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Abstract. Electronic design automation toolchains require solving various circuit manipu-
lation problems, such as floor planning, placement and routing. These circuits may be im-
plemented using either Very Large-Scale Integration (VLSI) or Field Programmable Gate
Arrays (FPGAs). However, with the ever-increasing size of circuits, now up to billions of
gates, straightforward approaches to these problems do not scale well. A possible approach
to reduce circuit complexity is to cluster circuits, to reduce their apparent size for critical
processing operations, while preserving their topological properties (e.g., connection locality).
Several models have been proposed to tackle the clustering problem [9]. In this work, we
consider the problem of clustering combinatorial circuits, without cell replication. Our main
objective is to minimize the overall delay, which conditions the circuit operating frequency.
We propose a dedicated clustering algorithm based on binary search and study and improve
the existing parameterized approximation ratio from M2+M [9] (with M being the maximum
size of each cluster) to M under specific hypothesis. We present an extension of the weighting
schemes introduced in [23] to model path length more accurately. This weighting scheme is
combined with clustering methods based on a recursive matching algorithm. We evaluate and
compare our approximation algorithm and recursive matching on several circuit instances and
we obtain better results for a large number of instances with our algorithm than recursive
matching.

Keywords: Clustering · Hypergraph · Digital electronic circuit.

1 Introduction

Our research interest concerns circuit prototyping on multi-FPGA platforms, to map efficiently
circuits that are too big to fit into a single FPGA. In this case, it is necessary to partition the circuit
into several parts that have to be placed on the different components (i.e., FPGAs) of the platform.
Traditional partitioning tools use a classic multilevel scheme consisting of three phases: coarsening,
initial partitioning, and refinement [14]. The coarsening phase uses recursively a clustering method
to transform the circuit model, a hypergraph, into a smaller one. During the second phase, an initial
partitioning is computed on the smallest coarsened hypergraph. Finally, in the third phase, for each
coarsening level, the solution for the coarser level is extended to the finer level, and then refined
using a local refinement algorithm. The clustering algorithms presented in this paper concern the
first step of the multilevel framework described above.
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In addition, the increasing size of high-end circuits makes them more challenging to handle.
Combinatorial circuit clustering helps reduce the size of circuits, making them easier to manage.
Several such clustering algorithms already exist in the literature; Z. Donovan [7] defines two classes
to categorize them: CA and CN. CA algorithms aim at finding clustering of circuits that minimize
signal propagation delay, while allowing logic replication (see e.g. [18–20,22]). On the opposite, CN
algorithms compute clustering that minimize circuit delay without cell replication (see e.g. [9,13]).

An optimal solution for the CA problem can be computed in polynomial time. However, un-
bounded replication can yield very large circuits [18, 22]. In the context of circuit placement on
multi-FPGA platforms, the number of resources is limited. Thus, it is necessary to perform either
a disjoint clustering, or to bound the number of replications. In this work, we focus on the CN
problem.

The remainder of the paper is organized as follows. Section 2 presents the notations, definitions,
and previous works on CN. We introduce our weighting scheme for clustering in Sections 3. In Sec-
tion 4, we introduce our clustering algorithms and complexity results. Our experiments are outlined
in Section 5. We conclude and give perspectives in Section 6.

2 Preliminaries

Combinatorial circuits are often modeled as directed hypergraphs, i.e., a generalization of directed
graphs in which the notion of arc is extended to that of hyperarc. A hyperarc can connect one
or more source vertices to one or more sink vertices. In a combinatorial circuit, a net (or wire)
can connect more than two gates, and there is usually a single signal source per net. Hence, we
consider only hyperarcs that comprise a single source vertex. Several works rely on a graph model
to represent combinatorial circuits, such as: [9, 10, 13, 19, 20, 22]. While this model is relevant to
represent dependencies between outputs and inputs of gates, it is not adequate to evaluate the
number of cut wires and does not model critical path [23]. Consequently, in this work, we will
represent circuits using a Directed Acyclic Hypergraph (DAH) model [23] to measure and control
the size of the cut, while also relying on an underlying graph model to compute clustering scores
between gates and solve the CN problem without considering the number of cut hyperarcs.

