
EasyChair Preprint
№ 5353

A Novel Ant Colony Optimization Strategy for the
Quantum Circuit Compilation Problem

Marco Baioletti, Riccardo Rasconi and Angelo Oddi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 18, 2021

A Novel Ant Colony Optimization Strategy for
the Quantum Circuit Compilation Problem

Marco Baioletti1[0000−0001−5630−7173], Riccardo Rasconi2[0000−0003−2420−4713],
and Angelo Oddi2[0000−0003−4370−7156]

1 University of Perugia, Perugia, Italy
marco.baioletti@unipg.it

2 Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
{name.surname }@istc.cnr.it

Abstract. Quantum Computing represents the most promising technol-
ogy towards speed boost in computation, opening the possibility of major
breakthroughs in several disciplines including Artificial Intelligence. This
paper investigates the performance of a novel Ant Colony Optimization
(ACO) algorithm for the realization (compilation) of nearest-neighbor
compliant quantum circuits of minimum duration. In fact, current tech-
nological limitations (e.g., decoherence effect) impose that the overall
duration (makespan) of the quantum circuit realization be minimized,
and therefore the production of minimum-makespan compiled circuits
for present and future quantum machines is of paramount importance.
In our ACO algorithm (QCC-ACO), we introduce a novel pheromone
model, and we leverage a heuristic-based Priority Rule to control the
iterative selection of the quantum gates to be inserted in the solution.
The proposed QCC-ACO algorithm has been tested on a set of quantum
circuit benchmark instances of increasing sizes available from the recent
literature. We demonstrate that the QCC-ACO obtains results that out-
perform the current best solutions in the literature against the same
benchmark, succeeding in significantly improving the makespan values
for a great number of instances and demonstrating the scalability of the
approach.

Keywords: Ant Colony Optimization · Quantum Circuit Compilation
· Planning · Scheduling.

1 Introduction

Quantum Computing explores the implications of using quantum mechanics to
model information and its processing. The impact of quantum computing tech-
nology on theoretical/applicative aspects of computation as well as on the society
in the next decades is considered to be immensely beneficial [16]. While classical
computing revolves around the execution of logical gates based on two-valued
bits, quantum computing uses quantum gates that manipulate multi-valued bits
(qubits) that can represent as many logical states (qstates) as are the obtainable
linear combinations of a set of basis states (state superpositions). A quantum

2 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

circuit is composed of a number of qubits and by a series of quantum gates
that operate on those qubits, and whose execution realizes a specific quantum
algorithm.

Executing a quantum circuit entails the chronological evaluation of each gate
and the modification of the involved qstates according to the gate logic. Current
quantum computing technologies like ion-traps, quantum dots, super-conducting
qubits, etc. limit the qubit interaction distance to the extent of allowing the ex-
ecution of gates between adjacent (i.e., nearest-neighbor) qubits only [6, 13, 23].
This has opened the way to the exploration of possible techniques and/or heuris-
tics aimed at guaranteeing nearest-neighbor (NN) compliance in any quantum
circuit through the addition of a number of so-called swap gates between ad-
jacent qubits. The effect of a swap gate is to mutually exchange the qstates of
the involved qubits, thus allowing the execution of the gates that require those
qstates to rest on adjacent qubits. However, adding swap gates also introduces
a time overhead in the circuit execution [4] that generally depends on the quan-
tum hardware’s topology; on the other hand, it is highly desirable to minimize
the circuit’s execution time (i.e., makespan), in order to mitigate the negative
effects of decoherence and guarantee more stability to the quantum computa-
tion. The Quantum Circuit Compilation Problem (QCCP) can be described as
the synthesis of a real quantum circuit to be executed on a specific quantum
hardware.

The QCCP benchmarks used in this work3 have been initially introduced and
solved in [22] as a temporal planning problem. Subsequently, the same bench-
mark was tackled in [3, 17], respectively through a hybrid approach that in-
tegrates Temporal Planning with Constraint Programming, and a heuristically-
based Greedy Randomized Search (GRS) technique [12, 19]. The results obtained
in [17] have been further improved in [18] by means of a genetic algorithm. More
recently, a similar version of the priority rule introduced in [17] has been used
in [5] within a rollout procedure to further improve the best results, thus repre-
senting the benchmark’s current bests.

In this work, we use a slightly modified version of the priority rule proposed
in [5] within an Ant Colony Optimization (ACO) algorithm [9], and compare
our results with those obtained in the same paper, significantly improving the
makespan values for a considerable number of instances, and demonstrating the
scalability of the approach.

ACO is a powerful metaheuristic, inspired by the foraging behaviour of
colonies of ants that has been applied to many combinatorial optimization prob-
lems [9], and particularly to scheduling and permutation problems [14, 2]; indeed,
the QCC problem tackled here has in fact a strong scheduling component. Among
the evolutionary and swarm intelligence based algorithms, ACO seems to be well
suited for the QCC problem because of its constructive nature. In fact, feasible

3 A set of benchmark instances of different size belonging to the Quantum Approximate
Optimization Algorithm (QAOA) class [10, 11] tailored for the MaxCut problem
and devised to be executed on top of a hardware architecture proposed by Rigetti
Computing Inc. [20].

