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ABSTRACT

In this paper, we present a numerical method for solving
the biharmonic equation using finite difference methods,
which can be used for fast acoustic simulation with non-
linear plate dynamics. With the simply supported bound-
ary condition, the linear system could be regarded as a
composition of two Poisson’s equations, and these Pois-
son’s equations are solved by the Thomas algorithm for a
series of tridiagonal systems after transpositions and lin-
ear transformations for vectors in the systems and all non-
empty blocks of the Laplacian matrix. We also point out
that the eigendecomposition used for these linear transfor-
mations has a closed-form formula, which is easy to be
pre-computed and also space-saving. Furthermore, since
this solver is computed block by block and does not need
sparse matrix operations, this method is good for single
instruction multiple data (SIMD) parallelization using ad-
vanced vector extensions (AVX) intrinsics on central pro-
cessing units (CPUs), which makes it possible to execute at
high speeds for real-time music applications. We also show
that this solver for the simply supported boundary condi-
tion can also be easily adapted for other boundary con-
ditions using Woodbury matrix identity with a little extra
complexity. Numerical experiments show that the C++ im-
plementation of this method is faster than decomposition-
based solvers (like LU or Cholesky decomposition) of some
well-known C++ libraries at the scale of applications in the
field of musical acoustics.

1. INTRODUCTION

Physical modeling methods have a long-established his-
tory in simulating musical instruments. This involves rep-
resenting a particular musical instrument using a system
of differential equations, which can be solved using vari-
ous numerical techniques such as finite-difference, finite-
element, and finite-volume methods. The application of
physical modeling extends to both musical acoustics, fa-
cilitating an examination of the intricate dynamics of mu-
sical instruments, and sound synthesis. Of particular im-
portance are the strongly nonlinear effects that underlie the
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behavior of numerous musical instruments, which present
significant challenges in terms of algorithmic design and
computation cost.

The simulation of nonlinear plate dynamics problems,
such as that of von Kármán [1, 2], typically requires the
inversion of the biharmonic operator, which is a computa-
tional bottleneck, which guides us to find a fast solver for
the linear system with the biharmonic operator.

In the realm of scientific computing and computational
mathematics, a range of sparse matrix solvers have been
developed to address numerical partial differential equa-
tions (PDEs) using methods like fast Fourier transform (FFT)
[3], matrix decomposition, or iterative approaches [4]. How-
ever, the computational concerns that these methods ad-
dress are generally related to scalability, which differs sig-
nificantly from the needs of acoustic simulation, particu-
larly in fast simulation scenarios. In general, algorithms
for fast acoustic simulation like sound synthesis should be
suitable for low-level SIMD parallelization on CPUs such
as advanced vector extensions (AVX) intrinsics, since such
optimization methods show great efficiency in the appli-
cation of fast musical acoustic simulation scenarios us-
ing finite-difference schemes [5]. While methods that ex-
ploit the structure of sparse matrices, such as FFT-based
or cyclic-reduction-based methods [3, 6], can be effective,
they may not perform optimally for the scale of musical in-
strument simulation, since the scale of problems involved
in this application is relatively small. For instance, some
cyclic-reduction-based methods stop doing cyclic reduc-
tions when the matrix size is around 3 × 3 to 7 × 7 and
directly solve it instead. Nonetheless, in many musical in-
strument simulation problems, the grid size required for
acceptable sound quality ranges from 15 × 15 to 40 × 40,
meaning that only a limited amount of time for cyclic re-
ductions will be executed, and these operations may take
extra time, which is a significant concern at this scale and
cannot be optimized much by low-level SIMD paralleliza-
tion.