2.1 Notations and definitions

Let H
def
= (V,A,WV ,Wa) be a directed hypergraph, defined by a set of vertices V and a set

of hyperarcs A, with a vertex weight function WV : V → R+ and a hyperarc weight function
Wa : A −→ R+. Every hyperarc a ∈ A is a subset of vertex set V : a ⊆ V . Let s−(a) be the source
vertex set of hyperarc a, and s+(a) its sink (destination) vertex set. We consider each hyperarc has
a single source, so ∀a, |s−(a)| = 1. As hyperarcs connect vertices, let Γ (v) be the set of neighbor
vertices of vertex v, and Γ−(v) ⊆ Γ (v) and Γ+(v) ⊆ Γ (v) the sets of its inbound and outbound
neighbors, respectively.

In the model we propose, hypergraphs that model circuits will be represented as sets of inter-
connected DAHs, according to a red-black vertex coloring scheme. Red vertices correspond to I/O
(Inputs/Outputs) ports and registers, and black vertices to combinatorial circuit components. Let
V R ⊂ V and V B ⊂ V be the red and black vertex subsets of V , such that V R ∩ V B = ∅ and
V R ∪V B = V . A hypergraph or sub-hypergraph H is a DAH iff its red vertices vR ∈ V R are either
only sources or sinks (i.e., Γ−(vR) = ∅ or Γ+(vR) = ∅), and no cycle path connects a vertex to
itself.
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Fig. 1: Hypergraph composed of two 2 DAHs.

Using this definition, we can represent circuit hypergraphs as red-black hypergraphs, i.e., sets of
DAHs that share some of their red vertices, as illustrated in Figure 1. Let H(V,A)

def
= {Hi, i ∈

{1 . . . n}} be a red-black hypergraph, such that every Hi is a DAH and an edge-induced sub-
hypergraph of H. Consequently, V =

⋃
i Vi, A =

⋃
i Ai, VR =

⋃
i V

R
i , and VB =

⋃
i V

B
i . Moreover,

∀i, j with i ̸= j, if Vi,j = Vi ∩ Vj ̸= ∅, then Hi and Hj share source and/or sink vertices, i.e.,
Vi,j ⊂ VR.

In this model, the paths in H to consider when addressing the objective of minimizing path-cost
degradation during partitioning are only the paths interconnecting red vertices, as these red-red
paths represent register-to-register paths in digital electronic circuits. Since only red vertices are
shared between DAHs in H, red-red paths only exist within a single DAH and can never span across
several DAHs.

Let us define P as the set of red-red paths in H, such that P
def
= {p|p is a path in H ∈ H}.

From these paths and a function dmax(u, v) which computes the maximum distance between ver-
tices u and v of some DAH H, we can define the longest path distance for H as: dmax(H)

def
=

max(dmax(u, v)|u, v ∈ H) and, by extension, for H, as: dmax(H)
def
= max(dmax(H)|H ∈ H).

A clustering C of H is a splitting of V into vertex subsets Ci, called clusters, such that:

(i) all clusters Ci, given a capacity bound M , respect the capacity constraint:
∑

v∈Ci
WV (v) ≤ M ;

(ii) all clusters are pairwise disjoint: ∀i ̸= j, Ci ∩ Cj = ∅ ; and
(iii) the union of all clusters is equal to V:

⋃
i Ci = V.

For a given clustering C of H, the connectivity λC(a) of some hyperarc a ∈ A is the number of
clusters connected by a. If λC(a) > 1, then a is said to be cut; otherwise, it is entirely contained
within a single cluster and is not cut. The cut of clustering C is the set ω(C) of cut hyperarcs,
i.e., ω(C) def

= {a ∈ A, λC(a) > 1}. The cut size is defined as fc
def
=

∑
a∈ω(C) Wa(a). If all hyperarcs

have the same weight (equal to 1), the cut size equals to |ω(C)|. Another cut metric used by
some partitioning tools to measure the quality of clustering is called connectivity-minus-one [3].
The connectivity-minus-one cost function fλ of some clustered hypergraph HC is defined as: fλ =∑

a∈A(λC(a)− 1)×Wa(a).

