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Abstract. The research advancements have made the neural network
algorithms deployed in the autonomous vehicle to perceive the surround-
ing. The standard exteroceptive sensors that are utilized for the per-
ception of the environment are cameras and Lidar. Therefore, the neu-
ral network algorithms developed using these exteroceptive sensors have
provided the necessary solution for the autonomous vehicle’s perception.
One major drawback of these exteroceptive sensors is their operability in
adverse weather conditions, for instance, low illumination and night con-
ditions. The useability and affordability of thermal cameras in the sensor
suite of the autonomous vehicle provide the necessary improvement in
the perception of the autonomous vehicle in adverse weather conditions.
The semantics of the environment benefits the robust perception, which
can be achieved by segmenting different objects in the scene. In this
work, we have employed the thermal camera for semantic segmentation.
We have designed an attention-based Recurrent Convolution Network
(RCNN) encoder-decoder architecture named ARTSeg for thermal se-
mantic segmentation. The main contribution of this work is the design
of encoder-decoder architecture, which employ units of RCNN for each
encoder and decoder block. Furthermore, additive attention is employed
in the decoder module to retain high-resolution features and improve the
localization of features. The efficacy of the proposed method is evaluated
on the available public dataset, showing better performance with other
state-of-the-art methods in mean intersection over union (IoU).

Keywords: Thermal Image · Semantic segmentation · Recurrent Con-
volution Neural Network · Attention .

1 Introduction

The last three decades have shown significant technological advancements that
reflects the development of efficient sensors. The applicability of these sensors in
the autonomous vehicle ensures its safe and secure services to the urban envi-
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ronment, as indicated by SOTIF-ISO/PAS-214481. Keeping safety as a priority
in autonomous vehicles, perception of the environment play a critical role along
with localization, planning and control module [1] [2] [3]. In the context of per-
ception, the most common exteroceptive sensors that are being deployed are
cameras (visible spectrum) and Lidar. The utilization of these sensor modalities
provides the necessary perception for the autonomous vehicle. However, these
sensors have limitations in adverse weather conditions at night and in low illu-
mination environments. For instance, cameras (visible spectrum) are operated
in the visible spectrum domain and provide an in-depth understanding of the
environment, but environmental conditions like sun-glare, low illumination af-
fect the camera result, thus yielding low performance in perception algorithms.
Lidar, as a surrogate to 2D information from cameras, gives the 3D information
about the environment. Lidar provides 3D information of the environment by
making a point cloud map by projecting nearly thousands of laser beams to the
environment. Besides, Lidar effectiveness in providing the detailed 3D represen-
tation of the environment, its expensive cost and limitation in adverse weather
conditions are the prime concern of its detriment. On the other hand, thermal
cameras, contrary to cameras (visible-spectrum) and Lidar, enable the percep-
tion algorithms to be utilized in adverse weather conditions, such as at night or
low illumination environmental conditions [4].

Thermal cameras operate in the infrared domain and capture the infrared
radiation emitted by the different entities in the environment having the tem-
perature above absolute zero [6]. This property of the thermal camera makes it
an optimal solution to be included in the sensor suite of the autonomous vehicle
for the perception of the environment in low illumination and night conditions.
Furthermore, besides thermal cameras applicability in adverse weather condi-
tions, the affordability of thermal cameras gives the potential to be utilized in
different perception tasks for the autonomous vehicle. These perception tasks
involve different computer vision applications such as object detection [7] [8],
visual tracking [9] and person re-identification [10]. In order to determine the se-
mantics of environment for the scene understanding for the autonomous vehicle,
semantic segmentation plays a vital role in the perception of the autonomous ve-
hicle. The capacity of thermal cameras to operate at night and low illumination
conditions motivate to use of the thermal camera for semantic segmentation and
investigate the semantic segmentation problem using the thermal cameras.

In computer vision, semantic segmentation provides an in-depth understand-
ing of the scene by employing a semantic label to each pixel in the image. Despite
traditional machine learning approaches employed to tackle semantic segmenta-
tion problems, deep learning approaches gain unprecedented success in semantic
segmentation. Most of these deep learning techniques, for instance, convolutional
neural networks, are applied using the RGB images for semantic segmentation.