A Novel ACO Strategy for the QCC Problem 3

solutions in ACO are built by means of an iterative process that starts from an
empty solution and adds a component at a time consistently with the problem
constraints, hence maintaining the feasibility of the solution at all times during
the building process.

The paper is organized as follows. The next section proposes a formal state-
ment of the tackled problem, whereas the subsequent section describes the novel
ant colony optimization strategy proposed for its resolution. Finally, an empiri-
cal evaluation based on the benchmark proposed in [22] is performed, and some
conclusions end the paper.

2 The QCC Problem

Formally, the Quantum Circuit Compilation Problem (QCCP) [17] is a tuple
P = 〈C0, L0, QM〉, where: (i) C0 is the input quantum circuit representing the
execution of the algorithm of interest, (ii) L0 is the initial assignment of qubits
to qstates, and (iii) QM is a representation of the quantum hardware.

– C0 is the input quantum circuit expressed as a tuple 〈Q,P-S,MIX, P, TC0〉,
where: (i) Q = {q1, q2, . . . , qN} is the set of qstates which, from a plan-
ning & scheduling perspective represent the resources necessary for each
gate’s execution (see for example [15], Chapter 15); (ii) P-S and MIX re-
spectively represent the set of p-s and mix gates that have to be scheduled,
such that every p-s(qi, qj) gate requires two qstates for execution, and every
mix(qi) gate requires one qstate only; (iii) P = {1, ..., p} is the number of
times (i.e., passes) the gates in the P-S and MIX must be executed; (iv) TC0

is a set of simple precedence constraints imposed on the P-S and MIX such
that: (1) all the p-s gates belonging to the k-th pass (P-Sk) that involve a
specific qstate qi must be executed before all the mix gates belonging to the
same pass (MIXk) that involve the same qstate qi, for k = 1, 2, . . . , p, and (2)
all the mix gates belonging to the k-th pass (MIXk) that involve a specific
qstate qi must be executed before all the p-s gates belonging to the (k+ 1)-
th pass (P-Sk+1) that involve the same qstate qi, for k = 1, 2, . . . , (p − 1).
Lastly, the execution of every quantum gate requires the uninterrupted use
of the involved qstates during its processing time, and each qstate qi can
process at most one quantum gate at a time.

– L0 is the initial assignment at the time origin t = 0 of qstates qi to qubits
ni. In this work, the i-th qstate qi is assigned to the i-th qubit ni.

– QM is a representation of the quantum hardware as an undirected multi-
graphQM = 〈VN , Ep-s, Eswap, τmix, τp-s, τswap〉, where VN = {n1, n2, . . . , nN}
is the set of qubits (nodes), Ep-s (Eswap) is a set of undirected edges (ni, nj)
representing the set of adjacent locations the qstates qi and qj of the gates
p-s(qi, qj) (swap(qi, qj)) can potentially be allocated to. In addition, the la-
belling functions τp-s : Ep-s → Z+ and τswap : Eswap → Z+ respectively rep-
resent the durations of the gate operations p-s(qi, qj) and swap(qi, qj) when
the qstates qi and qj are assigned to the corresponding adjacent locations.
Similarly, the labelling function τmix : V → Z+ represents the durations of

4 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

(a) N = 8

(b) N = 21

(c) N = 40

1 32

4 5

6 7 8

1 32 4 5

6 7 8

9
10 11 12

13

14 15 16

17 18 19 20 21

1 32 4 5 6 7

8

12

19

23

30

34 35 36 37 38 39 40

11

18

22

29

3331 32

2624 28

13 15 17

20 21

9 10

14 16

25 27

Fig. 1. Three quantum chip designs characterized by an increasing number of qubits
(N = 8, 21, 40) inspired by Rigetti Computing Inc. Every qubit is located at a different
location (node), and the integers at each node represent the qubit’s identifier. Two
qubits connected by an edge are adjacent, and each edge represents a 2-qubit gate (p-s
or swap) that can be executed between those qubits. p-s gates executed on continuous
edges have duration τp-s = 3, while p-s gates executed on dashed edges have duration
τp-s = 4. Swap gates have duration τswap = 2.

the mix gate (which can be executed at any node ni). Figure 1 shows an
example of quantum hardware designs, with gate durations.

A feasible solution is a tuple S = 〈SWAP, TC〉, which extends the initial
circuit C0 to a circuit CS = 〈Q,P-S,MIX,SWAP, P, TCS〉, such that TCS =
TC0 ∪ TC, where SWAP is a set of additional swap(qi, qj) gates added to guar-
antee the adjacency constraints for the set of P-S gates, and TC is a set of
additional simple precedence constraints such that: (i) for each qstate qi, a
total order �i is imposed among the set Qi of operations requiring qi, with
Qi = {op ∈ P-S ∪ MIX ∪ SWAP : op requires qi}; (ii) all the p-s(qi, qj) and
swap(qi, qj) gate operations are allocated on adjacent qubits in QM , and (iii)
the graph 〈{P-S ∪MIX ∪ SWAP}, TCS〉 does not contain cycles.