2.2 Related works

Clustering algorithms are essential for partitioning large graphs and hypergraphs. Since its in-
ception, the multilevel scheme has been the most efficient and widely used method for clustering
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large hypergraphs. Indeed, all modern partitioning tools implement methods based on the multi-
level scheme. At their core, clustering algorithms reduce the size of the hypergraph by contracting
vertices according to a matching function. Several functions have been developed to evaluate the
quality of vertex merging.

Hypergraph clustering B. Hendrickson and R. Leland [11] propose a randomized matching al-
gorithm. The algorithm randomly traverses the vertices, and, if the visited vertex is not matched, a
neighbor is randomly selected. The random aspect of the algorithm allows it to compute a solution
quickly, making it practical for large instances. Another clustering algorithm used for the coars-
ening phase is called a heavy edge matching. Heavy edge matching is an algorithm that randomly
visits the graph vertices. If the visited vertex is not already coupled, the algorithm selects a not yet
selected neighbor connected by an edge of heaviest weight. G. Karypis and V. Kumar [16] compare
the randomized matching and heavy edge matching during algorithms coarsening and conclude that
the heavy edge matching algorithm provides partitions with better quality and reduces computa-
tion time during the refinement stage. Ü. Çatalyürek and Ç. Aykanat [2] proposed an algorithm
based on heavy-connectivity matching, that favors merging vertices with highest connectivity. The
connectivity metric used is also known as the inner product. The inner product between two vertices
is defined as the number of hyperedges shared by these two vertices. T. Heuer and S. Schlag [12]
propose a framework for hypergraph coarsening based on the exploitation of community structures
in graphs. Their experimental results show that their coarsening method improves the initial par-
titioning cutsize as well as the final cutsize. Readers can consult the recent survey published by Ü.
Çatalyürek et al. [3] for more information on coarsening/clustering methods applied to graphs and
hypergraphs.

Circuit clustering when replication is not allowed A. A. Diwan et al. [6] address a similar
problem, consisting in placing nodes of a memory access structure on disk pages such that a path
through several nodes traverses as few disks as possible. Their data structure is a DAG, and their
objective is to cluster the DAG such that the number of shared edges per cluster along a path is
minimized. The problem is similar to the unweighted case of the CN problem. The authors also
present a polynomial-time algorithm for trees, and show that the problem is NP-hard for unweighted
DAGs.

More recently, Z. Donovan et al. [8–10] have studied the combinatorial circuit clustering problem,
with and without vertex replication. They propose several algorithms to solve this problem. The
authors present NP-hardness proofs for the DAG circuit clustering problem with minimization of
critical path degradation during the clustering step, e.g., minimization of the number of cut penal-
ties along the most critical paths. They propose exact exponential algorithms and approximation
algorithms parameterized by cluster size. Further details of this work can be found in Z. Donovan’s
thesis [7]. Other work on combinatorial circuit clustering to minimize critical path degradation by
placing neighboring vertex pairs in different clusters are availables [4, 20].

3 Model and weighting schemes

Criticality is a metric used in [1, 3, 23], to classify the cells of a circuit according to the cost of the
combinatorial path they traverse. The criticality of a vertex v is equal to the length of the longest
path traversing v, dmax(v). In this section, we present the various state-of-the-art weighting schemes
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used to measure vertex criticality. We propose a new weighting scheme that models more finely the
criticality per vertex pair which we use to cluster red-black hypergraphs.

3.1 Model

In the CN problem, an additional constant cost D is added between two neighboring vertices placed
in different clusters. Consequently, in our model, the distance between any two vertices u and v (i.e.,
path cost) may increase during clustering, due to the additional cost that paths have to incur across
clusters. Let us recall that the distance function between two vertices in a red-black hypergraph is
defined by dmax(u, v) which is equal to the longest path between u and v. Let D be the penalty
associated with the distance between two vertices u and v placed in different clusters; let us recall
that the distance function for some clustering C, is thus:

dCmax(u, v) ≥ dmax(u, v) +D . (1)

The objective function fp is defined as the minimization of the longest path of H subject to clustering
C: fp = min dmax(H

C). We extend the definition of the CN<w,M,∆> problem defined by Z.
Donovan et al. [7] to red-black hypergraphs as follows:

Given a red-black Hypergraph H = (V,A), with a vertex-weight function w : V → R+,
delay function d : V → R+, maximum degree ∆, constant D, and a cluster capacity M , the
goal is to partition V into clusters such that: (i) the weight of each cluster is bounded by
M ; and (ii) the maximum delay-length of any red-red path of H is minimized.

