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ABSTRACT 

In this paper, i have generalized the result of Murthy et al. [15] in metric spaces 

by replacing the containment condition and giving the shorter proof than of the 

authors in the main result. 
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1. INTRODUCTION 

 Aamri and Moutawakil [1] introduced the concept of property (E.A.) which 

was perhaps inspired by the condition of compatibility introduced by Jungck [11] 

and further Imdad and Ali[10] extended this result . Recently Babu and 

Alemayehu [7, 8,9] proved common fixed point theorem for occasionally weakly 

compatible maps satisfying property (E.A.) using an inequality involving 

quadratic terms. Aliouche[4] proved a common fixed point theorem of Gregus 

type weakly compatible mappings satisfying generalized contractive conditions.  

 

 Abbas [2] established a common fixed point for Lipschitzian mapping 

satisfying rational contractive conditions.  

 

2. PRELIMINARIES  

Throughout this paper (X, d) is a metric space which is denoted by X.  

 

Definition 2.1: [Jungck and Rhoades [13]]. Let A and S be selfmaps of a set X. If 

Au = Su =  (say),   X, for some u in X, then u is called a coincidence point of A 
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and S and the set of coincidence points of A and S is denoted by C (A, S), and  is 

called a point of coincidence of A and S.  

Definition 2.2: Let A, B, S and T be self maps of a set X. If  ( , )u C A S and 

 ( , )v C B T for some ,u v X and Au Su Bv Tv= = = =z (say), then z is called a 

common point of coincidence of the pairs (A. S) and (B. T ).  

 

 

Definition 2.3: The pair (A, S) is said to be  

 

(I) Satisfy property ( . .)E A   [1] if there exists a sequence { }nx in X such that 

lim limn n
n n

Ax Sx t
→ →

= = for some t in X.  

 

(II) Copatible [11] if lim ( , ) 0n n
n

d ASx SAx
→

= , for some t in X whenever { }nx is a 

sequence in X such that lim limn n
n n

Ax Sx t
→ →

= = . 

 

 

(III) Weakly compatible  [12], if they commute at their coincidence point. 

 

(IV) Occasionally weakly compatible (owc) [3,5,6] if ASx SAx= for some 

 ( , )x C A S . 

 

Remark 2.4 

 

(I) Every compatible pair is weakly compatible but its converse need not be 

true [12].  

(II) Weak compatibility and property (E. A.) are independent of each other 

[16]. 

(III) Every weakly compatible pair is occasionally weakly compatible but its 

converse need not be true [11]. 

(IV) Occasionally weakly compatible and property (E.A.) are independent of 

each other [8]. 

 
 

Definition 2.5: [14] Let (X, d) be a metric space and A, B, S and T be four 

selfmaps on X. The pairs ( , )A S and ( , )B T are said to satisfy common property 

(E.A.) if there exists two sequences { }nx and { }ny in X such that 

lim lim lim limn n n n
n n n n

Ax Sx t By Ty
→ → → →

= = = =  for some t in X.  
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Remark 2.6: Let , ,A B S and T be self maps of a set X. If the pairs (A, S) and (B, 

T) have common point of coincidence in X then C(A, S)   and C (B, T)  . But 

converse is not true.  
 

 

Example 2.7: Let X = [0, ) with usual metric and A, B, S and T self maps on x 

and defined by 2 21 1
1 ; 1 ; ;

2 2

x
Ax x sx x Bx x Tx

+
= − = − = + = for all x X.  

It is easy to observe that ( , ) {0,1}C A S = and 
1

( , ) 0,
2

C B T
 

=  
 

but the pairs (A, S) 

and (B, T) not having common point of coincidence.  
 

Remark 2.8: The converse of the remark 2.6 is true provided it satisfies 

inequality (3.1). This is given as in proposition 3.1 in section III.  

 
 

Preposition 2.9: [2] Let A and S be two self maps of a set X and the pair (A, S) 

is satisfies occasionally weakly compatible (owc) condition. If the pairs (A, S) 

have unique point of coincidence Ax = Sx = z then z is the unique common fixed 

point of A and S.  

 

Proof: To be given Ax = Sx = {z} (say) for any  ( , )x C A S              (2.1) 

Since the pair (A, S) satisfies the property owc, therefore  

 Az ASx SAx Sz= = = implies that   ( , )z C A S  

From (2.1), we get = =Az Sz z . Hence proposition follows.  

 

In 1996, Tas et al. [17] proved the following.  

 

Theorem 2.10: Let A, B, S and T be selfmaps of a complete metric space ( , )X d  

such that ( ) ( )A X T X and ( ) ( )B X S X and satisfying the inequality.  

    2 2 2 2
1[ ( , )] max [ ( , )] ,[ ( , )] ,[ ( , )]d Ax By C d Sx Ax d Ty By d Sx Ty  

   2 max{ ( , ) ( , ), ( , ) ( , )}C d Sx Ax d Sx By d Ty Ax d Ty By+  

   3 ( , ) ( , )C d Sx By d Ty Ax+  

for all ,x y x , where +  +  + 
1 3 2 3 1 2 1 3

, , 0, 2 1, 1C C C C C C C C . Further, assume 

that the pairs ( , )A S and ( , )B T are compatible onX. If one of the mappings 

, ,A B S and T is continuous then , ,A B S and T have a unique common fixed point 

in X.  
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3. MAIN RESULTS 

 

 Proposition 3.1. Let A, B, S and T be self maps of a metric space (X, d) 

and satisfying the inequality.  