Given a solution S, the makespan mk(S) corresponds to the maximum com-
pletion time of the gate operations in S. An optimal solution S∗ is a feasible
solution characterized by the minimum makespan.

3 A Novel Ant Colony Optimization Strategy

The solution pursued in this work to solve the QCCP exploits the Ant Colony
Optimization (ACO) paradigm [9]. The proposed algorithm is called QCC-ACO

A Novel ACO Strategy for the QCC Problem 5

Algorithm 1 QCC-ACO

Require: A problem P = 〈C0, L0, QM〉
InitializePheromoneValues()
while not termination criterion do

for i← 1 to na do
BuildSolution(P)

end for
UpdatePheromoneValues()

end while
return BestSolution

Algorithm 2 BuildSolution

Require: A problem P = 〈C0, L0, QM〉
S ← InitSolution(P)
t← 0
while not all the P-S and MIX operations are inserted in S do
op← SelectExecutableOperation(P , S, t)
if op 6= NULL then
S ← InsertOperation(op, S, t)

else
t← t+ 1

end if
end while
return S

and its main schema is depicted in Algorithm 1. The algorithm handles a colony
of na artificial ants, which indirectly communicate through the pheromone model
and create solutions of the QCC problem. The main loop is repeated for a certain
number of times, according to a given stop criterion, for instance, a computation
time budget. At each iteration, every artificial ant builds a solution by means
of a constructive procedure (BuildSolution()); then, pheromone values are
updated (UpdatePheromoneValues()) in order to select the best solutions.

In the next two subsections some details about the solution constructive
procedure and the pheromone update strategy will be respectively provided.

3.1 Solution Construction Algorithm

The solution construction procedure used in QCC-ACO is described in Algo-
rithm 2. The algorithm produces a complete solution S for the given QCC
problem P by starting from an empty solution and by iteratively selecting
(SelectExecutableOperation) and adding (InsertOperation) one oper-
ation (i.e., a quantum gate) at a time among those that can scheduled at the
current instant t.

An operation op can be scheduled at t if the qstates required by op are not
used in t. If no operation can be scheduled at t, the time is increased to t+ 1.

6 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

Clearly, one essential step of the BuildSolution() procedure is the Se-
lectExecutableOperation() method (shown in Algorithm 3) through which
a new operation is selected for insertion in the partial solution, at each iteration.
This method is based on a heuristic-based priority rule originally introduced
in [17] and slightly modified in [5], whose technical details will be described in
the following sections.

3.2 Gate Selection Procedure based on Priority Rules

The priority rule used in our QCC-ACO exploits the distance between qstate
pairs measured on the quantum hardware; in the following, we describe in detail
the criteria upon which such distance is assessed.

Let op ∈ Qi be a general gate operation that involves qstate qi, we define a
chain chi = {op ∈ Qi : op ∈ S} as the set of gates involving qi and currently
present in the partial solution S, among which a total order is imposed (see
Figure 2 for a graphical representation of a complete solution composed of a set
of chains, one for each qstate qi).

Let us also define last(chi) as the last operation in the chain chi according
to the imposed total order and n(last(chi)) as the QM node at which the last
operation in the chain chi terminates its execution. Given a partial solution S,
the state LS is the tuple LS = 〈n(last(ch1)), n(last(ch2)), . . . , n(last(chN))〉 of
QM locations (nodes) where each last chain operation last(chi) terminates its
execution.

Given the multi-graph QM introduced in the QCC Problem section, we
consider the distance graph Gd(V,Ep-s), so as to contain an undirected edge
(ni, nj) ∈ Ep-s when QM can execute a p-s gate on the pair (ni, nj). In the
graph Gd, an undirected path pij between a node ni and a node nj is the list of
edges pij = ((ni, nj1), (nj1, nj2), . . . , (njk, nj)) connecting the two nodes ni and
nj and its length lij is the number of edges in the path pij . Let dij represent the
minimal length among the set of all the paths between ni and nj . The distance
dij between all nodes is computed only once at the beginning, by means of all-
pairs shortest path algorithm, whose complexity is O(|V |3) in the worst case [7].
The distance dLS associated to a given p-s(qi, qj) gate that requires two qstates
qi and qj w.r.t. the state LS of the partial solution S is defined as:

dLS (p-s(qi, qj)) = d(nlast(chi), nlast(chj)) (1)

Two qstates qi and qj are in adjacent locations in the state LS if dLS (p-s(qi, qj)) =
1. Intuitively, given a p-s(qi, qj) gate and a partial solution S, the value dLS (p-s(qi,
qj)) yields the minimal number of swaps for moving the two qstates qi and qj to
adjacent locations on the machine QM .