To be consistent with previous definitions of the CN problem, we will keep the ∆ parameter, even
though we will not use it in the following.

3.2 Weighting schemes

As we exposed in the previous section, the criticality of a vertex v measures the value of the longest
path through v. Consequently, criticality seems to be an interesting weighting scheme for measuring
the attractiveness between two connected vertices. In this subsection, we present three weighting
schemes used to guide a clustering algorithm in the context of circuit partitioning with path cost
minimization. First, we present the state of the art in weighting schemes and show their limitations.
Then, we present our weighting scheme based on vertex criticality.

Delay propagation Several previous works have proposed metrics for clustering, with the objec-
tive of path minimization [1, 3]. For example, C. Ababei et al. [1] presented a weighting scheme
based on delay propagation to drive min-cut tools, i.e., the weight between two vertices u and v is
equal to the longest path from a red source vertex to vertices u and v. This method calculates local
weights along subpaths from red source vertices to any vertex. Thus, within each DAH, H = (V,A)
of H:

l(u) =

d(u) if Γ−(u) = ∅ ,

d(u) + max
v∈Γ−(u)

l(v) otherwise . (2)
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For any vertex u ∈ V , the value l(u) corresponds to the maximum path cost from any source
vertex to u. Therefore, the maximum path cost within some DAH will be found at the level of its
sink vertices. A calculation on the subpath does not indicate whether their subpath is on the critical
path. Cutting anywhere along a path has the same detrimental effect as adding a penalty to the
total path cost. It is to alleviate these issues that the next metric have been made.

Delay retro-propagation As critical vertices must be labeled with the same weight, the delay
propagation scheme is not adequate. Hence, we have first devised a new weighting scheme based on
the back-propagation of path cost:

r(u) =

l(u) if Γ+(u) = ∅ ,

max
v∈Γ+(u)

r(v) otherwise . (3)

For any u ∈ V , the value r(u) represents an upper bound for the path cost of the longest red-red
path traversing u. If u belongs to a path of maximum path cost, then r(u) is equal to that path
cost.

This weighting scheme accounts better for the overall impact of the cut along a path because,
unlike the previous method, the information is back-propagated to all predecessors. However, it
may include heavy vertices that do not belong to a longest red-red path, as shown in Figure 2. To
overcome this problem, we need to define the value of the local critical path through each pair of
vertices. For this reason, we have proposed a second weighting system in the next subsection.

Refined delay retro-propagation In this subsection, we present a weighting scheme based on
the cost of the local critical path. This scheme retro-propagates critical information throughout the
red-black hypergraph and avoids non-critical heavy vertices. The l, r, and r∗ metrics are used as
weighting schemes, as represented in Figure 2.

1

1

2

3

432 5

5

5

5

Weighting scheme Weighting scheme

5

3

4

4

Weighting scheme

5 5 5 5 5 5 5 5

4

Fig. 2: An example of the three weighting schemes: l [1], r, and r∗. We consider a unit delay for each
vertex and a delay equal to zero for each arc. In this example, we can clearly see that scheme l does
not effectively weight critical vertices. Scheme r weights critical vertices correctly, but considers
non-critical vertices. Scheme r∗ is more relevant in its weighting, with respect to our objective.

Let r∗(u, v) be the criticality value between connected vertices u and v, defined as follows:

r∗(u, v) =

l(u) if u = v ,

r(v)−
(

max
u′∈Γ−(v)

l(u′)− l(u)

)
otherwise .

