
EasyChair Preprint
№ 8622

Logic for CS Undergraduates: a Sketch

Dennis Hamilton

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 9, 2022



Page  1  
 

Logic for CS Undergraduates: A Sketch 
Position Paper Submitted for LogTeach-22 (2022-07-31), 2022-05-30 

2022-08-08 revision for preprint draft 

Dennis E. Hamilton 

Interoperability Architect 

Seattle, WA, USA 

dennis.hamilton@acm.org 

I find, as a practitioner having grown up in the emergence of Computer Science, that logic is 

indispensable in useful ways, as is a level of comfort with geometry, algebra, and, to some degree, 

analysis.  I also conclude that, at an undergraduate level, there are elementary approaches to logic that 

are neither philosophically demanding nor inapplicable in a computational context.  I illustrate this with 

a sketch of logical application about computation and its appreciation in hopefully practical ways.  It has 

served me in the comprehension of computational models, for example.  It depends on the utility of 

distinguishing formal and mathematical entities from those empirical ones perceived in nature and 

society. 

1. Deduction: Propositional Logic and Truth-Value Semantics 
Establish symbology and separation from the operational sense found in programming languages:  It's 

useful not to cross that bridge prematurely. 

For example, 

      p ⇔ q, p ⇒ q, p ∨ q, p ∧ q, ¬ p 

Keep it classical, emphasizing that we are speaking of logical expressions of deductive theories.  E.g., if it 

is asserted that p ⇔ q and also ¬ p, deduction that ¬ q holds is a logical consequence; if it is asserted 

that p ⇒ q and also p, deduction that q holds is logical. The law of excluded middle holds:  It is the case 

that ¬(p ∧ ¬p) and also ¬(¬p) ⇔ p as well as (p ⇒ q) ⇔ (¬p ∨ q). 

Pitfalls 

• Treating propositions as wriggly and not fixed throughout a situation. 

• Assuming that one can conclude much given only p ⇒ q.  The language game about being 

able to prove anything from a false proposition is sleight of hand to be avoided.   

• If deduction forms such as h1, .., hn ⊦p are introduced (why not?), be clear why  

p, ¬ p ⊦ p ∧ ¬p is inconsistent/unsound and not acceptable. 
  

Take-aways 

• Understanding the difference between logic being about proper arguments concerning 

hypothetic cases, not about assertions of fact (by itself) 

• Understanding how modus ponens serves as a fundamental form of deduction 



Page  2  
 

Introduce satisfiability.  If it’s not satisfiable, don't ask.  If it is tautologously true, why ask?  Determining 

this by tables and the exponential problem of doing it by enumeration is worth discussion as an 

interesting problem between logic and computation.  Of course,  at some point, P ?= NP. 

[Note: It is Interesting that The Art of Computer Programming does without logic symbology until 

Volume 4A; and there the forms are defined operationally in terms of bit-fiddling.  Concrete 

Mathematics never deals with logic explicitly.] 

2. First-Order Logic for Novices: FOL, FOL=, Equational Mostly 
Here, the introduction of quantifiers and the consideration of a domain of discourse can be undertaken, 

along with terms and predicates.  Continue having it unlike programming: ∀x  ∃y 

Peano arithmetic is useful as a simple case, along with the introduction of equality and non-logical term-

expressions.  Mathematical induction can be (re-)introduced; that's valuable for later in this context.  

Other numerical algebraic structures can be illustrative, including modular arithmetic. 

The simplification of omitting universal quantifiers that embrace an entire logical "statement" is done in 

what will typically be equational material in early applications to computational contexts. 

The introduction of Boolean algebras is a valuable example as well.  Use  

       ⊤ (nickname "top") 

       ⊥ (nickname "bot") 

and also  ∼x complement, x ∩ y  "cap",   x ∪ y  "cup", and  x ∸ y  "sep". 

In addition to equality, there is also an ordering,  x ⊆ y  "sub".  This is a relation, not an operation, even 

though there may be a way to compute it. 

It will be useful not to rely on T and F and also avoid 1 and 0, so that representations can be addressed 

more clearly as this journey proceeds.   

Explore axioms of a Boolean algebra and some deductions. The special case of a domain consisting of 

only ⊤ and ⊥ is interesting for the correlation with propositional logic.  The axiom of subordination is 

demonstrative of both, 

  x ⊆ y ⇔ x = x ∩ y 

Also there are useful definitions, either by introducing operators or functional notation and cases.  E.g., 

definition of sep (separation) 

  x ∸ y = (x ∩ ~ y) ∪ (~ x ∩ y) 

with a little about partial ordering and also identity. 