The concept of distance defined on a single gate operation p-s(qi, qj) can be

extended to a set of gate operations, as follows. Let S be a partial solution, P-S
S

is the set of p-s(qi, qj) gates that are not yet scheduled in S and such that all
predecessors gates according to the temporal order imposed by the set TC0 (the
set of simple precedences in the input circuit C0) have already been scheduled in

A Novel ACO Strategy for the QCC Problem 7

S. The authors in [17] proposed two different functions to measure the distance

separating the set P-S
S

from the adjacent state. The first sums the set of the
distances dLS (p-s(qi, qj)):

DS
sum(P-S

S
) =

∑
p-s∈P-S

S

dLS (p-s(qi, qj)) (2)

The second returns the minimal value of the distance dLS (p-s(qi, qj)) in the set

P-S
S

:
DS
min(P-S

S
) = MIN

p-s∈P-S
SdLS (p-s(qi, qj)) (3)

Given the functions (2) and (3), it is now possible to assess the priority of
each gate operation op to possibly insert in the partial solution as follows:

f(S, op,P-S
S

) =

(DS′

sum(P-S
S \ {op}), 1) (p-s)

(DS′
sum(P-S

S′
), 1) (mix)

(DS′
sum(P-S

S′
), DS′

min(P-S
S′

)) (swap)

(4)

where S′ is the new partial solution after the addition of the selected gate op-
eration op. We are now in the position to describe in detail the SelectExe-
cutableOperation() procedure, which operates over three phases (see Algo-
rithm 3).

In the first phase (Phase1), a set Ω′ of operations (PS, MIX or SWAP)
that can be time and resource feasibly scheduled at the current instant t is
selected through the EligibleSet() procedure (eligible operations at time t).
Subsequently, the values of DS

sum and DS
min of the solution S (baseline values),

are computed using formulas 2 and 3, respectively. From this point, a new set
Ω of operations is built by further restricting Ω′, in a fashion inspired to the
Priority Rule described in [5]. Namely, Ω is built by immediately inserting all
the eligible P-S and MIX operations previously stored in Ω′ (if any), while the
SWAP operations will be considered only if their execution produces a partial
solution which is better than the current solution with respect to the Dsum

heuristic value or, being equal with respect to Dsum, it is better with respect to
Dmin.

The second phase (Phase2) is executed only if the first phase returns an
empty Ω set, in which case the algorithm collects all the SWAP operations
previously contained in Ω′ whose execution produces a partial solution which is
better than the current solution with respect to Dmin only.

The third phase (Phase3) chooses the operation to be returned by the pro-
cedure. If Ω is still empty, SelectExecutableOperation returns NULL and
the solution construction scheme continues by increasing the current value of
t. Otherwise, a selection probability value prob(op) is firstly computed for each
operation contained in Ω, according to the following formula:

prob(op) =
τ(op)αη(op)β∑

op′∈Ω τ(op′)αη(op′)β
(5)

8 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

Algorithm 3 SelectExecutableOperation

Require: a problem P , a partial solution S, a time t
//Phase1:
Ω′ ← EligibleSet(S, t)
Ω ← ∅
Init DS

sum and DS
min) resp. according to (2) and (3)

for all op ∈ Ω′ do

(op.DS
sum, op.D

S
min)← f(S, op,P-S

S
)

if (op is a MIX or a PS) or (op.DS
sum < DS

sum) or (op.DS
sum = DS

sum and
op.DS

min < DS
min) then

Ω ← Ω ∪ {op}
end if

end for
//Phase2:
if Ω = ∅ then

for all op ∈ Ω′ do
if (op is a SWAP) and (op.DS

min < DS
min) then

Ω ← Ω ∪ {op}
end if

end for
end if
//Phase3: op selection
if Ω = ∅ then

return NULL
end if
Evaluate prob(op) for all op ∈ Ω according to (5)
return op chosen at random with probability prob(op)

where τ(op) is the pheromone value associated to the choice of op, η(op) is the
desirability value of op, and the parameters α and β regulate the contribution
of the pheromone and the desirability values to the probability of component
selection.

The pheromone values will be described in the Pheromone Models section,
while the desirability value for an operation op is computed as:

η(op) = 1− W × op.D̂S
sum + op.D̂S

min

W + 1

where op.D̂S
sum and op.D̂S

min are the normalized values of op.DS
sum of op.DS

min,
respectively, and W is a constant which enhances the contribution of DS

sum with
respect to DS

min.
Finally, the SelectExecutableOperation() procedure selects an opera-

tion according to the probability distribution prob(op).

3.3 Pheromone Models

Pheromone values could be associated directly to the operations, however this
organization does not work well because P-S and MIX operations are present in

A Novel ACO Strategy for the QCC Problem 9

all the feasible solutions (hence their pheromone value would be not significant),
while SWAP operations can be used more times in the same solution. Therefore,
it is necessary to associate a pheromone value to contextualized operations, i.e.
to pairs (op, c), where c is a piece of information, denoting the context where op
is executed.

Using a technique similar to what is done in ACO approaches to scheduling
[14] and to planning [1], pheromone values can be associated to the pairs (op, t),
where op is the operation and t is the start time of op. Pheromone values are
organized as a matrix and the corresponding model is called Time Operation
(TO) model. Hence, in this model the (possible) start time of the operations
is taken into account both in the operation selection phase (equation 5), where
τ(op) is replaced with τ(op, t).