In order to accelerate the performance of specific prob-
lems of modeling nonlinear plate dynamics, i.e., the fast
inverse of the biharmonic operator, we propose a method
adapted from [6] to solve the linear system that appeared in
most of the schemes for this model with a high speed. Af-
ter a series of transpositions and linear transformations de-
rived from the closed-form eigendecomposition of a given
matrix, the original system could be solved by applying
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Thomas algorithm [7] which only requires linear time cost
to diagonal blocks. Optimization techniques for C++ im-
plementations like loop unrolling or SIMD parallelization
using AVX intrinsics which are compatible with different
platforms are also proposed to achieve high speed. Nu-
merical results show that the C++ implementation of this
solver could be optimized a lot by those techniques, and
its performance is much better than several widely-used
solvers, and the timing results show the possibility of fast
simulation of plate models with nonlinear plate dynamics.
A real-time algorithm for the solution of the von Kármán
system for real-time synthesis of gong-like sounds is under
development [8].

2. PRELIMINARIES

2.1 The von Kármán plate model

For modeling the nonlinear vibration of plates at moderate
amplitudes, the following von-Kármán equation is com-
monly used:

ρHutt = −D∆∆u+ L(Φ, u), (1a)

∆∆Φ = −EH

2
L(u, u), (1b)

where

L(α, β) = αxxβyy + αyyβxx − 2αxyβxy, (2)

Φ(x, y, t) is the airy stress function.
The followings are two sets of boundary conditions (clamped

and simply supported, respectively) over the boundary ∂U
of the domain U :

u =
∂

∂n
u = 0, Φ =

∂

∂n
Φ = 0 clamped, (3a)

u = ∆nu = 0, Φ = ∆nΦ = 0 simply supported,
(3b)

where ∂
∂n and ∆n denote the first-order and second-order

scalar derivative in the normal direction of the boundary
∂U .

This paper is not concerned with the numerical solution
of the von Kármán equations, but rather with the problem
of the inversion of the biharmonic operator that appears in
(1b).

2.2 Grid functions and finite difference operators

Assume the domain of interest U is a rectangular domain
with side lengths Lx×Ly , and its discretization is Nx×Ny

with grid spacing hx = hy = h, where hx = Lx/Nx and
hy = Ly/Ny .

For a given grid function ul,m, define the following spa-
tial difference operator to approximate the derivative oper-
ators:

δx± ≜ ± 1

h
(ex± − 1) ≈ ∂

∂x
, δy± ≜ ± 1

h
(ey± − 1) ≈ ∂

∂y
,

where ex±u
n
l,m = un

l±1,m and ey±u
n
l,m = un

l,m±1. Then
we define centered second derivative approximations as

follows,

δxx = δx+δx− ≈
∂2

∂x2
, δyy = δy+δy− ≈

∂2

∂y2

The Laplacian and biharmonic operators may then be ap-
proximated as

δ∆⊞ = δxx + δyy ≈ ∆, δ∆⊞,∆⊞ ≜ δ∆⊞δ∆⊞ ≈ ∆∆.

With simply support boundary condition, we can also write
them in matrix form as

D∆ = L/h2, D∆∆ = D∆D∆ = L2/h4 = B/h4,

here

L =


A I 0
I A I

. . . . . .
. . . . . .
I A I

0 I A

 ∈ RNN×NN , (4)

where NN = (Ny−1)(Nx−1), L is the discrete Laplacian
operator, I ∈ R(Ny−1)×(Ny−1) is the identity matrix, and

A =


−4 1 0
1 −4 1

. . . . . .
. . . . . .
1 −4 1

0 1 −4

 ∈ R(Ny−1)×(Ny−1).

2.3 FDTD schemes

To numerically solve the system (1), a number of schemes
could be used [2, 9–11]. Here we only focus on the major
computational bottleneck of FDTD schemes which is to
solve discrete Φ from (1b), which requires us to find the
solution of a linear system. In general, the linear system
should have the following formula,

δ4[Φ] = d, (5)

where δ4 is the discrete counterpart of ∆∆, and d is the dis-
crete vector of the right-hand side of Eq. (1b) derived by a
given FDTD scheme. With the simply supported boundary
condition which is often used for sound synthesis [2, 10],
the form of δ4 we consider here is D∆∆. Thus, the linear
system to be solved is equivalent to

