A Mathematical Conjecture from P versus NP

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

A Mathematical Conjecture from \mathbf{P} versus NP

Frank Vega ©
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $1,000,000$ prize for the first correct solution. Another major complexity class is NP-complete. To attack the P versus NP question the concept of NP-completeness has been very useful. If any single NP-complete problem can be solved in polynomial time, then every NP problem has a polynomial time algorithm. We state the following conjecture for a natural number B greater than 3: The number of divisors of B is lesser than or equal to the quadratic value from the integer part of the logarithm of B in base 2. This conjecture has been checked for large numbers: Specifically, from every integer between 4 and 10 millions. If this conjecture is true, then the NP-complete problem Subset Product is in P and thus, the complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity classes

Keywords and phrases complexity classes, completeness, polynomial time, logarithm, tuple

1 Introduction

The P versus $N P$ problem is a major unsolved problem in computer science [4]. This is considered by many to be the most important open problem in the field [4]. The precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [4]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5\%) said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [8].

The $P=N P$ question is also singular in the number of approaches that researchers have brought to bear upon it over the years [6]. From the initial question in logic, the focus moved to complexity theory where early work used diagonalization and relativization techniques [6]. It was showed that these methods were perhaps inadequate to resolve P versus $N P$ by demonstrating relativized worlds in which $P=N P$ and others in which $P \neq N P[3]$. This shifted the focus to methods using circuit complexity and for a while this approach was deemed the one most likely to resolve the question [6]. Once again, a negative result showed that a class of techniques known as "Natural Proofs" that subsumed the above could not separate the classes $N P$ and P, provided one-way functions exist [11]. There has been speculation that resolving the $P=N P$ question might be outside the domain of mathematical techniques [6]. More precisely, the question might be independent of standard axioms of set theory [6]. Some results have showed that some relativized versions of the $P=N P$ question are independent of reasonable formalizations of set theory [9].

It is fully expected that $P \neq N P[10]$. Indeed, if $P=N P$ then there are stunning practical consequences [10]. For that reason, $P=N P$ is considered as a very unlikely event [10]. Certainly, P versus $N P$ is one of the greatest open problems in science and a correct
solution for this incognita will have a great impact not only in computer science, but for many other fields as well [1]. Whether $P=N P$ or not is still a controversial and unsolved problem [1]. We show some results that could help us to prove this outstanding problem.

2 Theory and Methods

2.1 Preliminaries

In 1936, Turing developed his theoretical computational model [12]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [12]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [12]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [12].

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w in Σ^{*} there is a computation associated with M on input $w[2]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=$ "yes" [2]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=$ " $n o$ ", or if the computation fails to terminate, or the computation ends in the halting state with some output, that is $M(w)=y$ (when M outputs the string y on the input w) [2].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [5]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [5]. The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by:

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=\text { "yes" }\right\} .
$$

Moreover, $L(M)$ is decided by M, when $w \notin L(M)$ if and only if $M(w)=$ "no" [5]. We denote by $t_{M}(w)$ the number of steps in the computation of M on input $w[2]$. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is:

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length $n[2]$. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k[2]$. In other words, this means the language $L(M)$ can be decided by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [5]. A verifier for a language L_{1} is a deterministic Turing machine M, where:

$$
L_{1}=\{w: M(w, c)=\text { "yes" for some string } c\} .
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of $w[2]$. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L_{1}. This information is called certificate. $N P$ is the complexity class of languages defined by polynomial time verifiers [10].

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape [12]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [7]. A language $L_{1} \subseteq\{0,1\}^{*}$ is $N P$-complete if:

- $L_{1} \in N P$, and
- $L^{\prime} \leq_{p} L_{1}$ for every $L^{\prime} \in N P$.

If L_{1} is a language such that $L^{\prime} \leq_{p} L_{1}$ for some $L^{\prime} \in N P$-complete, then L_{1} is $N P$-hard [5]. Moreover, if $L_{1} \in N P$, then $L_{1} \in N P$-complete [5].