The pheromone values are updated with the following two steps procedure.
Firstly, an evaporation phase is performed, which lowers the value associated

to each operation op and each time step t with the formula

τ(op, t)← (1− ρ)τ(op, t) (6)

where ρ ∈ (0, 1] is a parameter called evaporation rate.
Secondly, the values associated to the best solutions are increased. In QCC-

ACO we decided to reward the best solution found so far (Sbs) or the best
solution found in the current iteration (Sib); the choice of which solution should
be rewarded is made at random, the probability of rewarding Sib is 0.8, while
Sbs is rewarded with probability 0.2.

Let S∗ the solution to reward, the pheromone value of all the operations
op ∈ S∗ is increased with the formula

τ(op, t)← τ(op, t) +
L

mk(S∗)
(7)

where t is the time where op is executed in S∗ and L is constant (in the experi-
ments its value is fixed to 10).

Another pheromone model, based on the TO model, is the Fuzzy Time Op-
eration (FTO) model. In this new model the value of pheromone of a given
operation op is spread around the time steps in the operation selection phase by
fuzzyfing the time step t when the pheromone model is queried. Internally, the
pheromone values are stored and updated in a matrix τ(op, t) as in the TO model.
However, in the the operation selection phase, instead of employing τ(op, t), the
value τw(op, t) is used in (5). This value is computed as the weighted average of
the pheromone values of op at times close to t: t−w, t−w+1, . . . , t+w−1, t+w.

More in detail, τw(op, t) is computed with the following formula:

τw(op, t) =

w∑
h=−w

σ(h)τ(op, t+ h)

where w is the width of the window and

σ(h) =
exp(−h

2

2)∑w
k=−w exp(−k22)

10 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

Fig. 2. Solution of the instance n.8 of the N = 8 benchmark set, with makespan
mk = 31. In the plot, PS gates are depicted in green, SWAP gates in yellow, and MIX
gates in blue.

is the weight for the displacement h = −w, . . . , w. The width w is a parameter
of the model FTO, hence we will denote by FTOw the FTO model where the
width is w.

The difference between TO and FTO can be summarised as follows. Suppose
that the operation op is rewarded as a component of a good solution S∗ and that
op was executed at time t0 in S∗. In the TO model the pheromone value is only
affected at t0, while in FTO also the time steps near t0 can exploit of the value.
The strength of influence of the pheromone value at time t depends on the
difference |t − t0|: the smaller the distance, the higher the influence. A similar
way of using pheromone has already been introduced in [1] (called Fuzzy Level
Action model).

4 Empirical Evaluation

The QCC-ACO algorithm has been implemented in Java standard (OpenJDK,
v.11.0.9.1), without using any external library. In particular, we have used the
Java built-in pseudo random generator. All the experiments were run on an Intel
Xeon E312 machine equipped with 16 GB of RAM.

4.1 Tuning

QCC-ACO has many parameters to be set: α, β, ρ, the modelM of the pheromone
(the choice is among TO and FTOw, for some reasonable values of w), the
number of ants na, W , and L. Some of the parameters, namely na, W , and

A Novel ACO Strategy for the QCC Problem 11

L were chosen after some preliminary runs, resulting that QCC-ACO is not
affected in a sensitive way by the values of those parameters. The choice is
na = 20,W = 10, L = 10.

Hence, we have decided to perform an extensive tuning procedure to find the
best configuration for QCC-ACO in terms of α, β, ρ and M. We have created
5 new instances of the QCC problem for each value of N = 8, 21, 40 only for
the tuning phase, in order to avoid to use the same instances for the tuning
and for the test phases. Both the parameters α and β have been varied in the
set {0, 1, 2, 3, 4}, while the possible values of ρ were 0.1, 0.2, 0.3. Finally, TO
competed against FTO1, . . . , FTO5.

For each parameter configuration, QCC-ACO was run 10 times on the 15
tuning instances, using as termination criterion the time budget of 60 seconds
for the instances with N = 8 and 300 seconds for the other instances.

The results of the tuning phase clearly indicates that the combinations (α =
1, β = 0, ρ = 0.3,M = FTO3) outperformed the others in terms of the average
relative percentage difference. In line with the results obtained in [21], the best
value for β resulted to be 0, i.e. QCC-ACO works better without using the
heuristic function η in the probabilistic operation selection (formula 5). However,
the heuristic function still plays an important role because it is used to prune
the operations to select (see Algorithm 3) and therefore to reduce the branching
factor.

Some preliminary experiments showed that the pruning stage is important
because the performances of QCC-ACO greatly deteriorate if the operation se-
lection works with Ω = Ω′, i.e. if all the eligible operations at the given time t
can be selected.

A second, smaller set of tuning experiments have been conducted in order
to see if some small value of β can improve the QCC-ACO performances. The
parameter β have been varied in the set {0, 14 ,

1
3 ,

1
2}, while the other parameters

have been fixed to the value of the best configuration. The second experiment
confirmed that β = 0 is the best choice. Among the pheromone values, all the
fuzzified versions of TO outperformed the crisp model TO, confirming that the
fuzzification of TO works better. In particular, the best value for the width w is
3, which is an intermediate value among all the possible value for that parameter.
Hence, we decided to adopt in the test phase the configuration (α = 1, β = 0, ρ =
0.3,M = FTO3).

