
EasyChair Preprint

№ 109

Cryptanalysis of Secure Hash Password

Technique (CSHPT) in Linux

Harshavardhan Metla, Vinay Reddy Mallidi,
Sai Kiran Chintalapudi and Madhu Viswanatham V

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 1, 2018

Cryptanalysis of Secure Hash Password Technique

(CSHPT) in Linux

HARSHAVARDHAN METLA1, VINAY REDDY MALLIDI1, SAI KIRAN CHINTALAPUDI1,

MADHU VISWANATHAM V*

School of Computer Science and Engineering

Vellore Institute of Technology

Vellore, India

Email ID: metlaharsha.vardhan2015@vit.ac.in, chintalapudisai.kiran2015@vit.ac.in, vinayreddy.mallidi2015@vit.ac.in
vmadhuviswanatham@vit.ac.in

Abstract—The very basic aspect when creating user account

systems is to provide protection of data and other details. Hence,

there is a need to protect the passwords so that even when the

hacker steals the database, the user's passwords are secured

using various hashing algorithms. Cryptographic hashing

functions like MD5, SHA-216 etc. can be easily hacked with

powerful hardware near hacker. Moreover, these are not slow

functions. There is a need for implementation of slow hashing

functions along with salt or pepper added, which can withstand

the growing technology utilized by the attacker. Generally, these

functions are used in Linux/Unix password database for

authentication of users and other security purposes. The slow

hashing functions implemented in this paper are PBKDF2,

BCrypt, Scrypt and for cryptanalysis we have used known plain

text attack because all the brute-force, dictionary attacks

becomes useless when it comes to slow hash functions. So, we are

going to implement, analyze the performance of different

algorithms and also make comparisons among them.

Keywords—cryptanalysis; hashes; known plain-text; linux;

performance; slow hash functions; salt; pepper

I. INTRODUCTION

Passwords are hashed to provide further security as a
secondary defense system. Passwords are validated by making
use of the data present in the server for the purpose of
authentication. Validation can be thought of as a simpler
process of comparison in which a system is used to have the
password details stored with them. But if the external person is
facilitated with the option to view the file contents or tables of
a database that contains the passwords- the system is prone to
attack by the attacker. Usually-there are chances of such
breaches of read-only and partial nature occurring frequently.
Attack by SQL injection is one of such cases. Offline
dictionary attacks can be performed by the attacker if he has
details of server of read-only type. This is because just the
server's contents can be used for validation purposes. The
attacker keeps on trying all passwords which are potential until
he finds a match. This cannot be avoided. So, there is a need to
avoid the attacks my making it hard for the attackers to find a
match.

Hash functions which are cryptographic in nature. These
hash functions are interesting object that are mathematical in
nature. They can be computed easily by everyone but even
then, they are difficult and can hardly be inverted by the
attackers. This tool works well for our issue- the server is used
to store the password's hash. When it is presented with a
password that is putative- the server needs to simply hash in
order to provide the same value. In this way the password is
not revealed even though the hash is known.

Hence there is a need to try with some better and efficient
methods. It can be made possible by using salting and slow
hashing functions together. It is a tough task to design a hash
function- if the result should be more secure. But then also we
need to depend on standard construction methods.

II. BACKGROUND

A. Storing Passwords in Linux

The main mechanism that is used to access a machine
running on Linux consists of account of user with the password
that corresponds to it. Passwords corresponding to all the user
accounts in the systems need to be stores in a database/file to
enable verification during the login attempts by the user. But as
we know the file/database that has the passwords in present as
hash values in a format that is encoded. Therefore, it is difficult
to know the real password from the hashed password that is
encoded. Dictionary attacks can be applied the encoded
password to obtain the real password. Same hash cannot be
encoded to two data at the same time. Even if a single character
in the data is changes an entirely different hash is produced.
The hashing strength is used in many ways in almost every
protocol of communication. It is used to check and confirm the
data’s originality and integrity. There are chances that attackers
can get the hash that is encrypted and try several combinations
using the word-thereby producing the same hash. Due to the
computing advances –the attacker can check with many
combinations within a short span of time.

The passwords that are stored in LINUX Systems are also
prone to these types of risks. The attacker can find out the file
that contains passwords and break the passwords even in

encoding is done to the passwords previously. Passwords in
Unix are present in /etc/password. This file has world readable
access, that is, every user of the system will be able to read the
password file. This has a purpose. The password file has other
critical info in addition to passwords. Several system tools and
applications need this information to function correctly. There
is a need to keep the passwords in a separate file that is
accessible only by the root. This is implemented by “shadow-
utils” package in Linux [2]. Shadow utils package separates
passwords for /etc/passwd. Then the passwords are saved in
/etc/shadow file- which is accessible only by the root. The read
permission for /etc/shadow file is given only to the root user.

B. Parallel Concept

Parallelism is one of the advantages that are possible by the
attacker over the defender. The attacker gets the hashed
passwords list. He is interested to break all the passwords that
are vulnerable to be broken. Several attacks are tried by him in
parallel.