(4)
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maxu′∈Γ−(v) l(u
′) represents the value of the arcs along the local critical path, which is the

longest red-red path traversing v such that, for every other l(u) < max∀u′∈Γ−(v) l(u
′), arcs (u, v)

are not in the local critical path. It is a more accurate metric for improving the behavior of clustering
algorithms because, in the context of circuit clustering, the aim is to group critical vertices together.
If the relationships between vertices reflect correctly criticality, then the clustering algorithm can
take advantage of this. An example of the computation of r∗ is represented in Figure 3.

Fig. 3: This figure exhibits an example of schemes and how r∗ is computed. r∗(ui, x) and r∗(x, vi)
are the values of the local critical path between pairs of vertices (ui, x) and (vi, x) in this subgraph.
There is a maximum value for each l(ui), w. For each ui, w − l(ui) represents the contribution of
ui to the local critical path value r(x) = max

vi∈Γ+(x)
r∗(x, vi).

For each combinatorial sub-circuit modeled with a DAH, the r∗ vertex-vertex criticality relation
defines a graph G such that G is a DAG and is simple. Every hyperarc in the DAH defines a group
of arcs in the DAG, in which each arc connecting the source vertex to a sink vertex. The cut weight
of arcs correspond to the r∗ value between source and sink in arcs. Hence, the cut weight of this
hyperarc is the maximum of the r∗ values between its source and sinks. We will use the criticality
relation graph structure G in the next section to do proofs.

4 A parameterized M-approximation algorithm for red-black
hypergraph clustering

Since the clustering problem is NP-hard and there is no approximation algorithm with a constant
factor in the general case, approximation algorithms have been proposed to provide acceptable
solutions in reasonable time, such as the parameterized M2+M approximation algorithm presented
by Z. Donovan et al. [10]. We propose an improved approximation ratio under delay hypothesis and
a direct clustering algorithm based on binary search.

4.1 Binary Search Clustering (BSC)

Let H = (V,A) be a DAH, and pmax its critical path. Let ϕ be a feasible minimum cost, ϕ ∈
[|pmax|×d, |A|×D], with D the inter-cluster delay and d the intra-cluster delay. Given a fixed value
ϕ, we can define a cut capacity for each pair of vertices (u, v) as:

cut_cap(u, v) =
max(0, r∗(u, v)− ϕ)

D
. (5)
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Suppose the cut capacity between two vertices u and v equals zero. Then, u and v should be
placed in the same cluster. As the size of the cluster is constrained by the parameter M , it is possible
to know whether some ϕ is unfeasible, by exceeding some cluster size.

Algorithm 1 Binary Search Clustering
Require: H,M,D, d
Ensure: C a clustering of H
1: ϕ← |A| ×D
2: ϕ← |pmax| × d, pmax ∈ H

3: while ϕ > ϕ do

4: ϕtarget ←
ϕ+ϕ

2

5: ▷ Compute the cut capacity for every pair (uv) =
max(0,r∗(u,v)−ϕtarget)

D
and for all pair with cut

capacity equal to zero, place u and v into the same cluster.
6: C ←fusion_cut_cap(H,ϕtarget,max_size)
7: if max

c∈C
|c| ≤M then

8: ϕ← ϕtarget

9: else
10: ϕ← ϕtarget

11: end if
12: end while
13: Try to cluster yet unclustered vertices by looping over hyperarcs.
14: return C

Lemma 1. The binary search clustering runs in O(m · log(m)), with m being the number of arcs
(r∗(u, v) relations).

Proof. Algorithm 1 contains a while loop that will perform at most log(m) iterations. Lines 1 and 2
of the algorithm define the lower and upper bounds of the binary search. Even if the hypergraph is
a path, i.e., if the lower bound is equal to m and the upper bound is equal to m2, the number of
iterations of the while loop will be in O(log(m2)), which does not change the order of complexity.

Line 6 calls a procedure that works in O(m). Indeed, the procedure computes the cut capacity
of every arc and merges every pair of vertices with a cut capacity equal to zero. In line 10, to cluster
the remaining unclustered vertices connected by arcs with non-negative cutting capacity, BSC calls
a O(m) procedure which loops over hyperarcs and works as follow: for each hyperarc, try to cluster
yet unclustered vertices with other vertices in the hyperarc. Hence, the complexity of this algorithm
is in O(m · log(m)).