1 https://www.daimler.com/innovation/case/autonomous/safety-first-for-automated-
driving-2.htm
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Thermal cameras provide the grey-scale image that benefits the neural networks
to be employed on thermal images for different computer vision tasks.

This work explores the thermal image segmentation problem by designing
a novel encoder-decoder architecture called ARTSeg. The encoder consists of a
residual recurrent convolution block accompanied by a max-pooling layer. The
encoder outputs a latent representation of features which is fed to the decoder.
The decoder incorporates additive attention from the residual connections from
the encoder. The ARTSeg is evaluated on a public dataset and compared with
state-of-the-art methods. The main contribution of this work are as follows:

1. We have designed a novel encoder-decoder architecture using residual recur-
rent convolution neural network.

2. We have employed the additive attention mechanism to enhance the localiza-
tion of encoded features. Further, no post-processing steps are used because
of employing the attention for the thermal image segmentation.

3. The proposed method’s efficacy is performed on available public dataset
shows better performance in term of average accuracy and intersection over
union in contrast to state-of-the-art methods.

The rest of the paper is organized as follows: Section 2 explains the related
work. The proposed method is described in the Section 3. Section 4 illustrate
the experimentation and results for the proposed method. Finally, section 5
concludes the paper.

2 Related Work

The concept of semantic segmentation plays a critical role in the robust percep-
tion of the environment for autonomous driving. Deep neural networks, especially
convolution neural networks, are mostly used for semantic segmentation using
RGB cameras as a sensor modality. The early state-of-the-art method that is
employed for the semantic segmentation is Fully Convolutional Network (FCN)
proposed by [5]. In FCN, the fully connected layers are replaced with the convo-
lutional layers to output the full resolution maps for the semantic segmentation
using the backbone network of VGG16 [23] and GoogleNet [11] architectures,
respectively.

In literature, the encoder-decoder architecture is also used for semantic seg-
mentation. In the encoder-decoder architecture, the features are encoded to give
the latent representation and then decode to provide the object details and
spatial resolution. [22] have proposed the encoder-decoder architecture named
SegNet. The encoder network consists of convolutional layers adopted from the
VGG16 [23] network to learn the encoded representation followed by batch-
normalization, rectified linear unit (ReLU) units and max-pooling layers. The
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decoder follows the same encoder architecture for upsampling the encoded fea-
tures for semantic segmentation. Similarly, using the encoder-decoder architec-
ture, the encoder of the network is improved by using image pyramids [28] [29],
conditional random fields [28], spatial pyramid pooling [28] and atrous convolu-
tion [30] [31]. There is a trade-off between accuracy and speed; in literature, some
research is focused on improving the inference speed using the encoder-decoder
architecture; for instance, [13] have proposed the encoder-decoder architecture
ENet that is optimized for the fast inference speed for semantic segmentation. In
order to retain the feature generalization, skip connections have been introduced
for the semantic segmentation as proposed by UNet [12].

Besides, using the single sensor modality, for instance, RGB images, in lit-
erature, the fusion of thermal and visible-spectrum RGB domain is also inves-
tigated for semantic segmentation. [15] have proposed FuseNet for the semantic
segmentation by incorporating the fusion of visible-spectrum RGB domain with
the thermal domain. Similarly, MFNet [19] and RTFNet [21] networks follows
the encoder-decoder architecture for the semantic segmentation using the fusion
of RGB and thermal data. [20] have proposed the FuseSeg using the Bayesian
fusion theory for the semantic segmentation using both RGB and thermal data.
In addition to the fusion techniques, some research is focused on multi-spectral
domain adaptation [32] [33] [34].

In contrast to the literature review, we have designed a novel encoder-decoder
architecture using the residual recurrent convolution layers followed by an atten-
tion mechanism to retain the feature generalization for semantic segmentation.
We have explicitly used the thermal data for the semantic segmentation without
employing the fusion or domain adaption techniques in this work.