4.2 Results

QCC-ACO has been tested on the 150 instances of the QCC problem (50 in-
stances for each size N = 8, 21, 40) with u = 1.0 and P = 2. The termination
criterion used in our experiments is the same that has been used in [5]: all runs
for the N = 8 instances were limited to 60 seconds, while for the N = 21
and N = 40 instances all runs were limited to 300 seconds. For each instance
QCC-ACO has been executed 10 times.

The results are depicted in Table 1, where the average value of the makespan,
the standard deviation and the best value obtained by QCC-ACO are listed. The

12 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

Fig. 3. Left: solution of the instance n.24 of the N = 40 benchmark set, with makespan
mk = 61. Right: average plot of convergence times on 10 runs, the shaded area shows
95% confidence interval.

A Novel ACO Strategy for the QCC Problem 13

Table 1. Experimental results for all benchmarks

N = 8 N = 21 N = 40
Avg. SD Best Best Avg. SD Best Best Avg. SD Best Best

Inst ACO ACO ACO RH ∆ ACO ACO ACO RH ∆ ACO ACO ACO RH ∆

1 35.0 0.0 35 35 0 48.2 0.4 48 49 -1 61.6 1.9 58 65 -7
2 34.0 0.0 34 36 -2 50.3 0.5 50 50 0 65.8 2.3 62 74 -12
3 32.0 0.0 32 31 1 44.1 1.7 41 42 -1 63.6 1.6 61 71 -10
4 33.0 0.0 33 32 1 43.2 0.6 42 44 -2 69.1 3.2 65 74 -9
5 27.0 0.0 27 27 0 47.4 0.7 46 52 -6 71.4 2.3 68 78 -10
6 34.0 0.0 34 35 -1 48.9 0.3 48 50 -2 72.4 1.9 69 81 -12
7 32.0 0.0 32 31 1 53.9 0.9 52 55 -3 73.2 3.4 66 79 -13
8 32.6 0.7 31 34 -3 48.5 0.8 47 49 -2 65.6 1.0 64 68 -4
9 35.0 0.0 35 35 0 50.4 0.8 49 54 -5 67.0 1.2 65 66 -1
10 38.0 0.0 38 38 0 53.5 1.4 50 54 -4 70.9 1.4 69 80 -11
11 38.0 0.0 38 38 0 44.6 0.8 44 47 -3 63.0 2.1 61 68 -7
12 35.0 0.0 35 33 2 53.3 0.5 53 56 -3 69.5 2.9 66 74 -8
13 32.0 0.0 32 32 0 44.0 0.0 44 43 1 60.2 3.2 56 62 -6
14 32.0 0.0 32 32 0 46.2 0.6 46 46 0 69.8 3.0 66 74 -8
15 34.0 0.0 34 35 -1 43.5 1.3 43 46 -3 68.7 2.8 64 78 -14
16 32.0 0.0 32 32 0 57.6 0.5 57 57 0 68.2 1.8 66 77 -11
17 37.0 0.0 37 36 1 51.6 0.5 51 50 1 71.7 1.9 68 78 -10
18 30.0 0.0 30 29 1 54.5 1.4 52 54 -2 75.9 3.1 71 79 -8
19 32.0 0.0 32 32 0 52.6 1.1 51 56 -5 62.8 2.1 60 70 -10
20 31.2 0.4 31 31 0 50.3 0.7 49 50 -1 73.1 1.4 71 78 -7
21 28.1 0.3 28 27 1 50.3 0.5 50 51 -1 66.3 1.1 64 77 -13
22 40.0 0.0 40 39 1 51.0 0.0 51 54 -3 65.1 1.8 62 76 -14
23 36.0 0.0 36 35 1 49.0 0.0 49 48 1 58.9 1.5 57 63 -6
24 33.0 0.0 33 32 1 49.3 1.1 48 50 -2 65.4 2.5 61 80 -19
25 37.2 0.4 37 38 -1 50.9 0.3 50 50 0 66.7 1.7 65 71 -6
26 29.0 0.0 29 29 0 44.0 0.0 44 46 -2 67.2 1.6 63 81 -18
27 34.0 0.0 34 34 0 59.7 1.3 58 61 -3 68.6 3.1 63 81 -18
28 32.0 0.0 32 32 0 45.8 0.8 45 47 -2 72.2 1.5 69 88 -19
29 36.0 0.0 36 35 1 46.5 0.5 46 47 -1 63.7 1.4 62 77 -15
30 31.0 0.0 31 31 0 52.9 1.0 51 53 -2 64.1 1.9 62 72 -10
31 33.0 1.1 32 32 0 51.0 0.7 50 52 -2 66.7 2.3 64 69 -5
32 36.0 0.0 36 35 1 46.3 0.5 46 52 -6 56.4 1.5 53 62 -9
33 40.0 0.0 40 42 -2 50.0 0.0 50 52 -2 64.6 1.3 63 73 -10
34 33.0 0.0 33 35 -2 53.1 1.3 51 51 0 62.2 1.6 59 68 -9
35 35.0 0.0 35 38 -3 46.6 0.8 45 45 0 64.1 2.4 59 70 -11
36 29.0 0.0 29 28 1 51.1 0.9 50 49 1 72.0 2.8 68 80 -12
37 36.0 0.0 36 35 1 51.2 0.4 51 51 0 65.2 2.4 62 73 -11
38 30.0 0.0 30 29 1 52.4 0.5 52 53 -1 60.7 1.5 58 72 -14
39 29.0 0.0 29 30 -1 48.8 1.0 47 50 -3 72.3 2.5 69 82 -13
40 38.0 0.0 38 37 1 51.3 0.5 51 48 3 65.7 2.0 64 69 -5
41 34.0 0.0 34 35 -1 49.0 1.6 47 49 -2 70.8 1.8 68 76 -8
42 33.0 0.0 33 33 0 49.9 0.7 49 50 -1 62.1 1.4 60 65 -5
43 32.0 0.0 32 32 0 45.2 1.0 44 47 -3 63.4 1.5 61 72 -11
44 39.0 0.0 39 39 0 48.2 0.9 47 47 0 65.6 2.8 62 68 -6
45 36.9 0.3 36 38 -2 45.6 0.7 44 40 4 68.4 2.5 64 69 -5
46 33.0 0.0 33 34 -1 41.4 0.7 40 42 -2 63.5 2.3 59 78 -19
47 36.0 0.0 36 38 -2 47.7 0.5 47 52 -5 72.1 3.3 66 78 -12
48 32.0 0.0 32 33 -1 45.0 0.0 45 43 2 66.4 2.4 63 75 -12
49 38.0 0.0 38 36 2 55.0 0.9 53 54 -1 69.3 2.3 67 73 -6
50 31.0 0.0 31 30 1 50.7 0.7 49 53 -4 69.6 1.4 67 74 -7