The algorithm presented by Z. Donovan [7] has a complexity in O(2∆·M + |V |O(1)) time. For a
sufficiently large M , this algorithm can become impractical. The BSC algorithm has a complexity
in O(m · log2(m)), which is more attractive in practice. Also, circuit instances are relatively sparse,
that is, m is not higher than the number of vertices.

Theorem 1. The binary search clustering is an M -approximation algorithm for CN<[w],M,∆>
when |pmax| × d > D, D ≫ d and D

d ≤ M , with pmax the critical path, d an intra-cluster delay, D
an inter-cluster delay and M the maximum size of clusters.
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Proof. Let H = (V,A) be a DAH, and G = (V,A) be its corresponding r∗-weighted DAG. Let
|pmax| be the longest path in H. As each vertex have a weight w, we will consider that w = 1. Let
Sol∗(H) be the optimal solution for a vertex-set clustering of H, an intra-cluster delay d, and an
inter-cluster delay D, such that D ≫ d and D

d ≤ M .

Sol∗(H) ≥
(⌈

|pmax|
M

⌉
− 1

)
×D +

(
|pmax| − 1−

(⌈
|pmax|
M

⌉
− 1

))
× d . (6)

Let pmax the critical path; we suppose |pmax| × d > D. Hence, we obtain:

|pmax| × d−D > 0 . (7)

In many cases, the propagation time of a circuit’s critical path is longer than the time it takes to
transfer a signal from one FPGA to another. However, there are circuits for which this is not true,
although they are very few. Therefore, this proof applies only to circuits that satisfy the equation 7.

The BSC algorithm groups vertices using a direct approach based on cut capacity. This makes it
more practical than a recursive coupling approach. Let Solbsc(H) be the solution produced by our
algorithm BSC, presented as Algorithm 1. It can be bounded by the worst solution. A worst-case
solution is one in which each vertex forms a cluster. Hence, we have:

Solbsc ≤ (|pmax| − 1)×D . (8)

Then, the approximation ratio is defined by:

Solbsc(H)

Sol∗(H)
≤ (|pmax| − 1)×D(⌈

|pmax|
M

⌉
− 1

)
×D +

(
|pmax| − 1−

(⌈
|pmax|
M

⌉
− 1

))
× d

. (9)

Let us calculate the approximation ratio for |pmax| > M and |pmax| ≤ M .
In the case when |pmax| > M :⌈

|pmax|
M

⌉
=

|pmax|+ (M + r)

M
. (10)

By applying equation 10, we obtain:

Solbsc(H)

Sol∗(H)
≤ (|pmax| − 1)×D

(|pmax| − r)×D + (M − 1)× |pmax| × d− (M − r)× d
.

By applying equation 7, we obtain:

Solbsc(H)

Sol∗(H)
≤ M

(|pmax| − 1)×D

(|pmax| − r +M − 1)×D − (M − r)× d
.

Let us study the positivity of the expression DM −Dr − (M − r)d, we obtain:

DM −Dr > (M − r)d = DM −Dr − (M − r)d > 0 . (11)

By applying equation 11, we obtain:

Solbsc(H)

Sol∗(H)
≤ M .
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In the case when |pmax| ≤ M , we have :⌈
|pmax|
M

⌉
= 1 . (12)

By applying equation 12 to equation 9, we obtain:

(|pmax| − 1)×D

(|pmax| − 1)× d
.

Since we have D
d ≤ M , we obtain:

(|pmax| − 1)×D

(|pmax| − 1)× d
=

D

d
≤ M .

Hence, parameterized approximation ratio is M for CN<[w],M,∆> under the condition spec-
ified in the theorem 1. In the general case, the ratio remain M2 +M .