3 Methods

This section presents the proposed method for the thermal image segmentation,
as illustrated in Fig.1. The proposed method is composed of encoder-decoder
architecture. The encoder module of the proposed method contains the residual
recurrent convolution block (RRCNN) followed by the max-pooling layer. The
residual recurrent convolutional block is comprised of recurrent convolutional
layers and skip connection from the encoder to decoder module. The encoder
module of the architecture receives the thermal image as input and generates
the encoded feature representation for the input image. Suppose xl represent the
input image at the l layer of the residual recurrent convolutional block, and a
pixel is located at (u, v) at the input image on the p feature map of the recurrent
convolution layer, then the output ouvp is expressed in Eq.1.

oluvp = (wfp )T ∗ xfl (u, v)(t) + (wrp)
T ∗ xrl (u, v)(t− 1) + bp, (1)
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Fig. 1: The overall framework of ARTSeg Network consisting on encoder-decoder.

where wfp and wrp are the weights of convolutional and recurrent convolutional
layer respectively and bp is the bias of the network. The inputs to the convo-

lution and lth layer recurrent convolutional layer are represented as xfl (u, v)(t)
and xrl (u, v)(t− 1) respectively. In Fig.1 the recurrent convolution layer are rep-
resented in the RRCNN block with the “arrow” indicating the recurrence. The
output of the recurrent convolutional layer is batch-normalized and fed to the
rectified linear activation function (ReLU) as shown in Eq.2.

F(xl,wl) = f(oluvp(t))) = max(0, oluvp(t)), (2)

F(xl,wl) represents the outcome of the activation function from the lth layer
recurrent convolutional network. This is summed with the input xl in residual
to give us the output of RRCNN block as expressed as Eq.3.

xl+1 = xl + F(xl,wl), (3)

where xl+1 represent the outcome from the RRCNN block.
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The decoder module follows the same architecture of the encoder module with
the addition of Upsample block and additive attention in the skip connections.
The decoder includes the same RRCNN block as encoder module but in that case
the RRCNN module is used for the upsampling of the encoded features. Fig.1
shows the decoder module with attention block. The output of the attention is
calculated by the element-wise multiplication of attention coefficient and input
feature maps from as shown in Eq.4.

x′l+1 = xl+1 · α, (4)

The term g represent the vector taken from the lowest layer of the network.
The purpose of the attention module is to focus on the salient region for the
thermal image segmentation. Mathematically, the attention of the network is
given by Eq.5. The detailed architecture is presented in Table-1.

slatt = φT (σ(WT
x x

i
l+1 +WT

g g
i + bg)) + bφ,

αl = ϕ(slatt(x
i
l+1, g

i;Θatt)),
(5)

Table 1: The detailed architecture of the proposed ARTSeg

Layer Output size

Input data

Encoder

RRCNN-1 block 32*256*256
Max pooling 32*128*128
RRCNN-2 block 64*128*128
Max pooling 64*64*64
RRCNN-3 block 128*64*64
Max pooling 128*32*32
RRCNN-4 block 256*32*32
Max pooling 256*8*8
RCNN-5 block 256*8*8

Decoder

Up-Block 128*32*32
Attention Module 256*32*32
RRCNN-4 block 128*32*32
Up-Block 128*64*64
Attention Module 256*64*64
RRCNN-3 block 128*64*64
Up-Block 64*128*128
Attention Module 128*128*128
RRCNN-2 block 64*128*128
Up-Block 32*256*256
Attention Module 64*256*256
RRCNN-1 Block 32*256*256

Output Conv 1X1 5*256*256
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where σ and ϕ represent ReLU and sigmoid activation function respectively.
The Wx and Wg shows the linear transformation for the attention network. In
addition, the Upsample block includes an upsampling layer followed by convo-
lutional layer, batch normalization and the ReLU activation unit. The semantic
segmentation output is obtained by placing the final convolution layer of kernel
size 1 × 1 at the final RRCNN block in the decoder layer.

4 Experimentation and Results

This section explains the experimentation and results of the proposed method.
The performance of the proposed method is evaluated on the available public
dataset [19]. The efficacy of the proposed method is compared with the state-
of-the-art methods for thermal image semantic segmentation. For the evalua-
tion, we have adopted the standard metrics: Average class Accuracy and mean
Intersection over Union (IOU). The following section discusses the details of
experimentation and results.