         ⊥ ⊆ y (hence "bot") 

           x ⊆ ⊤ (hence "top") 

     x = y  ⇔ x ⊆ y ∧ y ⊆ x       



Page  3  
 

Take-aways 

• Exposure to schemes different from arithmetic and number theory, also keeping notations 

straight.  This is helpful in what follows.  

• Further employment of notation to be taken as those that may-have-been/will-be seen in 

programming languages and taken as operational rather than about abstract (mathematical) 

entities 

• The idea of primitives, including constant terms and defined functions/predicates from which 

the elements of a domain are characterized: axiomatics. 

3. First-Order (mostly) Structures 
It is useful to now speak of mathematical structures.  The goal is to arrive at a notion of computational 

interpretation of structures.  Computational theory and models of computation do not have to be 

addressed in any detail.  The door is kept open for later on.  Category theory is also unnecessary.  That 

door is also open.  

It is important to relate among structures as a foundation for interpretations among structures.  For this 

purpose, it is useful that a structure ‹σ› is taken to consist of a triple, 

  ‹σ› = 〈σD,σF,σT〉 

where σD signifies the domain of discourse, the individuals of interest.  Consider that there is a set, σF, 

of all the functions over σD.  (We can consider all the predicates too, without being too fussy.)  It is not 

expected to exhibit σF, although it is useful to talk about it and also to consider what's in it.  Finally, σT is 

the theoretical characterization of ‹σ›, using FOL, usually FOL=.   

This arrangement deviates from how mathematical structures are typically depicted.  This is done 

because we want to speak about the rather invisible nature of σF and also be clear which theory, σT, we 

are operating in.  This sets up depiction of relationships between structures. 

Focus on denumerability of σD and having canonical forms for the individuals.  The distinction of decimal 

numerals from the mathematical natural numbers is instructive in this case, including how we learn 

arithmetic as manipulation of those forms.  That there are other canonical forms is also relevant, 

whether binary notation, hexadecimal, or verbalized numbers (e.g, "one hundred forty-five").  It will 

become apparent that we do not have a way to exhibit mathematical entities, only talk about them even 

though certain ones, identified as constants, are singled out by their being distinguished axiomatically (0 

and 1, ⊤ and ⊥) . 

The definitions of functions happen in the usual way by (recursive) cases of equations, and some 

functions are established axiomatically whether by name or introduction as operators.  (E.g., the 

introduction of Boolean algebra functions.) 

An important take-away in consideration of such structures has to do with extensionality.  If two 

function, f and g are characterized in σT such that for all x, f(x) = g(x), it is useful to say that the 

definitions/characterizations of f and g determine the same function in σF.  It is valuable to avoid saying 

they "are" the same function or saying they are equivalent functions.  This is an important consideration 



Page  4  
 

also in contrast with the mis-appropriation of terms such as function (integer and real) for 

computational purposes. 

Many interesting structures relevant to computation have denumerable σD such as all finite strings over 

a fixed alphabet, or such strings having a context-free grammar, with recursive definition by cases.  

Admission of structural induction with regard to the characteristics of defined functions and 

determining that two definitions determine the same function becomes valuable to appreciate. 

4. Interpretations and Representations 
By interpretation of one structure in another is meant the usual model-theoretic arrangement, although 

the interpretation need not be a model in the official sense.   

The simple case is obtained by simply specifying how the primitives/axioms of structure ‹α› are 

associated with functions and predicates determined and exhibited in structure ‹β›, it being clear that 

whatever is logically deducible in ‹α› holds for the counterpart in ‹β›.   Using the valuable distinction of 

Thomas Forster, If equality in ‹α› is sent to equality in ‹β›, interpretation is an implementation, and 

otherwise it is a simulation with equality taken to a different identity, perhaps one of equivalence 

classes.   

There are some useful simplifying moves, a kind of mathematical engineering, that can be demonstrated 

here.  The existence of duals should not be given metaphysical significance, and while one can interpret 

the prototypical Boolean algebra in number theory (and vice versa), it is economical to map 0 with ⊥ 

and anything else (but 1 canonical) with ⊤.  The inquisitive student might find Boole’s The Laws of 

Thought informative at this point.  

The point is demonstration how much representation is applicable in computing and Computer Science, 

even when it is not undertaken with disciplined application of (mathematical) logic.   These are clearly 

simplified cases and how greater complexity is addressed is perhaps to be appreciated, but not 

undertaken at this level.  That one can view devising software fit for some purpose as a case of 

(extremely informal) theory building (after Peter Naur) can be introduced. 

