
EasyChair Preprint
№ 3415

A Mathematical Conjecture from P versus NP

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 16, 2020



A Mathematical Conjecture from P versus NP
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. It is
one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US 1,000,000 prize for the first correct solution. Another major complexity class is NP-complete. To
attack the P versus NP question the concept of NP-completeness has been very useful. If any single
NP-complete problem can be solved in polynomial time, then every NP problem has a polynomial
time algorithm. We state the following conjecture for a natural number B greater than 3: The
number of divisors of B is lesser than or equal to the quadratic value from the integer part of the
logarithm of B in base 2. This conjecture has been checked for large numbers: Specifically, from
every integer between 4 and 10 millions. If this conjecture is true, then the NP-complete problem
Subset Product is in P and thus, the complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases complexity classes, completeness, polynomial time, logarithm, tuple

1 Introduction

The P versus NP problem is a major unsolved problem in computer science [4]. This is
considered by many to be the most important open problem in the field [4]. The precise
statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [4]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to
be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent
of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said
either do not know or do not care or don’t want the answer to be yes nor the problem to be
resolved [8].

The P = NP question is also singular in the number of approaches that researchers have
brought to bear upon it over the years [6]. From the initial question in logic, the focus moved
to complexity theory where early work used diagonalization and relativization techniques
[6]. It was showed that these methods were perhaps inadequate to resolve P versus NP

by demonstrating relativized worlds in which P = NP and others in which P 6= NP [3].
This shifted the focus to methods using circuit complexity and for a while this approach
was deemed the one most likely to resolve the question [6]. Once again, a negative result
showed that a class of techniques known as “Natural Proofs” that subsumed the above
could not separate the classes NP and P , provided one-way functions exist [11]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [6]. More precisely, the question might be independent of standard
axioms of set theory [6]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [9].

It is fully expected that P 6= NP [10]. Indeed, if P = NP then there are stunning
practical consequences [10]. For that reason, P = NP is considered as a very unlikely event
[10]. Certainly, P versus NP is one of the greatest open problems in science and a correct

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com


2 A Mathematical Conjecture from P versus NP

solution for this incognita will have a great impact not only in computer science, but for
many other fields as well [1]. Whether P = NP or not is still a controversial and unsolved
problem [1]. We show some results that could help us to prove this outstanding problem.

2 Theory and Methods

2.1 Preliminaries
In 1936, Turing developed his theoretical computational model [12]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [12]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [12]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [12].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each
string w in Σ∗ there is a computation associated with M on input w [2]. We say that M

accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [2].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [2].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [5]. We
denote by tM (w) the number of steps in the computation of M on input w [2]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [2]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [10].



F. Vega 3

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[12]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [7]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[5]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [5].

2.2 Definitions on Tuples
I Definition 1. We consider a tuple (a1, a2, . . . , am) as an m-tuple.

IDefinition 2. We consider the addiction of two m-tuples (a1, a2, . . . , am) and (b1, b2, . . . , bm)
as the m-tuple (a1 + b1, a2 + b2, . . . , am + bm).

IDefinition 3. We consider the subtraction of two m-tuples (a1, a2, . . . , am) and (b1, b2, . . . , bm)
as the m-tuple (a1 − b1, a2 − b2, . . . , am − bm).

I Definition 4. We consider an m-tuple (a1, a2, . . . , am) is equal to an m-tuple (b1, b2, . . . , bm)
if and only if for every integer 1 ≤ i ≤ m we have that ai = bi.

I Definition 5. For a positive integer k, we consider km as the m-tuple (k, k, . . . , k︸ ︷︷ ︸
m

). Besides,

an m-tuple (a1, a2, . . . , am) is lesser than 0m, when there is an integer 1 ≤ i ≤ m such that
ai < 0.

I Definition 6. For some natural number B > 3 with the prime factorization pa1
1 × pa2

2 ×
. . .× pam

m such that p1 < p2 < . . . < pm, then we consider the value of h(B) as the m-tuple
(a1, a2, . . . , am).

I Definition 7. Consider two natural numbers B > 3 and C ≥ 1 when C divides B and the
prime factorization of B is pa1

1 × pa2
2 × . . . × pam

m such that p1 < p2 < . . . < pm, then we
consider the value of hB(C) as the m-tuple (a′1, a′2, . . . , a′m) where a′1 is the exponent of the
power p

a′
1

1 in the prime factorization of C from the prime p1 and so forth until m (the value
of a′i could be 0 when the prime pi does not divide C).

3 Results

We show a previous known NP–complete problem:

I Definition 8. Subset Product
INSTANCE: Finite set X, a size s(x) ∈ Z+ for each x ∈ X, and a positive integer B.
QUESTION: Is there a subset X ′ ⊆ X such that the product of the sizes of the elements

in X ′ is B?
REMARKS: We denote this problem as SP [10]. SP ∈ NP–complete [7]. This problem

remains in NP–complete even if we know the prime factorization of B [7].



4 A Mathematical Conjecture from P versus NP

B Conjecture 9. For some natural number B > 3 with the prime factorization pa1
1 × pa2

2 ×
. . .× pam

m , then we could always obtain that (a1 + 1)× (a2 + 1)× . . .× (am + 1) ≤ (blog2 Bc)2,
which means that the number of divisors of B is lesser than or equal to (blog2 Bc)2 [13].