4.1 Thermal Semantic Segmentation Dataset

We have utilized the available public dataset for thermal image segmentation
provided by [19]. The dataset is comprised of thermal and visible-spectrum RGB
images. The dataset is collected using the InfRec R500 thermal camera, which
simultaneously captures the thermal spectrum and visible spectrum images. The
range of the thermal spectrum for collecting the images is 814µm, giving the
images of resolution 480 × 640. The field of view of the visible-spectrum image
and the thermal image is not identical. The visible spectrum images have a
horizontal field of view of 100◦; besides, the thermal spectrum images have a
horizontal field of view of 32◦. In order to align the thermal and RGB spectrum
images, the RGB images are cropped and resized. The dataset provides the
semantic labels for the urban environment and is classified into nine classes:
bicycle, person, car, curve, car stop, color cone, guardrail, and background. The
dataset has 1569 images pairs of RGB and thermal altogether. There are 820
image pairs recorded during the daytime and 749 recorded at nighttime. The

Table 2: The number of images in training and testing split of the dataset.

Dataset Training set Testing set

Day & Night time 784 393
Day Time - 205
Night Time - 188
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Table 3: Comparison of the evaluation results of ARTSeg with other state-of-
the-art methods on the test set consisting of Day and Night time images. The
Class Accuracy (%), Avg.Acc (%) and IOU (%) are the evaluation metrics. ”-”
indicates that the value is not available.
Model Background Car Pedestrian Bike Curve Car stop Guardrail Color cone Bump Avg.Acc IOU

SegNet [19] 96.90 83.30 72.10 76.80 58.30 31.90 0.00 0.00 63.90 53.70 58.30
SegNet 4ch [19] 96.10 89.00 82.30 0.00 61.40 21.70 0.00 0.00 86.70 48.60 50.40
ENet [19] 88.50 58.60 42.70 24.70 30.10 18.10 0.30 45.80 23.00 37.00 44.90
MFNet [19] 96.80 82.90 85.20 74.20 61.50 27.30 0.00 60.70 43.30 59.10 64.90
FuseSeg [20] - 93.10 81.40 78.50 68.40 29.10 63.70 55.80 66.64 70.60 54.50
RTFNet [21] - 93.00 79.30 76.80 60.70 38.50 0.00 45.50 74.70 63.10 53.20

ARTSeg (Our) 97.10 94.76 86.66 79.20 71.25 49.69 65.21 58.11 64.28 74.03 68.80

dataset is split into the training set and testing set. The testing set is further
split into the daytime set and nighttime set. The percentage of images in each
set are shown in Table 2.

4.2 Training details

The proposed method ArtSeg is implemented using Pytorch deep learning li-
brary. In training the proposed method, no pre-processing step is performed on
the input images. The proposed network ArtSeg is trained from scratch in an
end-to-end manner and does not employ any pre-trained weights. The network
is trained for a total of 500 epochs on Nvidia RTX 3090 having 24GB memory.
The cross-entropy loss function is used for training the network given by Eq.6.

Loss = − 1

M

j=1∑
M

c=1∑
C

Sc,j ln(Ŝc,j) (6)

where M is the total number of pixels in the ground truth label image, C is the
number of classes, in this case, 9. Sc,j denotes the ground truth class label of each

pixel, and Ŝc,j denotes the predicted class of each pixel. We have used Adam
optimizer for training the ARTSeg network with the weight decay of 1 × 10−4;
epsilon of 1 × 10−8 and learning rate of 5 × 10−4. The learning rate schedule
policy given by the Eq.7 is used to update the learning rate.

LR = LRinitial × (
1 − epoch

epochstotal
)p, (7)

The p is set to 0.9. The network is trained for 100 epochs. All the parameter
values are chosen empirically through grid search. These parameters are kept
constant in all the experiments. Moreover, training data is augmented using the
flip technique.
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4.3 Evaluation metrics

In order to evaluate the performance of the proposed network, two evaluation
metrics are selected. The Average class Accuracy and Mean Intersection over
Union (IOU). The Average class Accuracy is expressed as

Avg.Acc =
1

N

i=1∑
N

TPi
TPi + FNi

, (8)

where N is number of classes.TP is true positive rate (TPi =
∑m=1
M pmii ) and

FN is false negative rate(FN i =
∑m=1
M

∑N
j=1,j 6=i p

m
ij ). The IOU is expressed as

IOU =
1

N

i=1∑
N

TPi
TPi + FNi + FPi

, (9)

here FP is define as false positive rate(FP i =
∑m=1
M

∑N
j=1,j 6=i p

m
ji). The pii

corresponds to the correct number of pixels classified for class i having the same
class i in the frame m, whereas pji represents the number incorrectly classified
pixel of class j as class i in the frame m. Similarly, the number of incorrectly
classified pixel of class i as class j is represented by pij in the frame m.

