 2n; with the following asymptotic expansions for
their gradients:

r
(1)(l) � (�uyx2 ; uyx1 ; 0; : : : ; 0| {z }
2n�2

)> +O(�);

r
(2)(l) � (�utx2 ; utx1 ; 0; : : : ; 0| {z }
2n�2

)> +O(�);

r
(3)(l) � (0; 0;�uyx4 ; uyx3 ; 0; : : : ; 0| {z }
2n�4

)> +O(�);

r
(4)(l) � (0; 0;�utx4 ; utx3 ; 0; : : : ; 0| {z }
2n�4

)> +O(�);

: : : ;

r
(2k�1)(l) � (0; : : : ; 0| {z }
2n�2

;�uyx2k ; uyx2n�1)> +O(�);

r
(2k)(l) � (0; : : : ; 0| {z }
2n�2

;�utx2k ; utx2n�1)> +O(�):

If we put

rh(y)� (~l) := (��1(r
(1)(~l) + : : :+r
(2k�1)(~l)))j� =

= �uyx2
�

@

@x1
+
uyx1
�

@

@x2
+ : : :� uyx2k

�

@

@x2k�1
+
uyx2k�1
�

@

@x2k
;

rh(t)� (~l) := (��1(r
(2)(~l) + : : :+r
(2k)(~l)))j� =

= �utx2
�

@

@x1
+
utx1
�

@

@x2
+ : : :� utx2k

�

@

@x2k�1
+
utx2k�1
�

@

@x2k
;
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the commutability condition (3.35) of the vector �elds (3.35) leads to the cor-
responding multi-dimensional analogs of the �rst Plebański heavenly equation:

nX
j=1

(uyx2j�1utx2j � uyx2jutx2j�1) = 1:

3.8. Modi�ed Plebański equation. For the seed element ~l 2 ~G� in the form

~l = (��1ux1y + ux1x1 � ux1x2 + �)dx1 +
+ (��1ux2y + ux1x2 � ux2x2 + �)dx2 =(3.38)

= d(��1uy + ux1 � ux2 + �x1 + �x2):

where u 2 C2(T2 � R2;R), (x1; x2) 2 T2; � 2 C n f0g; there exist two inde-
pendent Casimir functionals 
(1) and 
(2) 2 I( ~G�) with the following gradient
asymptotic expansions:

r
(1)(l) � (uyx2 ;�uyx1)> +O(�);

as j�j ! 0; and

r
(2)(l) � (0;�1)> + (�ux2x2 ; ux1x2)>��1 +O(��2);

as j�j ! 1: In the case, when

rh(y)� (~l) := (��1r
(1)(~l))j� =
uyx2
�

@

@x1
� uyx1

�

@

@x2
;

rh(t)� (~l) := (�r
(2)(~l))j+ = �ux2x2
@

@x1
+ (ux1x2 � �)

@

@x2
;

the commutability condition of the vector �elds @=@y +rh(y)� (~l) and @=@t +

rh(t)� (~l) leads to the modi�ed Plebański heavenly equation [2]:

uyt � uyx1ux2x2 + uyx2ux1x2 = 0;

with the Lax-Sato representation given by the �rst order partial di¤erential
equations

@ 

@y
� uyx2

�

@ 

@x1
+
uyx1
�

@ 

@x2
= 0;

@ 

@t
� ux2x2

@ 

@x1
+ (ux1x2 � �)

@ 

@x2
= 0

for functions  2 C2(T2 � R2;C):

3.9. Husain heavenly equation. The seed element ~l 2 ~G� in the form

(3.39) ~l =
d(uy + iut)

�� i +
d(uy � iut)

�+ i
=
2(�duy � dut)

�2 + 1
; i2 = �1;

where u 2 C2(T2 � R2;R); (x1; x2) 2 T2; � 2 Cnf�i; ig, generates two inde-
pendent Casimir functionals 
(1) and 
(2) 2 I( ~G�); with the following gradient
asymptotic expansions:

r
(1)(l) � 1

2
(�uyx2 � iutx2 ; uyx1 + iutx1)> +O(�); � := �� i;

as j�j ! 0; and

r
(2)(l) � 1

2
(�uyx2 + iutx2 ; uyx1 � iutx1)> +O(�); � := �+ i;
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as j�j ! 0: In the case, when

rh(y)� (~l) := (��1r
(1)(~l) + ��1r
(2)(~l))j� =

=
1

2�

�
(�uyx2 � iutx2)

@

@x1
+ (uyx1 + iutx1)

@

@x2

�
+

+
1

2�

�
(�uyx2 + iutx2)

@

@x1
+ (uyx1 � iutx1)

@

@x2

�
=

=
utx2 � �uyx2

�2 + 1

@

@x1
+
�uyx1 � utx1

�2 + 1

@

@x2
;

rh(t)� (~l) := (���1ir
(1)(~l) + ��1ir
(2)(~l))j� =

=
1

2�

�
(�utx2 + iuyx2)

@

@x1
+ (utx1 � iuyx1)

@

@x2

�
+

+
1

2�

�
�(utx2 + iuyx2)

@

@x1
+ (utx1 + iuyx1)

@

@x2

�
=

= �uyx2 + �utx2
�2 + 1

@

@x1
+

uyx1 + �utx1
�2 + 1

@

@x2
;

the commutability condition (3.35) of the vector �elds @=@y + rh(y)� (~l) and

@=@t+rh(t)� (~l) leads to the Husain heavenly equation [2]:

uyy + utt + uyx1utx2 � uyx2utx1 = 0;

with the Lax-Sato representation given by the �rst order partial di¤erential
equations

@ 

@y
+
utx2 � �uyx2

�2 + 1

@ 

@x1
+
�uyx1 � utx1

�2 + 1

@ 

@x2
= 0;

@ 

@t
� uyx2 + �utx2

�2 + 1

@ 

@x1
+

uyx1 + �utx1
�2 + 1

@ 

@x2
= 0;

where  2 C2(T2 � R2;C):

4. Conclusion

We succeeded in applying the Lie-algebraic approach to studying vector
�elds on the complexi�ed n-dimensional torus and the related Lie-algebraic
structures, which made it possible to construct a wide class of multidimen-
sional dispersionless integrable systems, describing conformal structure gener-
ating equations of modern mathematical physics.
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