4.2 Heavy-edge matching

The heavy-edge matching (HEM) approach for graph coarsening, presented by G. Karypis [15], is
widely used in (hyper)graph partitioning tools [17, 21] and yields efficient results in many cases.
The advantage of this algorithm is that, in the unconstrained case, it almost halves the size of the
instance during each of the first stages of the multilevel framework, which makes its complexity
more interesting than that of our Algorithm 1. However, we will show in this subsection that HEM
and other algorithms dedicated to 2-matching introduced by Z. Donovan et al. [7,9], do not capture
path topology adequately. An example is presented in Figure 4 for a clustering with M > 2. We will
also show that HEM, applied to the DAG weighted with the r∗ scheme, yields an approximation
ratio of 2 for the CN<[1], 2, ∆> problem. This algorithm differs from the two algorithms presented
by Z. Donovan et al. [7, 9]: one of them looks for a dominant matching, and otherwise returns an
arbitrary clustering, while the other is based on a linear programming rounding algorithm.

a) Recursive matching b) Direct K-clustering

Fig. 4: This figure presents the effects of recursive matching vs. direct k-way clustering. On the left
is a solution produced by a recursive matching algorithm for clustering with M = 3. On the right
is the result of a direct clustering. As we can see, direct clustering produces less cut and clusters
than recursive matching approach.
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In the example shown in Figure 4, the recursive methods will match vertices only once and
cannot match them at the next level, because new vertices have a weight equal to 2. A direct
clustering algorithm like our Algorithm 1 will produce in this case a result as good as recursive
matching methods. This suggests that a direct clustering algorithm will be more interesting than a
recursive coupling algorithm when M is large.

Theorem 2. Let H be a DAH and G = (V,A) be its corresponding r∗-weighted DAG. The HEM
algorithm applied to the DAG for CN<[1], 2, ∆> is a 2-approximation algorithm.

Proof. Let d be the intra-cluster delay and D be the inter-cluster delay, such that D ≫ d. Let pmax

be the critical path, with |pmax| × d > D. Hence:

|pmax| × d−D > 0 . (13)

Let Sol∗(H) be the optimal solution for a vertex set clustering of H. In the best case, for a cluster
size bounded by 2, the critical path will be coupled |pmax|

2 times, which will yield the following lower
bound for Solj(H):

Sol∗(H) ≥
(⌈

|pmax|
2

⌉
− 1

)
×D +

(
|pmax| − 1−

(⌈
|pmax|

2

⌉
− 1

))
× d . (14)

Let SolHEM(H) be the solution produced by the HEM scheme on our proposed DAG model. It
can be bounded by the worst possible solution, in which every vertex forms a cluster. Hence:

SolHEM(H) ≤ (|pmax| − 1)×D . (15)

Then, the approximation ratio is defined by:

SolHEM(H)

Sol∗(H)
≤ (|pmax| − 1)×D(⌈

|pmax|
2

⌉
− 1

)
×D +

(
|pmax| − 1−

(⌈
|pmax|

2

⌉
− 1

))
× d

. (16)

Let us calculate the approximation ratio for the even and odd cases of |pmax|.
By performing the calculation similar to proof 4.1, we obtain:

SolHEM(H)

Sol∗(H)
= 2 , (17)

for both cases, when |pmax| is even and odd.

5 Experimental Results

To validate our models and algorithms, we have performed experiments on benchmarks of 19 logic
circuits (b01-14 and b17-22) presented in F. Corno et al. [5]. These circuits consist of acyclic
combinatorial blocks, bounded by their input and output registers. Every combinatorial block can
therefore be modeled as a DAH. Their computation time is conditioned by their critical path,
defined as the longest path between two registers (i.e., two red vertices). These circuits have a
number of cells from 51 (b01), to 233685 (b19).

Remember that we want to minimize the number of cuts on the critical path. In fact, in our
problem, a cut on a path means an additional delay in the path cost. Thus, the compared algorithms
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aim to group the red-black hypergraphs by minimizing the delay path-length, i.e., the maximum
path cost pmax. Since the execution time and the number of clusters are important parameters, we
measure and compare them. Recall that clustering minimizing the number of clusters refers to the
bin-packing problem, which is known to be NP-hard.