2.2 Definitions on Tuples

- Definition 1. We consider a tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ as an m-tuple.
- Definition 2. We consider the addiction of two m-tuples $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ as the m-tuple $\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{m}+b_{m}\right)$.
- Definition 3. We consider the subtraction of two m-tuples $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ as the m-tuple $\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{m}-b_{m}\right)$.
- Definition 4. We consider an m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is equal to an m-tuple $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ if and only if for every integer $1 \leq i \leq m$ we have that $a_{i}=b_{i}$.
- Definition 5. For a positive integer k, we consider k_{m} as the m-tuple $(\underbrace{k, k, \ldots, k}_{m})$. Besides, an m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is lesser than 0_{m}, when there is an integer $1 \leq i \leq m$ such that $a_{i}<0$.
- Definition 6. For some natural number $B>3$ with the prime factorization $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\ldots \times p_{m}^{a_{m}}$ such that $p_{1}<p_{2}<\ldots<p_{m}$, then we consider the value of $h(B)$ as the m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$.
- Definition 7. Consider two natural numbers $B>3$ and $C \geq 1$ when C divides B and the prime factorization of B is $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{m}^{a_{m}}$ such that $p_{1}<p_{2}<\ldots<p_{m}$, then we consider the value of $h_{B}(C)$ as the m-tuple $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}\right)$ where a_{1}^{\prime} is the exponent of the power $p_{1}^{a_{1}^{\prime}}$ in the prime factorization of C from the prime p_{1} and so forth until m (the value of a_{i}^{\prime} could be 0 when the prime p_{i} does not divide C).

3 Results

We show a previous known $N P$-complete problem:

- Definition 8. Subset Product

INSTANCE: Finite set X, a size $s(x) \in \mathbb{Z}^{+}$for each $x \in X$, and a positive integer B.
QUESTION: Is there a subset $X^{\prime} \subseteq X$ such that the product of the sizes of the elements in X^{\prime} is B ?

REMARKS: We denote this problem as $S P$ [10]. $S P \in N P$-complete [7]. This problem remains in $N P$-complete even if we know the prime factorization of B [7].
\triangleright Conjecture 9. For some natural number $B>3$ with the prime factorization $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times$ $\ldots \times p_{m}^{a_{m}}$, then we could always obtain that $\left(a_{1}+1\right) \times\left(a_{2}+1\right) \times \ldots \times\left(a_{m}+1\right) \leq\left(\left\lfloor\log _{2} B\right\rfloor\right)^{2}$, which means that the number of divisors of B is lesser than or equal to $\left(\left\lfloor\log _{2} B\right\rfloor\right)^{2}[13]$.

- Theorem 10. If the Conjecture 9 is true, then $S P \in P$.

Proof. Suppose the set X is

$$
x_{1}, x_{2}, \ldots, x_{N}
$$

and we wish to determine if there is a nonempty subset $X^{\prime} \subseteq X$ such that the product of the sizes of the elements in X^{\prime} is B. We assume that we have the prime factorization of B. We ignore when $B \leq 3$, since these cases are trivial. We assume also that each size $s\left(x_{i}\right)$ divides B otherwise we just remove the element x_{i} from our set X. We consider the sequence of tuples

$$
h_{B}\left(s\left(x_{1}\right)\right), h_{B}\left(s\left(x_{2}\right)\right), \ldots, h_{B}\left(s\left(x_{N}\right)\right)
$$

where $c_{i}=s\left(x_{i}\right)$ is the size of the element x_{i} and the function $h_{B}\left(c_{i}\right)$ returns an m-tuple for some m using the Definition 7. We can calculate the tuple $h_{B}\left(s\left(x_{i}\right)\right)$ for every element $x_{i} \in X$ just in $O\left(N \times\left(\left\lfloor\log _{2} B\right\rfloor\right)^{3}\right)$, since we have the prime factorization of B.

Now, define the Boolean-valued function $Q(i, y)$ to be the value (true or false) of "there is a nonempty subset of $s\left(x_{1}\right), \ldots, s\left(x_{i}\right)$ which products to y " which is equivalent to the Booleanvalued function $Q\left(i, h_{B}(y)\right)$ "there is a nonempty subset of m-tuples $h_{B}\left(s\left(x_{1}\right)\right), \ldots, h_{B}\left(s\left(x_{i}\right)\right)$ which sums to $h_{B}(y)$ ", because the product of two prime powers p^{r} and p^{t} from a same prime p is equal to p^{r+t}, where we sum the exponents r and t of the prime powers. Thus, the solution to the problem "Given a nonempty subset $X^{\prime} \subseteq X$ such that the product of the sizes of the elements in X^{\prime} is $B ?^{\prime \prime}$ is the value of $Q(N, h(B))$ using the Definition 6.