B[Φ] = h4D∆∆[Φ] = h4d. (6)

2.4 A decomposition of A

Notice that A has a decomposition Q∗VQ, where Q is a
unitary matrix 1 and V is a diagonal matrix. Q and V have
the following closed-form formulas,

Qkj =

√
2

Ny
sin

(
kjπ

Ny

)
, (7)

1 Q = Q∗ and QQ∗ = I, actually here we have Q∗ = QT .



Vkk = 2 cos

(
kπ

Ny

)
− 4, (8)

where 1 ≤ k, j ≤ Ny − 1. To prove this decomposition,
we only need to prove the following lemma:

Lemma 2.1. A’s (Ny−1) distinct eigenvalues are V11,V22, . . . ,
V(Ny−1)(Ny−1), and Qk∗ is the unit eigenvector of A with
respect to Vkk, 1 ≤ k ≤ Ny − 1.

The proof is shown in Section 7.

2.5 Thomas algorithm for tridiagonal systems

The Thomas algorithm [7] for tridiagonal systems (9) is
shown in Algorithm 1.

Mx = M


x1

x2

...
xn

 =


y1
y2
...
yn

 = y, (9)

where

M =


b1 c1 0
a2 b2 c2

. . . . . .
. . . . . .
an−1 bn−1 cn−1

0 an bn


n×n

,

Algorithm 1 Thomas algorithm
Input: y = [y1, y2, . . . , yn]

T , b = [b1, b2, . . . , bn]
T ∈

Rn,
a = [a2, a3, . . . , an]

T , c = [c1, c2, . . . , cn−1]
T ∈

Rn−1

Output: x = [x1, x2, . . . , xn]
T ∈ Rn

function THOMASALGORITHM(a, b, c, y)
Forward elimination:
for i = 2 to n do

w ← ai−1/bi−1

bi ← bi − wci−1

yi ← yi − wyi−1

end for
xn ← yn/bn
Backward substitution:
for i = n− 1 to 1 by -1 do

xi ← (yi − cixi+1)/bi
end for
return x

end function

A simple sufficient condition to ensure the stability of Al-
gorithm 1 is diagonally dominant (either by row or col-
umn) [4] 2 , which means |bi| ≥ |ai| + |ci|, i = 1, 2, . . . n
for system (9) 3 .

2 There are other sufficient conditions for the stability of such systems.
3 Assume a1 = cn = 0.

3. THE BIHARMONIC SOLVER

In short, the linear system (6) could be solved by the Thomas
algorithm for a series of tridiagonal systems after transpo-
sitions and linear transformations for vectors in the sys-
tems and all non-empty blocks of the Laplacian matrix.
In this section, we will develop details of the biharmonic
solver.

Since the discrete biharmonic system with simply sup-
ported conditions can be regarded as a composition of two
discrete Laplacian systems,

b = Bx = LLx, (10)

the system could be solved by applying the above Lapla-
cian solver twice, {

Lv = b
Lx = v

, (11)

which means we first solve v from the first equation, and
solve u from the second equation. Thus, we first introduce
the solver for discrete Laplacian systems using this decom-
position and the Thomas algorithm [7] 4 from [6] first.

Let

x̃ =


x11 x12 · · · x1(Nx−1)

x21 x22 · · · x2(Nx−1)

...
...

...
...

x(Ny−1)1 x(Ny−1)2 · · · x(Ny−1)(Nx−1)


be unknown on the grids of the discrete rectangular plate
area, and x = [(x̃∗1)

T , (x̃∗2)
T , . . . , (x̃∗(Nx−1))

T ]T is the
flattened vector of x̃ by column. Thus, the discrete Lapla-
cian system we need to solve is as follows,

Lx = b, (12)

where b̃ is the known on the grids of the discrete rectan-
gular plate area and b is the flattened vector of b̃ by column.
Consider the block structure of L in (4), we have the fol-
lowing equivalent system