To compare them, we measured the degradation of the critical path produced by algorithm A
for each instance I, calculated by: (SolA(I) − pImax)/p

I
max. BSC and HEM algorithm were run 10

times for each circuit and for each cluster size. The average of these 10 runs was used to calculate
the path-cost averages for all instances per size of clusters.
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Fig. 5: Results of BSC and HEM on each circuit (point) for M values ranging from 2 to 4096. Each
labeled point “ + ” is a clustering result calculated by the HEM algorithm and each labeled point
“ × ” is for BSC. Each point is defined by the degradation of the critical path (ordinate) as a
function of its logarithmic execution time (abscissa). As shown in all sub-figures, the “×” points
are positioned below the “+” points, which are based on a lower critical path degradation for BSC.
In addition, each point positioned to the left is based on a lower execution time. For two circuits,
BSC take more execution time than HEM.

The results in Figure 5 show that our BSC clustering algorithm, applied to circuit hypergraph,
outperforms the HEM algorithm for critical path degradation. It can be shown that HEM points
are more on the left side than BSC points. This rely on the fact that HEM takes less execution time
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than BSC. However, the execution time of HEM increase in function of cluster size, that is, some
HEM points moves from left to right. Indeed, as we increase the size of the clusters, we notice that
HEM makes more recursive calls. Even if these recursive calls are executed on reduced hypergraphs,
this increases the runtime. As a result, the complexity of HEM can be described by an additional
factor of log2(M), while the BSC algorithm admits a time complexity that depends only on the
number of hyperedges. In practice, however, we find that the execution time of the BSC algorithm
varies slightly as a function of M during the grouping phase, since this phase differs for each M .
For BSC, however, these variations remain negligible, which explains why the points of BSC does
not change on abscissa of 5 for each cluster size M .
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M, maximum size of cluster
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Fig. 6: Comparison between the number of clusters produced by BSC and HEM on a subset of
highest circuits of vertices size for M values ranging from 2 to 4096. Each plain lines corresponds to
HEM number of clusters and hatched lines to BSC number of clusters. Results show a less number
of clusters for BSC than HEM. Subfigure shows us a zoom of b14, b20, b21, and b22 number of
clusters for M values ranging from 2 to 32.

The results in Figure 6 show that each BSC curves are under HEM curves, that is, our BSC
clustering algorithm produces less number of clusters compared to the HEM algorithm. This can
be explained by the fact that BSC directly groups a set of related vertices and applies a second
refinement step that tends to reduce the number of clusters. In contrast, the HEM algorithm
recursively groups vertices in pairs, which can more easily lead to situations where there are several
adjacent clusters of size M/2 + 1 that cannot be merged.
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Nevertheless, in the context of a multilevel scheme, both algorithms can be used, but BSC
clusters vertices directly and does not create clustering levels as HEM does. An adaptation is
necessary for such use.

6 Conclusion

In this work, we studied the combinatorial circuit clustering problem for delay minimization (CN)
and presented a brief state-of-the-art in Section 2.2.

The aims of clustering algorithms is to select vertices to merge. Hence, the key is to define an
attractiveness between the vertices that models the objective. In Section 3, is presented existing
weighting schemes l, r for attractiveness between pairs of vertices with our r∗ weighting scheme.
We shown that our r∗ weighting scheme appears to be a better model to cluster critical vertices
than the l and r.

In Section 4, we demonstrated that the approximation ratio parameterized by the cluster size
is in M if |pmax| × d > D, D ≫ d and D

d ≤ M . This result improves the existing M2 + M -
approximation ratio under conditions mentioned above. We also introduced in the same Section 4,
our direct clustering BSC algorithm 1 which runs in O(m · log(m)) time, with m the number of
hyperarcs, and an adaptation of Heavy Edge Matching with our r∗ weighting scheme.

In Section 5, we presented experimental results about a comparison between HEM algorithm yet
improved with our weighting scheme r∗, and our BSC algorithm using also r∗, on ITC [5] circuits.
Experimental results show that BSC produces less critical path degradation results for a majority
of circuit instances. Moreover, BSC produces less number of clusters than HEM. Future works will
investigate the efficiency of the BSC algorithm in a multilevel scheme.
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