For example, one password which is potential is considered
by the attacker. The password is hashed. Then this password is
compared with other 100 passwords that are hashed. The
hashing cost for many passwords that are attacked is shared by
the attacker.

An optimization method that is similar to this are the tables
which are precomputed-such as rainbow tables. This is also
considered parallelism which is still and has a change of
coordinates with space time. All the attacks have a common
characteristic called parallelism. Parallelism can be used on
several passwords. They are processed with the same hash
function. Several hash functions are used in Salting as against
using a single hash function. Own hashing function should be
used by each instance of hashing a password. From amongst a
family of hash functions salt is a method to choose a particular
hash function. Salts that are applied properly will completely
prevent the attacks that are parallel-inclusive of rainbow tables
[3].

C. Slowness

Faster computers are being produced over time. Hence,
they are becoming fast over time. But the human brains’
fastness is fixed. Users can remember simple passwords but is
difficult for them to remember very complex passwords even
though several potential passwords can be tried by them. To act
as a check for this trend- inherent hashing that is slow can be
made use of to define the hashing function. These hashing
functions that are inherently slow use many internal iterations
[4].

 MDA and family of SHA are a few standard hashing

functions that are cryptographic. It is difficult to build a secure

a secure hash function that has very less/no operations that are

elementary in nature. Competitions are held by the

cryptographers to test the efficiency of hashing functions so

that the most efficient algorithm is the one that cannot be

broken and the password that no one knows how it can be

broken.
 A hash function is inappropriate for hashing of the

passwords. This is because:

• The password is unsalted. Therefore, it is prone to
attacks by parallelism (such as MD5 and SHA-1 can be
attacked by making use of rainbow tables).

• Hashing rate is very fast- it keeps increasing with
advances in technology.

D. Slow Hash Functions

PBKDF2 comes from PKCS#5. It is parameterized with
associated iteration count (a whole number, at least 1, no
higher limit), a salt (a sequence of bytes, no constraint on
length), an output length (PBKDF2 will generate Associate in
Nursing output of configurable length), Associate - "underlying
PRF". In application, PBKDF2 is usually used with HMAC,
that is itself a construction designed over underlying hash
operation. Therefore, we say "PBKDF2 with SHA-1", we tend
to truly mean "PBKDF2 with HMAC with SHA-1"[1].

Bcrypt was designed by reusing and increasing components
of a block cipher. The iteration count may be a power of 2, that
may be a small indefinite quantity less configurable than
PBKDF2, however sufficiently thus even so. this is often the
core parole hashing mechanism within the OpenBSD software
system.

 Scrypt, over PBKDF2 and a stream cipher known as

Salsa20/8, however these measures the tools round the core

strength of scrypt, that is RAM. scrypt has been designed to

inherently use plenty of RAM (it generates some pseudo-

random bytes, then repeatedly scan them in an exceedingly

pseudo-random sequence). "Lots of RAM" are some things

that is difficult to form parallel. A basic laptop is nice at RAM

access, and cannot try and scan dozens of unrelated RAM

bytes at the same time. associate offender with a GPU or a

FPGA can wish to try and do that, and can realize it

troublesome.

III. IMPLEMENTATION

We have implemented PBKDF2, Bcrypt and Scrypt using
java in eclipse platform. The reason we chose java because it is
platform independent. First, user enters the plaintext. This
password is hashed based on applying the three hashes. The
user can know which type of hash is implemented by doing
cryptanalysis. Once the user enters a value specified, he can get
to know algorithm used. Upon, hashing the plain-text using
three algorithms Scrypt hash took more time to give the output
because it utilizes both time and memory exponentially. The
software and hardware used are mentioned in the below tables.

TABLE I. SOFTWARE SPECIFICATION

Type Software used

Operating System Windows 10, Linux

Language JAVA 8

IDE Eclipse, Net Beans

TABLE II. HARDWARE SECIFICATION

Type Hardware used

Processor Intel i5

Ram 4 GB

Clock Speed 2.20 GHZ

 We have done cryptanalysis based on known plaintext

attack. Since, these are slow hash functions and are hashed

with salt and pepper. We have utilized task manager to

calculate the amount of cpu cost and memory used by the

different hash algorithm and have plotted a graph. The certain

amount of time took for the cryptanalysis was set to 5 minutes.

Fig. 1. Task manager showing the amount of CPU and RAM used

 The performance of algorithms are visualized by plotting

graphs. The CPU cost was measured in terms of percentage

and the RAM utilized was measuredin terms of MB. As, we

can see the cpu vs memory was maxed out in the case of

Scrypt and the PC goes to starvation state due to the utilization

of all resources. Even the PBKDF2 also went to starvation

after a long time. So, we have set the time limit to 5 minutes.

Fig. 2. The Algorithms PBKDF2, Bcrypt and Scrypt form left to right.

(Performance Analysis of Different Algorithms).

Fig. 3. Graph showing the CPU Cost Vs Memory utilized at a certain Time.