Successful representation is achieved when there is a straightforward determination of αD individuals 

corresponding to functionally-determined βD individuals (perhaps with canonical forms) in the particular 

‹β› interpretation of ‹α›. 

5. Computational Interpretations, Models and Stored Programs 
It is useful to consider that computational interpretations are transitive in the sense that if structure ‹α› 

has an interpretation in structure ‹β›, and structure ‹β› has a computational interpretation, that serves 

as one for ‹α›.   

A structure ‹μ› is an abstract (stored-program) computational model if there is a  μT-determined 
universal function, say μ.App(p,x), such that for every computable function f(x) in μF,  
 

∃p ∀x [μ.App(p,x) = f(x)]  
 
is the case for μD denumerable.  
 



Page  5  
 

μ.App(p,x) is a direct computational interpretation of ‹μ› in this case.  It is an abstraction of stored-
program computation and there are useful examples in practical applications of computers (compiling, 
interpreting, parsing, etc.). 
 
Church-Turing universality is established by explanation of exactly what the thesis is and that other CT-
recognized models are demonstrable b simulations in a ‹μ›.  It is not necessary to undertake such an 
effort.  It is more about understanding that there are such recognized cases. 
 
That one can, in such cases, have programs that compute programs, is a foundational notion in CS and 
this is a simplified glimpse of that.  One can also point out Turing Machines and the idea of the UTM 
without going very far down this road.  There might be opportunity to introduce the notion that there 
are (notionally) functions in μ F that are not computable, not determinable by any finite formulation in 
μT. 
 

6. Interpretations, Models, and Natural Occurrence 
In all of this so far, consideration is confined to a world of abstract (mathematical) entities. 

It requires extra-logical interpretation of a computational model in terms of the operation of a 

mechanism, a computer, that is in fact operated in the natural world.  Mathematical structures are not 

mechanisms. 

This is not a new difficulty.  It applies as much to physics as it does to the connection of computation to 

mathematics and logic when we take computations to be about something that is other than the direct 

computational interpretation. 

Even the 0s and 1s considered particles of computer representations are abstractions engineered and 

represented with extraordinary dependability.  We might say better that the 0s and 1s are manifest 

(represented) in an intended interpretation. 

There is an informal treatment of these logico-mathematical structures that is a valuable illustration of 

something fundamental in computation.  Software development and Computer Science involve models 

of structures in the world -- that is, nature exhibits to our experience phenomena that we can take as 

interpretations of theories.  (Consider the Pythagoreans seeing number in everything.)  Finding 

empirically-dependable interpretations in the world does not comprehend the world, and we need to 

understand that concerning the theories that are embodied in computers (e.g., object-oriented 

approaches) and how that does not capture the world entire (sometimes not even a little bit).  And 

empirical suitability matters and must be confirmable. 

We must neither foster nor embrace notions that our world is apprehended by a mechanism. 

I would hope that a treatment of logic relevant to Computer Science will address this distinction as well 

as shed light on the marvelous ways computers have become dependable for implementing and 

simulating structures of importance in our lives.  From a scientific perspective, I think Albert Einstein said 

it clearly (https://orcmid.com/blog/2010/02/abstraction-einstein-on-theoryreality.asp). 

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, 

they do not refer to reality. 

[Einstein1921] 

https://orcmid.com/blog/2010/02/abstraction-einstein-on-theoryreality.asp


Page  6  
 

References 
 

[Einstein1921] 

Einstein, Albert.  Geometry and Experience: An expanded form of an address to the Prussian 

Academy of Sciences in Berlin on January 27, 1921.  Pp. 25-56 in [Einstein1922] 

 

[Einstein1922] 

Einstein, Albert.  Sidelights on Relativity.  G. B. Jeffrey and W. Perret, translators.   E. P. Dutton 

(New York: 1922); Dover edition (New York: 1983) ISBN 0-486-24511-X pbk. 

 Contains Ether and Relativity (1920) and Geometry and Experience (1921).  Sidelights on 

Relativity is reprinted, with commentary of the editor, on pp. 235-262 of [Hawking2007] 

 

[Hawking2007] 

Hawking, Stephen (ed.).  A Stubbornly Persistent Illusion: The Essential Scientific Works of Albert 

Einstein.  Running Press (Philadelphia: 2007).  ISBN 0-7624-3003-6. 

 