columns labelled Best RH contain the best values obtained in [5] through their
Rollout heuristic. The columns labelled∆ show the difference between our results

14 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

and those of our competitor. The best results obtained from either procedure
are shown in bold.

For N = 8, QCC-ACO outperformed the Rollout heuristic (RH) in 14/50
instances, obtained the same result in 18/50 instances, and was beaten in 18/50
instances. The Wilcoxon signed rank test on QCC-ACO results against the RH
results does not show any significant difference, because its p-value is large
(0.2031). Despite in the N = 8 benchmark there is no clear winner, it is in-
teresting to note that the average improvement obtained by ACO over RH on
the improved solutions (∆ column) is equal to 1.64, versus an average worsening
of 1.11. It is also interesting to see that, in 44 instances, QCC-ACO produced the
same or equivalent solutions in all the 10 executions, as the standard deviation
is 0.

For N = 21, QCC-ACO outperformed the Rollout heuristic in 35 instances,
in only 7 instances QCC-ACO was outperformed by its competitor, while in
the remaining 8 instances there was a tie. The average improvement obtained
by ACO over RH on the improved solutions is equal to 2.60, versus an average
worsening of 1.85. In this case, the Wilcoxon signed rank test has a very small
p-value (3.887 · 10−9), hence the results of QCC-ACO are significantly better
than those of RH.

The most impressive results were obtained for N = 40: in all 50 instances
QCC-ACO found better solutions than the Rollout heuristic. In particular, the
largest value of ∆ was −19, obtained in three instances; remarkably, the average
improvement obtained by ACO over RH is equal to 12.12. It is worth to notice
that in all the instances except the instance #9, also the average makespans
obtained by QCC-ACO are better than the best values obtained by the Rollout
heuristic. As expected, also the p-value of Wilcoxon signed rank test is even
smaller than the case of N = 21, i.e. 8.277 · 10−10.

Figure 2 shows the plot of the solution of problem instance n.8 belonging
to the N = 8 benchmark set, while Figure 3 shows the plot of the solution of
problem instance n.24 belonging to the N = 40 benchmark set (left), together
with a graph of the average convergence times obtained on the 10 runs (right).
Despite the descending trend shows the first signs of a plateau, there is still some
room for a further solution improvement should the time limit of 300 seconds be
increased.

5 Concluding Remarks and Future Work

In this work, we propose a novel Ant Colony Optimization (ACO) algorithm for
the realization (compilation) of nearest-neighbor compliant quantum circuits.
In particular, our ACO algorithm (QCC-ACO) introduces a novel pheromone
model and leverages a heuristic-based priority rule inspired by the priority rules
proposed by [17, 5] in the recent literature to control the iterative selection of
quantum gates to be inserted in the solution.

Table 1 reports the overall and direct comparison of our ACO approach with
the state-of-the-art represented, to the best of our knowledge, by the experimen-

A Novel ACO Strategy for the QCC Problem 15

tal results proposed in [5]. According to our experimental results, QCC-ACO
scales quite well on the size of the QCC problem (N = 8, 21, 40): overall, QCC-
ACO was able to produce a total of 99 better solutions out of the considered
150 QCC instances; in particular, for N = 40, QCC-ACO improved over all the
given 50 instances.