Ax̃∗1 + x̃∗2 = b̃∗1,

x̃∗(j−1) + Ax̃∗j + x̃∗(j+1) = b̃∗j ,

x̃∗(Nx−2) + Ax̃∗(Nx−1) = b̃∗(Nx−1),
(13)

for j = 2, 3, . . . , Nx − 2.
Consider the transformation for x̄∗j = Q∗x̃∗j and b̄∗j =

Q∗b̃∗j
5 , and multiply Q∗ on both sides of each equation

in (13), we have the following equivalent system

Vx̄∗1 + x̄∗2 = b̄∗1,
x̄∗(j−1) + Vx̄∗j + x̄∗(j+1) = b̄∗j ,
x̄∗(Nx−2) + Vx̄∗(Nx−1) = b̄∗(Nx−1),

(14)
for j = 2, 3, . . . , Nx − 2.

4 A direct method based on LU decomposition for solving tridiagonal
systems with time complexity of O(n), where n × n is the size of the
matrices.

5 where x̄ = [x̄∗1, x̄∗2, . . . , x̄∗(Nx−1)] and b̄ =

[b̄∗1, b̄∗2, . . . , b̄∗(Nx−1)].



Consider each entry in each equation of (14), the system
could be rewritten for k = 1, 2, . . . , Ny − 1,

Vkkx̄k1 + x̄k2 = b̄k1,
x̄k(j−1) + Vkkx̄kj + x̄k(j+1) = b̄kj ,
x̄k(Nx−2) + Vkkx̄k(Nx−1) = b̄k(Nx−1),

(15)
for j = 2, 3, . . . , Nx − 2.

Now denote

Γk =


Vkk 1
1 Vkk 1

. . . . . .
. . . . . .
1 Vkk 1

1 Vkk


(Nx−1)×(Nx−1)

,

(16)
for k = 1, 2, . . . , Ny − 1, x̂ = x̄T , and b̂ = b̄T , where
x̂∗k = [x̄k1, x̄k2, . . . , x̄k(Nx−1)]

T and
b̂∗k = [b̄k1, b̄k2, . . . , b̄k(Nx−1)]

T . Then we have the fol-
lowing system,

Γkx̂∗k = b̂∗k, k = 1, 2, . . . , Ny − 1, (17)

which is equivalent to (13), (14), and (15). Consider the
tridiagonal systems in (17), we can easily show that

|Vkk| = |2 cos(
kπ

Ny
)− 4| ≥ 4− 2| cos( kπ

Ny
)| ≥ |1|,

for k = 1, 2, . . . Ny − 1, which means all Γks are diag-
onally dominant so that Algorithm 1 is stable for systems
in (17). Since Γks have simple structures, we can simplify
Algorithm 1 to Algorithm 2.

Algorithm 2 Thomas algorithm simplified for Γks
Input: λ(= Vkk), y = [y1, y2, . . . , yn]

T ∈ Rn

Output: x = [x1, x2, . . . , xn]
T ∈ Rn

function SIMPLIFIEDTHOMASALGORITHM(λ, y)
Initialize an empty vector q = [q1, q2, . . . , qn]

T ∈
Rn

q1 ← λ
Forward elimination:
for i = 2 to n do

w ← 1/qi−1

qi ← λ− w
yi ← yi − wyi−1

end for
xn ← yn/qn
Backward substitution:
for i = n− 1 to 1 by -1 do

xi ← (yi − xi+1)/qi
end for
return x

end function

Notice that after we solve the above system, we can easily
transform x̄ (which equals to x̂T ) back into x̃ by x̃∗k =
Qx̄∗k.

As we can see above, the original discrete Laplacian sys-
tem (13) could be transformed into a series of tridiago-
nal systems (17), and those tridiagonal systems could be

solved by the Thomas algorithm (shown in Algorithm 1
and 2).