IV. COMPARISON

A. Advantages of PBKDF2

• It has been nominative for an extended time.

• It is already existent in varied framework (e.g. it's
given .NET).

• Extremely configurable (although some
implementations don't allow you to opt for the hash
operate. For Example, the one in .NET is for SHA-1
only).

B. Drawbacks of PBKDF2

• CPU-intensive solely, to high optimization with GPU
(the defender may be a basic server that will generic
things, i.e. a PC, however the assailant will pay his
budget on a lot of specialized hardware, which can be
provided).

• This will continue to manage the parameters yourself
(salt generation and storage, iteration count
encryption). There is a typical encryption for PBKDF2
parameters however it uses ASN.1, therefore in general
can be avoided. (ASN.1 will be tough to handle in
reality) [5].

C. Advantages of bcrypt

• Several implementations in numerous languages added
additional resilient to GPU; this is often as a result of
details of its internal style. The bcrypt authors created:
they reused Blowfish as a result of Blowfish was
supported an enclosed RAM table that is continually
accessed and changed throughout the process. This

makes life a lot of tougher for whoever needs to hurry
up bcrypt with a GPU (GPU aren't smart at creating
plenty of memory accesses in parallel).

• Normal output secret writing which has the salt, the
iteration count and also the output joined easy to store
character string of printable characters.

D. Drawbacks of bcrypt:

• Output size is fixed: 192 bits.

• Whereas bcrypt is nice at thwarting GPU, it will still be
completely optimized with FPGA: trendy FPGA chips
have plenty of tiny embedded RAM blocks that square
measured conveniently for running several bcrypt
implementations in parallel among one chip.

• Input size is fifty-one characters. so as to handle longer
passwords, one needs to mix bcrypt with a hash
perform (you hash, then use the hash price because the
"password" for bcrypt). Combining scientific discipline
primitives is understood to be dangerous thus such
games cannot be suggested on a general basis.

E. Advantages of scrypt

• A PC, i.e. specifically what the defender can use once
hashing passwords, is that the best platform (or shut
enough) for computing scrypt. The offender now not
gets a lift by outlay his bucks on GPU or FPGA.

• An extra thanks to tune the function: memory size.

F. Drawbacks of scrypt

• Not as a ready-to-use implementation for varied
languages.

• Unclear whether or not the processor / RAM combine
is perfect. for every of the pseudo-random RAM
accesses, scrypt still computes a hash operate. A cache
miss is going to be regarding two hundred clock
cycles, one SHA-256 invocation is near one thousand.
There is also area for improvement here.

• One more parameter to configure: memory size.

TABLE III.

Comparison

Table

Slow Hashing Functions

PBKDF2 Bcrypt Scrypt

Memory

Hardenning

Factor

No Yes Yes

V. CONCLUSION AND FUTURE IMPLEMENTATION

In our model the user can set his own salt or a default
pepper value is generated randomly. We have done the
cryptanalysis and compared different slow hashing algorithms.
We came to a conclusion that Scrypt is the more secured when
compared with others. We know that argon2 has won in the
PHC but, we didn't mention because it came very recently i.e.,
in the year 2015. We also know that cryptographic hashing can
be implemented only when no one is able to hack it for a tenure
of certain years like bcrypt and scrypt. We will develop our
system more user friendly. When the user logins into the Linux
based system, can set the algorithm to which he wants to
encrypt his password. PBKDF2 can be used when the user
account has unimportant data like a PC utilized by individual,
Bcrypt can be used when there are small organizations etc. i.e.,
somewhat important data. The military based encryption they
can use scrypt. Parallelism plays a major role in attacking the
hashed password because each iteration can be divided into
threads and are processed through different processors which
make reduces the time factor and gives advantage to the
attacker. So, it utilizes exponential time and memory of the
attackers Hardware.

REFERENCES

[1] Preziuso, M. (2015, June 22). Password Hashing: PBKDF2, Scrypt,
Bcrypt – Michele Preziuso – Medium. Retrieved December 25, 2017,
from https://medium.com/@mpreziuso/password-hashing-pbkdf2-
scrypt-bcrypt-1ef4bb9c19b3

[2] How are passwords stored in Linux (Understanding hashing with
shadow utils). (n.d.). Retrieved December 25, 2017, from
https://www.slashroot.in/how-are-passwords-stored-linux-
understanding-hashing-shadow-utils

[3] How to securely hash passwords? (n.d.). Retrieved December 25, 2017,
from https://security.stackexchange.com/questions/211/how-to-securely-
hash-passwords?answertab=active#tab-top

[4] SysTEX '16 Proceedings of the 1st Workshop on System Software for
Trusted Execution, Article No. 1, Trento, Italy — December 12 - 16,
2016, ACM New York, NY, USA ©2016

[5] J. Zhang and S. Boonkrong, "Dynamic Salt Generating Scheme Using
Seeds Warehouse Table Coordinates," 2015 2nd International
Conference on Information Science and Security (ICISS), Seoul, 2015,
pp. 1-6.