I Theorem 10. If the Conjecture 9 is true, then SP ∈ P .

Proof. Suppose the set X is

x1, x2, . . . , xN

and we wish to determine if there is a nonempty subset X ′ ⊆ X such that the product of the
sizes of the elements in X ′ is B. We assume that we have the prime factorization of B. We
ignore when B ≤ 3, since these cases are trivial. We assume also that each size s(xi) divides
B otherwise we just remove the element xi from our set X. We consider the sequence of
tuples

hB(s(x1)), hB(s(x2)), . . . , hB(s(xN ))

where ci = s(xi) is the size of the element xi and the function hB(ci) returns an m-tuple
for some m using the Definition 7. We can calculate the tuple hB(s(xi)) for every element
xi ∈ X just in O(N × (blog2 Bc)3), since we have the prime factorization of B.

Now, define the Boolean-valued function Q(i, y) to be the value (true or false) of “there is
a nonempty subset of s(x1), . . . , s(xi) which products to y” which is equivalent to the Boolean-
valued function Q(i, hB(y)) “there is a nonempty subset of m-tuples hB(s(x1)), . . . , hB(s(xi))
which sums to hB(y)”, because the product of two prime powers pr and pt from a same
prime p is equal to pr+t, where we sum the exponents r and t of the prime powers. Thus,
the solution to the problem “Given a nonempty subset X ′ ⊆ X such that the product of the
sizes of the elements in X ′ is B?" is the value of Q(N, h(B)) using the Definition 6.

Clearly, Q(i, hB(y)) = false, if hB(y) < 0m or y > B using the Definition 5. So these
values do not need to be stored or computed. Create an array to hold the values Q(i, hB(y))
for 1 ≤ i ≤ N , 0m ≤ hB(y) and y ≤ B such that y divides B. The array can now be filled in
using a simple recursion. Initially, for 0m ≤ hB(y) and y ≤ B such that y divides B, set

Q(1, hB(y)) = (hB(s(x1)) == hB(y))

where == is a Boolean function that returns true if hB(s(x1)) is equal to hB(y) using the
Definition 4, false otherwise. Then, for i = 2, . . . , N , set for 0m ≤ hB(y) and y ≤ B such
that y divides B

Q(i, hB(y)) = Q(i− 1, hB(y)) ∨ (hB(s(xi)) == hB(y)) ∨Q(i− 1, hB(y)− hB(s(xi)))

where the substraction of tuples is stated using the Definition 3 and ∨ is the OR Boolean
function. For each assignment, the values of Q on the right side are already known, either
because they were stored in the table for the previous value of i or because Q(i− 1, hB(y)−
hB(s(xi))) = false if hB(y) − hB(s(xi)) < 0m. Therefore, the total number of arithmetic
operations is O(N × q × (blog2 Bc)), where q is equal to the number of the valid m-tuples
between 0m and h(B) (that is, the amount of different integers 1 ≤ y ≤ B such that y divides
B) and (blog2 Bc) ≥ m is greater than or equal to the number of indexes in the m-tuples that
we need to compare in each iteration. Certainly, the amount of the valid m-tuples between
0m and h(B) is equal to q = (a1 + 1)× (a2 + 1)× . . .× (am + 1) when the prime factorization
of B > 3 is pa1

1 × pa2
2 × . . .× pam

m , where this is actually the number of divisors of B [13]. In
this way, if this Conjecture 9 is true, then the solution has runtime of O(N × (blog2 Bc)3)
and thus, the problem SP would be in P, because the runtime is polynomial according to
the bit-length of the input. J



F. Vega 5

I Lemma 11. If the Conjecture 9 is true, then P = NP .

Proof. This is a direct consequence of Theorem 10, because when any single NP–complete
problem can be solved in polynomial time, then every NP problem has a polynomial time
algorithm [5]. J

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?N P Question.
SIAM Journal on computing, 4(4):431–442, 1975. doi:10.1137/0204037.

4 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://www.claymath.org/sites/default/files/pvsnp.pdf. Retrieved 26 April 2020.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

6 Vinay Deolalikar. P 6= NP, 2010. In Woeginger Home Page at https://www.win.tue.nl/
~gwoegi/P-versus-NP/Deolalikar.pdf. Retrieved 26 April 2020.

7 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

8 William I. Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012. doi:10.1145/2261417.2261434.

9 Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT
News, 8(4):13–24, October 1976. doi:10.1145/1008335.1008336.

10 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
11 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24–35,

August 1997. doi:10.1006/jcss.1997.1494.
12 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.
13 David G. Wells. Prime Numbers, The Most Mysterious Figures in Math. John Wiley & Sons,

Inc., 2005.

http://dx.doi.org/10.1137/0204037
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
http://dx.doi.org/10.1145/2261417.2261434
http://dx.doi.org/10.1145/1008335.1008336
http://dx.doi.org/10.1006/jcss.1997.1494

	Introduction
	Theory and Methods
	Preliminaries
	Definitions on Tuples

	Results