4.4 Results

The thermal image semantic segmentation dataset is benchmarked on existing
techniques, including MFRNet [19], FuseSeg [20], SegNet [22] and RTFNet [21].
Image segmentation using thermal images is an emerging research direction in
contrast to RGB image segmentation; given this, a few techniques have been em-
ployed in the literature for thermal image segmentation. The MFRNet, FuseSeg
and RTFNet have fused the information from the visible spectrum and thermal

Table 4: Quantitative analysis of ARTSeg with other state-of-the-art methods
for day time and night time test set. The evaluation is performed using Avg.acc
(%) and IOU (%) metrics.

Methods Day Time Night Time

Avg.Acc(%) IOU(%) Avg.Acc(%) IOU(%)

SegNet [19] 46.10 48.80 54.00 55.20
SegNet 4ch [19] 50.50 51.10 50.50 51.10
MFNet [19] 47.70 57.40 63.50 62.10
FuseSeg [20] 62.10 47.80 67.30 54.60
RTFNet [21] 60.00 45.80 60.70 54.80
ARTSeg (Our) 65.58 64.08 70.85 65.56
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Fig. 2: The qualitative comparison between ARTSeg and other state-of-the-art
methods for semantic segmentation on thermal image dataset.

spectrum images. However, SegNet uses only thermal images for predicting se-
mantic segmentation. The proposed network ARTSeg is trained on only thermal
images. The evaluation of ARTSeg in comparison to the algorithms as mentioned
earlier is shown in Table 3. The Table shows the Accuracy measure of each class
and Avg.Acc and IOU over all classes for both day and night time. However, Ta-
ble 4 shows the evaluation of the methods for daytime and nighttime separately
for all classes. ARTSeg has outperformed all existing methods and achieved an
improvement 3.43% in Avg.Acc and 3.9% in IOU scores in comparison to Fus-
eSeg. Fig.2 manifests the qualitative results of the proposed ARTSeg algorithm
with other methods. In addition, we have also investigated the effect of using
different backbone networks to extract the features for the encoder of ARTSeg
network.

We utilize six different backbone network including VGG16 [23], ResNet-
18 [24], ResNet-50 [24], MobileNetV2 [25], ShuffleNet [26] and DenseNet [27].
The thermal image is input to the backbone network, and the encoded features
are obtained are then passed to the decoder module. The backbone networks
are trained with pre-trained weights. The Table 5 shows the quantitative results
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Table 5: Quantitive analysis of ARTSeg with different backbone networks. The
evaluation is performed using Avg.acc (%) and IOU (%) metrics on day and
night time test set.

Methods DayTime NightTime

Avg.Acc(%) IOU (%) Avg.Acc(%) IOU(%)

ARTSeg-VGG16 54.21 46.80 59.12 48.20
ARTSeg-ResNet-18 57.50 47.60 61.89 51.10
ARTSeg-ResNet-50 63.25 55.40 65.50 57.23
ARTSeg-MobileNetv2 59.45 49.89 60.10 50.80
ARTSeg-DenseNet 58.41 49.50 59.45 49.34
ARTSeg-ShuffleNet 62.58 58.18 66.85 59.56
ARTSeg (Our) 65.58 64.08 70.85 65.56

with the backbone networks. The results using different backbone networks in the
encoder module do not show any significant improvement compared to ARTSeg.

5 Conclusion

In this research article, we proposed ARTSeg, a novel encoder-decoder architec-
ture for thermal image semantic segmentation. The ARTSeg introduces residual
recurrent convolution block in the encoder, followed by a decoder that utilizes
additive attention in skip connection to refine full resolution detection. The ART-
Seg is evaluated on the public dataset in terms of Avg.Acc and IOU . In compar-
ison to other state-of-the-art methods, ARTSeg has a higher Avg.Acc (74.03%)
and IOU (68.80%).

The use of the thermal camera in the autonomous driving stack to understand
surroundings is beneficial in low illumination conditions. For future work, we aim
to fuse information from the thermal camera and Lidar to improve the perception
of the autonomous vehicle.
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