As we mentioned before, to solve the biharmonic system
(10), we only need to solve two Laplacian systems (11).
However, notice that QQ∗ = I, there are two linear trans-
formations at the beginning (Q∗) and the end of the algo-
rithm (Q), and the solution of the first Laplacian system
should be the right-handed side of the second Laplacian
system, which means we can simply discard the last trans-
formation in the first solver and the beginning transforma-
tion of the second solver without changing the result for
the whole biharmonic system. A brief diagram is shown
in Fig. 1, and the pseudo-code for this solver is given in
Algorithm 3.

3.1 Other boundary conditions

For other boundary conditions, like the clamped boundary
condition or the free boundary condition, the matrix δ4 in
Eq. (5) could be written as B + UV , where B = L2 ∈
RNN×NN is the discrete biharmonic operator we derived
before, U ∈ RNN×m and V ∈ Rm×NN . Actually, for
most boundary conditions, V = UT and U is a rank-m
sparse matrix with cNN nonzero entries, where c = 1 for
the clamped boundary condition.

Therefore, one can use the following formula adapted
from Woodbury matrix identity [12],

(B+UV)
−1

= B−1−B−1U
(
I+VB−1U

)−1
VB−1,

(18)
which means we need to precompute and store several ma-
trices like B−1U using the biharmonic solver we described
before, and do some extra sparse matrix-vector multiplica-
tion (like vectors multiplied by U) and dense matrix-vector
multiplication (like vectors multiplied by B−1U) at each
time step.

4. IMPLEMENTATION

4.1 Implementation and optimization of the
biharmonic solver

Consider the linear transformation stage and the Thomas
algorithm stage, each column of x̃ and x̂ is individual, so
the optimization technique is to unroll or parallelize us-
ing AVX intrinsics every for-loop in Algorithm 3, and use
AVX’s fused operations like fused multiply-add (fmadd)
instead of two separate operations if supported. However,
the optimization using AVX is a little complicated since
all matrices that will be parallelized need to be stored by
some specific orders by column or row 6 . A brief demon-
stration of these optimization techniques is shown in Fig.
2. Although the transpose operations introduce extra com-
plexity, numerical results from the next section show that
the overall performance of the AVX version is better than
the plain version and loop-unrolling version, and the loop-
unrolling version which can be used if AVX is not com-
patible with the hardware is a little slower than the AVX
version but faster than the plain version.

6 For example, if the index m that will be parallelized indicates m-th
column, the array should be flattened by row, and vice versa.



operations in parallel using SIMD (Single Instruction Multiple Data) intrinsic on CPU.

Since the discrete biharmonic system with simply supported conditions can be regarded

as a composition of two discrete Laplacian systems,

b = Bx = LLx,

the system could be solved by applying the above Laplacian solver twice,

8
><

>:

Lv = b

Lx = v
,

which means we first solve v from the first equation, and solve u from the second equation.

However, notice that QQ⇤ = I, there are two linear transformations at the beginning (Q⇤) and the

end of the algorithm (Q), and the solution of the first Laplacian system should be the right-handed

side of the second Laplacian system, which means we can simply discard the last transformation

in the first solver and the beginning transformation of the second solver without changing the

result for the whole biharmonic system. A brief diagram is as follows,

Lv = b ) b flatten�! b̃ ) b̂ j⇤ = (b̄⇤ j)
T = (Q⇤b̃⇤ j)

T ) v̂⇤k = GGG�1
k b̂⇤k

) ṽ⇤ j = Qv̄⇤ j = Q(v̂ j⇤)T ) ṽ
reshape�! v ) Lx = v ) v flatten�! ṽ ) v̂ j⇤ = (v̄⇤ j)T = (Q⇤ṽ⇤ j)T

) x̂⇤k = GGG�1
k v̂⇤k ) x̃⇤ j = Qx̄⇤ j = Q(x̂ j⇤)

T ) x̃
reshape�! x.

(2.68)

And the pseudo-code for this algorithm is given in Algorithm 4.

One can just use the simply supported boundary condition for sound synthesis as de-

scribed in previous literature[5]. However, if needed, one can still use the biharmonic solver

described above for other boundary conditions, like the clamped boundary condition or the

free boundary condition. In that case, the matrix d 4 in Eq. (??) could be written as B+UV ,

31

Figure 1. A diagram of the biharmonic solver. The strikethrough across the second line means that these operations can be
discarded because they cancel each other out.