The priority rule used in [5] extends the one proposed in [17], using a gate
selection strategy targeted at minimizing the insertion of SWAP gates, based on
(i) the DS

sum and DS
min values, and on (ii) an increasing value of start time t used

as a scheduling criterion for iteratively inserting the operations in the solution.
It is therefore reasonable to conjecture that the reasons of the better perfor-
mance of [5] with respect to those obtained in [17] may reside on both previous
components. In the future, it would be very interesting to perform an analysis
to determine which component plays the leading role in such improvement.

Three further possible directions of future work are also worth being pur-
sued: the first one is to apply our ACO algorithm to the case of QCC problems
with cross-talk constraints [3]; the second one is to explore the feasibility of our
evolutionary approach to the case of compilation of a quantum algorithms for
graph coloring [8]; finally, the current ACO version may be further improved
with local search procedures, though an efficient local search implementation for
the QCCP seems to require a careful and not straightforward design.

References

1. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Experimental evalua-
tion of pheromone models in acoplan. Annals of Mathematics and Artificial
Intelligence 62(3), 187–217 (2011). https://doi.org/10.1007/s10472-011-9265-7,
https://doi.org/10.1007/s10472-011-9265-7

2. Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony
optimization for permutation problems. In: Simulated Evolution and Learn-
ing - 11th International Conference, SEAL 2017, Shenzhen, China, Novem-
ber 10-13, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10593, pp. 960–971. Springer (2017). https://doi.org/10.1007/978-3-319-68759-
9 79, https://doi.org/10.1007/978-3-319-68759-9 79

3. Booth, K.E.C., Do, M., Beck, C., Rieffel, E., Venturelli, D., Frank, J.: Comparing
and Integrating Constraint Programming and Temporal Planning for Quantum
Circuit Compilation. In: Proceedings of the 28th International Conference on Au-
tomated Planning & Scheduling, ICAPS-18. pp. 366–374 (2018)

4. Brierley, S.: Efficient implementation of quantum circuits with limited qubit
interactions. Quantum Info. Comput. 17(13-14), 1096–1104 (Nov 2017),
http://dl.acm.org/citation.cfm?id=3179575.3179577

5. Chand, S., Singh, H.K., Ray, T., Ryan, M.: Rollout based heuristics for the quan-
tum circuit compilation problem. In: 2019 IEEE Congress on Evolutionary Com-
putation (CEC). pp. 974–981 (2019)

6. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev.
Lett. 74, 4091–4094 (May 1995). https://doi.org/10.1103/PhysRevLett.74.4091,
https://link.aps.org/doi/10.1103/PhysRevLett.74.4091

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, second edn. (2001)

16 Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

8. Do, M., Wang, Z., O’Gorman, B., Venturelli, D., Rieffel, E., Frank, J.: Planning for
compilation of a quantum algorithm for graph coloring. ArXiv abs/2002.10917
(2020)

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, USA (2004)
10. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization al-

gorithm. arXiv preprint arXiv:1411.4028 (November 2014)
11. Guerreschi, G.G., Park, J.: Gate scheduling for quantum algorithms. arXiv preprint

arXiv:1708.00023 (July 2017)
12. Hart, J., Shogan, A.: Semi-greedy heuristics: An empirical study. Operations Re-

search Letters 6, 107–114 (1987)
13. Herrera-Mart́ı, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic

implementation for the topological cluster-state quantum computer. Phys.
Rev. A 82, 032332 (Sep 2010). https://doi.org/10.1103/PhysRevA.82.032332,
https://link.aps.org/doi/10.1103/PhysRevA.82.032332

14. Merkle, D., Merkle, M., Schmeck, H.: Ant colony optimization for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Computation
6(4), 333–346 (2002)

15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edn. (2011)

17. Oddi, A., Rasconi, R.: Greedy randomized search for scalable compilation of quan-
tum circuits. In: van Hoeve, W.J. (ed.) Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. pp. 446–461. Springer Interna-
tional Publishing, Cham (2018)

18. Rasconi, R., Oddi, A.: An innovative genetic algorithm for the quantum circuit
compilation problem. In: Proceeding of the Thirty-Third Conference on Artificial
Intelligence AAAI-2019. pp. 7707–7714. AAAI Press (2019)

19. Resende, M.G., Werneck, R.F.: A hybrid heuristic for the p-
median problem. Journal of Heuristics 10(1), 59–88 (Jan
2004). https://doi.org/10.1023/B:HEUR.0000019986.96257.50,
https://doi.org/10.1023/B:HEUR.0000019986.96257.50

20. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC). pp. 1–6 (Oct 2016). https://doi.org/10.1109/ICRC.2016.7738703

21. Stützle, T.: An ant approach to the flow shop problem. In: Proceedings of the
6th European Congress on Intelligent Techniques & Soft Computing, EUFIT-98,
Aachen, Germany. pp. 1560—-1564 (1998)

22. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Temporal planning for
compilation of quantum approximate optimization circuits. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17. pp. 4440–4446 (2017). https://doi.org/10.24963/ijcai.2017/620,
https://doi.org/10.24963/ijcai.2017/620

23. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D.,
Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys.
Rev. A 87, 022306 (Feb 2013). https://doi.org/10.1103/PhysRevA.87.022306,
https://link.aps.org/doi/10.1103/PhysRevA.87.022306