Clearly, $Q\left(i, h_{B}(y)\right)=$ false, if $h_{B}(y)<0_{m}$ or $y>B$ using the Definition 5. So these values do not need to be stored or computed. Create an array to hold the values $Q\left(i, h_{B}(y)\right)$ for $1 \leq i \leq N, 0_{m} \leq h_{B}(y)$ and $y \leq B$ such that y divides B. The array can now be filled in using a simple recursion. Initially, for $0_{m} \leq h_{B}(y)$ and $y \leq B$ such that y divides B, set

$$
Q\left(1, h_{B}(y)\right)=\left(h_{B}\left(s\left(x_{1}\right)\right)==h_{B}(y)\right)
$$

where $==$ is a Boolean function that returns true if $h_{B}\left(s\left(x_{1}\right)\right)$ is equal to $h_{B}(y)$ using the Definition 4, false otherwise. Then, for $i=2, \ldots, N$, set for $0_{m} \leq h_{B}(y)$ and $y \leq B$ such that y divides B

$$
Q\left(i, h_{B}(y)\right)=Q\left(i-1, h_{B}(y)\right) \vee\left(h_{B}\left(s\left(x_{i}\right)\right)==h_{B}(y)\right) \vee Q\left(i-1, h_{B}(y)-h_{B}\left(s\left(x_{i}\right)\right)\right)
$$

where the substraction of tuples is stated using the Definition 3 and \vee is the OR Boolean function. For each assignment, the values of Q on the right side are already known, either because they were stored in the table for the previous value of i or because $Q\left(i-1, h_{B}(y)-\right.$ $\left.h_{B}\left(s\left(x_{i}\right)\right)\right)=$ false if $h_{B}(y)-h_{B}\left(s\left(x_{i}\right)\right)<0_{m}$. Therefore, the total number of arithmetic operations is $O\left(N \times q \times\left(\left\lfloor\log _{2} B\right\rfloor\right)\right)$, where q is equal to the number of the valid m-tuples between 0_{m} and $h(B)$ (that is, the amount of different integers $1 \leq y \leq B$ such that y divides $B)$ and $\left(\left\lfloor\log _{2} B\right\rfloor\right) \geq m$ is greater than or equal to the number of indexes in the m-tuples that we need to compare in each iteration. Certainly, the amount of the valid m-tuples between 0_{m} and $h(B)$ is equal to $q=\left(a_{1}+1\right) \times\left(a_{2}+1\right) \times \ldots \times\left(a_{m}+1\right)$ when the prime factorization of $B>3$ is $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{m}^{a_{m}}$, where this is actually the number of divisors of B [13]. In this way, if this Conjecture 9 is true, then the solution has runtime of $O\left(N \times\left(\left\lfloor\log _{2} B\right\rfloor\right)^{3}\right)$ and thus, the problem $S P$ would be in P , because the runtime is polynomial according to the bit-length of the input.

Lemma 11. If the Conjecture 9 is true, then $P=N P$.
Proof. This is a direct consequence of Theorem 10, because when any single $N P$-complete problem can be solved in polynomial time, then every $N P$ problem has a polynomial time algorithm [5].

_ References

1 Scott Aaronson. P $\stackrel{?}{=}$ NP. Electronic Colloquium on Computational Complexity, Report No. 4, 2017.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
3 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the $\mathcal{P}=$? $\mathcal{N P}$ Question. SIAM Journal on computing, 4(4):431-442, 1975. doi:10.1137/0204037.
4 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at http://www.claymath.org/sites/default/files/pvsnp.pdf. Retrieved 26 April 2020.
5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
6 Vinay Deolalikar. $\mathrm{P} \neq \mathrm{NP}$, 2010. In Woeginger Home Page at https://www.win.tue.nl/ ~gwoegi/P-versus-NP/Deolalikar.pdf. Retrieved 26 April 2020.
7 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
8 William I. Gasarch. Guest column: The second $\mathrm{P} \stackrel{?}{=}$ NP poll. ACM SIGACT News, 43(2):53-77, 2012. doi:10.1145/2261417.2261434.

9 Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT News, 8(4):13-24, October 1976. doi:10.1145/1008335.1008336.
10 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
11 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24-35, August 1997. doi:10.1006/jcss.1997.1494.
12 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology Boston, 2006.
13 David G. Wells. Prime Numbers, The Most Mysterious Figures in Math. John Wiley \& Sons, Inc., 2005.