  // Plain code
  for i = 1:n
       P(i)
  end

  // loop unrolling
  index = 1
  for i = 1:n%num_unroll
       P(x[index])
       index <-- index + 1
  end
  for i = 1:n//num_unroll
       P(x[index])
       P(x[index+1])
       ...
       P(x[index+num_simd-1])
       index <-- index + num_unroll
  end

  // SIMD parallelization (AVX)
  index = 1
  for i = 1:n%num_simd
       P(index)
       index <-- index + 1
  end
  for i = 1:n//num_simd
       x_avx = load_avx(&x[index])
       P_avx(x_avx)
       store_avx(&x[index], x_avx)
       index <-- index + num_simd
  end

plain

x[i]

SIMD (4)

x[i+3]
x[i+2]
x[i+1]

x[i]

P

Figure 2. Demonstration for loop unrolling and SIMD parallelization. P means the operation for each time step (including
all parameters and coefficients from some data), and x is the array-type data used for and updated by the operation. For the
operation using SIMD parallelization, several entries of the data need to be loaded to some consecutive memory addresses,
then the single instruction will be applied to these loaded entries simultaneously, and finally, store the result back to the
data. Here for AVX2, the number of these double-precision entries for each iteration (num simd) is 4.

abbr. of platform machine operating system supported instruction sets

MBA
MacBook Air 2020
with 1.1 GHz 4-core Intel i5 MacOS 12 AVX, AVX2

MBP
MacBook Pro 2021
with 10-core M1 Max MacOS 12 N/A

PC Linux
AMD Ryzen 7 5800X
8-core 4.7 GHz Ubuntu 22.04 LTS AVX, AVX2

PC Win
AMD Ryzen 7 5800X
8-core 4.7 GHz Windows 11 AVX, AVX2

Table 1. Systems and hardware for numerical experiments



Algorithm 3 A fast biharmonic solver (simply supported
boundary condition)

Input: Q ∈ R(Ny−1)(Ny−1), Vkk (k = 1, 2, . . . , Ny−1),
b̃ ∈ R(Ny−1)(Nx−1)

Output: x̃ ∈ R(Ny−1)(Nx−1)

function BIHARMONICSOLVERSS(Q,Vkk, b̃)
Initialize an empty matrix ṽ ∈ R(Ny−1)(Nx−1)

Solve Lv = b and get v̂:
for j = 1 to Nx − 1 do

b̂j∗ ← (Qb̃∗j)
T ▷ i.e., (b̄∗j)T , and here we use

Q instead of Q∗ since Q = Q∗

end for
for k = 1 to Ny − 1 do

v̂∗k ← SIMPLIFIEDTHOMASALGORITHM(Vkk, b̂∗k)

▷ Solve Γkv̂∗k = b̂∗k
end for
Solve Lx = v and get x̃:
for k = 1 to Ny − 1 do

x̂∗k ← SIMPLIFIEDTHOMASALGORITHM(Vkk, v̂∗k)
▷ Solve Γkx̂∗k = v̂∗k

end for
for j = 1 to Nx − 1 do

x̃∗j ← Q(x̂j∗)
T ▷ i.e., Qx̄∗j

end for
return x̃

end function

In C++ implementation of the biharmonic solver, all ma-
trices and vectors are using double-precision array data
type, and matrices are stored by flattening them by column.

4.2 Alternative solvers

In the field of computational mathematics and scientific
computing, people usually use either sparse matrix decom-
position or iterative methods to solve linear systems [4],
and the latter always deal with large-scale linear systems
for storage or memory concerns and their time costs are
generally higher than decomposition methods. The direct
FFT-based solver is also another method to solve Pois-
son’s equation with the Laplacian operator [3]. Therefore,
considering the scale of the problem that is focused on in
this paper, I’ll only run the numerical experiments on the
simple FFT-based solver and several decomposition-based
solvers for comparison. Here, we use LU- and Cholesky-
decomposition-based solvers for sparse matrices from Mat-
lab and Eigen [13], a well-known high-level C++ library
for linear algebra, for these numerical experiments.