      +2[ ( , )] [ ( , )( , ) ( , ) ( , )]d Ax By d Sx Axd Ty By d Ty Ax d Sx By  

   + +[ ( , ) ( , ) ( , ) ( , )]d Sx Ax d Sx By d Ty By d Ty Ax  

   + ( , ) ( , )d Sx By d Ty Ax               (3.1) 

for all ,x y x , where    , , 0and  +  1 . Then the pairs ( , )A S and ( , )B T  have 

common point of coincidence in X if and only if ( , )C A S  and ( , )C B T   . 

 

Prof: If part: It is trivial 

 

Only if part: Assume ( , )C A S  and ( , )C B T   . 

Then there is a ( , )u C A S and ( , )v C B T such that  

   Au Su p= =   (say)              (3.2) 

   Bv Tv q= =   (say)              (3.3) 

on taking x u= and y v= in (3.1), we get 

   2[ ( , )] [ ( , ) ( , ) ( , ) ( , )]d Au Bv d Su Au d Tv Bv d Tv Au d Su Bv +  

   [ ( , ) ( , ) ( , ) ( , )]B d Su Au d Su Bv d Tv Bv d Tv Au+ +  

   ( , ) ( , )d Su Bv d Tv Au+  

Using (3.2) and (3.3), we get 

 2 2[ ( , )] ( )[ ( , )]d p q d p q  + , a contradiction. Thus p q=  

Therefore , ,A B S and T have common point of coincidence in X.  
 

 In The proposition (2.1) of Babu et al. [9], we can obtain some more 

conclusions of in their paper. Therefore our result improves and strengthen 

proposition 3.1 and subsequent theorems in metric spaces.  

 

Proposition 3.2: Let A, B, S and T be four self maps of a metric space ( , )X d  

satisfying the inequality (3.1). Suppose that either 

 

(i) ( ) ( )B X S X , the pair ( , )B T satisfies  property (E.A.) and ( )T X is a closed 

subspace of X; or  
 

(ii) ( ) ( ),A X T X the pair ( , )A S satisfies property ( . )E A and ( )S X is a closed 

subspace of X holds.  

 

 Then the pair ( , )A S and ( , )B T are satisfies the common property (E.A), 

also both the pairs ( , )A S and ( , )B T have common point of coincidence in X.  

We have shorten the proof of theorem 2.2 of [9] by relaxing many lines:  
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Theorem 3.3: (Improved version of theorem 2.2of [9]) 

Let , ,A B S and T are satisfying all the conditions given in proposition 3.2 with 

the following additional assumption.  

The pairs ( , )A S and ( , )B T are owc on X.  

Then , ,A B S and T have a unique common fixed point in X.  

 

Proof: By proposition 3.2 the pairs ( , )A S and ( , )B T have common point of 

coincidence. Therefore there is  ( , )u C A S and  ( , )v C B T such that  

  Au Su z= =  (say) = Bv Tv=                (3.4) 

Now, we show that z is unique common point of coincidence of the pairs ( , )A S  

and ( , )B T . 

Let if possible z' is another point of coincidence of , ,A B S and T. Then there is 

' ( , )u C A S and ' ( , )v C B T such that  

  ' ' 'Au Su z= =  (say) = ' 'Bv Tv=               (3.5) 

Putting x u= and 'y v= in inequality (3.1), we have  

 

   +2[ ( , ')] [ ( , ) ( ', ') ( ', ) ( , ')]d Au Bv d Su Au d Tv Bv d Tv Au d Su Bv  

   + +[ ( , ) ( , ') ( ', ') ( ', )]d Su Au d Su Bv d Tv Bv d Tv Au  

   + ( , ') ( ', )d Su Bv d Tv Au  

 

Now using (3.4) and (3.5), we get 

  + 2 2[ ( , ')] ( )[ ( , ')]d z z d z z , and arrive at a contradiction. Hence 'z z= and we 

have ( , ) { } ( , )C A S z C B T= = . By proposition 2.9, z is the unique common fixed 

point of , ,A B S and T in X.  
 

Remark 3.4: Proposition 2.5 of [9] and theorem 2.6 of [9] are remain true, if we 

replace completeness of S(X) and T(X) by the completeness of ( ) ( )S X T X in X. 

For this we have given an example 2.7 in the following manner without proof.  

Now we rewriting the proposition 2.5 and theorem 2.6 of [9] 

 
 

Proposition 3.5: Let A, B, S and T be four self maps of a metric. Space (X, d) 

satisfying the inequality (3.1) of proposition 3.1. Suppose that ( , )A S and ( , )B T satisfy 

a common property ( . )E A and ( ) ( )S X T X are closed subset of X, then A, B, S and T 

have unique common point of coincidence. Theorem 3.6. In addition to the above 

proposition 3.5 on A, B, S and T, if both the pairs (A, S) and (B, T) are owc mapson X, 

then the point of coincidence is a unique common point of , ,A B S and T.  
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