5. NUMERICAL RESULTS

In this paper, four platforms including three machines and
three operating systems listed in Table 1 are used for nu-
merical experiments. The version of Matlab we used is
R2022a, and plain code means no optimization techniques
are used. All numerical results are cumulative time costs in
seconds for 44100 iterations. All code should be compiled

with at least -O3/-Ofast and -mavx2 7 -march=native flags.

5.1 Comparisons between the biharmonic solver and
alternative solvers

Here we compare the performance between the biharmonic
solver and alternative solvers on PC Linux platform. The
results is shown in Table 2, where Matlab B means di-
rectly solving the system Bx = b using Matlab’s default
solver B\b, Matlab L2 means solving two Laplacians us-
ing Matlab’s default solver L\L\b, and Matlab * X means
solving the linear system regarding B or two Ls by Mat-
lab’s default solver using decomposition X (chosen from
LU or Cholesky). Eigen’s abbreviations are similar to the
above Matlab’s. All C++ implementations using Eigen are
complied with -O3 and -mavx2 -march=native flags since
Eigen3.3 we used here supports both -O3 and AVX2 opti-
mization. And we use four sizes of matrices, (Nx − 1) ×
(Ny − 1) = 14 × 14, 16 × 20, 23 × 17, 25 × 25 for com-
parisons.

14× 14 16× 20 23× 17 25× 25
plain code 0.916 2.051 2.202 4.686
loop unrolling 0.887 1.933 1.987 4.592
AVX2 0.551 1.007 1.246 2.385
plain code (-O3) 0.087 0.207 0.181 0.310
loop unrolling (-O3) 0.075 0.220 0.135 0.244
AVX2 (-O3) 0.049 0.111 0.101 0.236
Eigen FFT 0.842 1.049 1.498 2.071
Eigen B LU 0.319 0.631 0.812 1.554
Eigen B Chol 0.227 0.416 0.527 0.930
Eigen L2 LU 0.357 0.854 0.943 1.997
Eigen L2 Chol 0.278 0.639 0.727 1.269
Matlab FFT 1.030 1.960 2.062 2.630
Matlab B 0.596 0.993 2.113 6.560
Matlab B LU 0.378 0.497 0.635 1.024
Matlab B Chol 0.363 0.403 0.523 0.919
Matlab L2 0.635 1.249 2.395 6.834
Matlab L2 LU 0.576 0.657 0.854 1.264
Matlab L2 Chol 0.548 0.603 0.732 1.043

Table 2. Numerical results of comparisons between the bi-
harmonic solver and alternative solvers on PC Linux. The
first three rows are compiled without -O3 flag. Bold results
are the best results for each column. Unit: second.

5.2 Comparisons of different optimization techniques
for the biharmonic solver

Here we compare the performance of different optimiza-
tion techniques for the implementation of the biharmonic
solver on those four platforms. For the sake of brevity, we
only show the results of three different optimization tech-
niques compiled with -O3 flag with a grid size of (Nx −
1)× (Ny − 1) = 23× 17. The results are shown in Table.
3.

7 For AVX2. Choose -mavx for AVX and -mavx512f for AVX512.



MBA MBP PC Linux PC Win
plain code (-O3) 0.826 0.367 0.181 0.202
loop unrolling (-O3) 0.595 0.242 0.135 0.147
AVX2 (-O3) 0.340 N/A 0.101 0.118

Table 3. Numerical results of the biharmonic solver on
different platforms. (Nx− 1)× (Ny− 1) = 23× 17. Bold
results are the best results for each column. Unit: second.

6. CONCLUSIONS

In this paper, we describe an algorithm for solving the
discrete biharmonic system for modeling nonlinear plate
dynamics based on a series of linear transformations and
Thomas algorithm for tridiagonal systems. This method is
good for optimization techniques on CPUs like loop un-
rolling or low-level SIMD parallelization using AVX in-
trinsics. At the scale of fast musical instrument simula-
tion, the numerical results show that the C++ implementa-
tion of this method has better performance than other gen-
erally used methods for solving such linear systems like
FFT-based and decomposition-based solvers, and indicate
fast musical instrument simulation with nonlinear plate dy-
namics, which is actually used for real-time gong-like mu-
sical instruments synthesis based on the von-Kármán plate
equation [8].
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7. APPENDIX: PROOF OF LEMMA 2.1

Proof. First, it’s obvious that E = {Vkk | i = 1, 2, ..., Ny−
1} has Ny − 1 distinct elements.

Then we only need to show the following equations,

Aqk =

(
2 cos

(
kπ

Ny

)
− 4

)
qk, 1 ≤ i ≤ Ny − 1,

where qkj = sin
(

kjπ
Ny

)
, 1 ≤ k, j ≤ Ny − 1.

For 2 ≤ j ≤ Ny − 2, we have

(
2 cos

(
kπ

Ny

)
− 4

)
qkj

= sin

(
kjπ

Ny

)(
2 cos

(
kπ

Ny

)
− 4

)
= 2 sin

(
kjπ

Ny

)
cos

(
kπ

Ny

)
− 4 sin

(
kjπ

Ny

)
= sin

(
(kj + k)π

Ny

)
+ sin

(
(kj − k)π

Ny

)
− 4 sin

(
kjπ

Ny

)

= sin

(
(k (j − 1)π

Ny

)
− 4 sin

(
kjπ

Ny

)
+ sin

(
k (j + 1)π

Ny

)
= Aj(j−1) sin

(
(k (j − 1)π

Ny

)
+Ajj sin

(
kjπ

Ny

)
+Ajj sin

(
k (j + 1)π

Ny

)
= Aj∗qk.

For j = 1 or Ny − 1, notice that sin
(

k(1−1)π
Ny

)
= 0 and

sin
(

k(Ny−1+1)π
Ny

)
= 0, which means the equation(

2 cos

(
kπ

Ny

)
− 4

)
qkj = Aj∗qk

still holds for j = 1 and Ny − 1. Therefore, we have

Aqk =

(
2 cos

(
kπ

Ny

)
− 4

)
qk,

which means E is the set of all A’s eigenvalues, and qk is
the eigenvector w.r.t.

(
2 cos

(
kπ
Ny

)
− 4

)
.

Notice that

||qk||22 =

Ny−1∑
j=1

sin

(
kjπ

Ny

)2

=

Ny−1∑
j=1

1− cos
(

2kjπ
Ny

)
2

=
Ny − 1

2
−

Ny−1∑
j=1

cos
(

2kjπ
Ny

)
2

=
Ny − 1

2
− 1

2

Ny−1∑
j=1

Re

(
exp

(
2kjπi

Ny

))

=
Ny − 1

2
− 1

2
Re

Ny−1∑
j=1

exp

(
2kjπi

Ny

)
=

Ny − 1

2
− 1

2
Re

exp
(

2kπi
Ny

)
− exp

(
2kNyπi

Ny

)
1− exp

(
2kπi
Ny

)


=
Ny − 1

2
− 1

2
Re

exp
(

2kπi
Ny

)
− exp (2kπi)

1− exp
(

2kπi
Ny

)


=
Ny − 1

2
− 1

2
Re

exp
(

2kπi
Ny

)
− 1

1− exp
(

2kπi
Ny

)


=
Ny − 1

2
− 1

2
Re (−1)

=
Ny

2
,

for every 1 ≤ k ≤ Ny − 1, where i =
√
−1. Thus, we

have ||qk||2 =
Ny

2 , and[
q1
||q1||2

,
q2
||q2||2

, · · · ,
qNy−1

||qNy−1||2

]T
= Q,



which leads to the following decomposition

QVQ∗ = A.
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