
EasyChair Preprint
№ 5915

Comparison of Performances of Jaya Algorithm
and Cuckoo Search Algorithm Using Benchmark
Functions

Mashuk Ahmed, Abdullah B. Nasser, Kamal Z. Zamli and
Sulistyo Heripracoyo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 27, 2021

Comparison of Performances of Jaya Algorithm and

Cuckoo Search Algorithm Using Benchmark Functions

Mashuk Ahmed1, Abdullah B. Nasser1, Kamal Z. Zamli1, and Sulistyo Heripracoyo2

1 Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia

Pahang, , Pekan 26600, Pahang, Malaysia
2 School of Information Systems, Bina Nusantara University, Information Systems Department,

Jakarta, 11480, Indonesia
MCS20004@student.ump.edu.my

abdullahnasser@ump.edu.my

kamalz@ump.edu.my

hpracoyo@binas.edu

Abstract. Nowadays, selecting the best possible solution among several solu-

tions becomes an important skill for engineering and research. Therefore, engi-

neers are turning to optimization methods as a complementary alternative strat-

egy of exhaustive searching. Metaheuristic algorithms have been used success-

fully for solving different optimization problems. To help engineers select the

best metaheuristic algorithms for their problems, there is a need to evaluate the

performance of different metaheuristic algorithms against each other using

common case studies. This paper aims to compare the performance of two me-

taheuristic algorithms which are Jaya Algorithm (JA) and Cuckoo Search (CS)

using some common benchmark functions. CS and JA have implemented in the

same platform (Intellij IDEA Community Edition 2020.2.3) using the same lan-

guage (Java). The experimental results show that JA has better and consistent

performance as compared to CS in most cases in terms of execution time and

test suite size; however, the performance of JA is still within acceptable ranges.

Keywords: Jaya Algorithm, Cuckoo Search Algorithm, Metaheuristic Algo-

rithm, Optimization, Execution Time.

1 Introduction

Besides the analysis, optimization has been indicated as one of the vital stages of

engineering design [1]. Optimization is a vital part of software engineering which

allows the engineer to find the optimum solution in the presence of design constraints

and criteria. Whereas the analysis stage of the engineering design is the use of the

mathematic model to predict the design results optimization method such as metaheu-

ristic algorithms have been used successfully for solving different optimization prob-

lems such as robotic path planning, optimization of neural networks, minimizing

mailto:MCS20004@student.ump.edu.my
mailto:abdullahnasser@ump.edu.my
mailto:kamalz@ump.edu.my

2

weights of Truss Structures, task scheduling over cloudlets, optimization of integrated

process planning, dynamic vehicle routing, susceptibility mapping of forest fire, etc.

[2] Engineers and researchers have been working with the implementation of me-

taheuristic algorithms for a long time. As a result, metaheuristic algorithms such as

Genetic Algorithm(GA), Flower Pollination Algorithm(FPA), Particle Swarm Opti-

mization (PSO), Jaya Algorithm(JA), Hill Climbing(HC), Cuckoo Search (CS), have

become very popular in the field of optimization. Metaheuristic algorithm based op-

timizations are also being mentioned as metaheuristic optimization now [3]. Metaheu-

ristic based optimizations possess stochastic characteristics [4]. These algorithms

have a wide range of applications. Every metaheuristic algorithm has unique charac-

teristics. While performing an optimization, there may be a need for an algorithm with

particular characteristics to solve the optimization problem. So, a specific algorithm

with some characteristics may not be enough to solve a specific optimization problem.

Selecting the most suitable metaheuristic algorithm is vital in optimization. Also,

it's quite a challenging task, especially when the optimization problem is complex [5].

So, it's necessary to have ideas about the comparison of different metaheuristic algo-

rithms. The comparisons of the algorithms help to find out their unknown characteris-

tics. For this reason, a comparison between two of the metaheuristic algorithms have

been done, which are Jaya Algorithm (JA) and Cuckoo Search (CS) Algorithm. There

has been a minimization process of some functions. The coding of the algorithms has

been done in Java using Intellij IDEA Community Edition 2020.2.3. The result of the

comparison will be helpful to determine which one is more suitable for a specific

optimization problem.

The next sections will have a detailed discussion of the algorithms and experi-

ments. In section 2, there will be an overview of JA and CS. Section 3 will discuss the

related works and applications of JA and CS. Section 4 will discuss the methodolo-

gies. Section 5 will describe the tests and results, and related data. Section 6 will ana-

lyze the 2 algorithms based on the test results. Finally, section 7 will conclude the

overall discussions with future works.

2 Background

Jaya Algorithm (JA) and Cuckoo Search (CS) Algorithm, both are efficient in gen-

erating test suite, trying to reach the best solutions and avoid worse solutions.

2.1 Jaya Algorithm

JA is a global algorithm in the field of optimization. It’s one of the recent metaheuris-

tic algorithms. The algorithm is powerful and simple to implement. JA has some ad-

vantages. The potential solution for JA is based on finding the most optimum solution

and avoiding the worst solution. JA doesn't require tuning [6]. It's because, mainly the

common controlling parameters are required for JA. There’s no need for control pa-

rameters that are specific to the algorithm.

3

2.2 Cuckoo Search Algorithm

CS is an evolutionary optimization algorithm [7]; it’s based on swarm intelligence.

Yang and Deb, being inspired by cuckoos' natural behaviors, developed this algo-

rithm. The algorithm mimics the behavior of some cuckoo species' obligate brood

parasitism where they lay eggs in other host birds' nests [8]. Obligate brood parasitism

is a special characteristics of cuckoos. As a bird, cuckoo’s behavior and activity are

fascinating. It’s not only because of their beautiful sounds, but also due to their ag-

gression in reproduction strategy. Mature cuckoos lay their eggs in the nests of other

host birds. Basically, this algorithm is based on how cuckoos lay eggs and breed. If

the host birds find out that the eggs aren’t theirs, they will either throw away these

unknown eggs or leave their nests and build up new nests somewhere else.

The CS follows 3 important rules:

1. Each of the cuckoos lays an egg at a time and drops the egg in a nest chosen

randomly.

2. The nest having high-quality eggs is the best one. This nest carries over to the

next stage or generation.

3. There's a fixed number of available nests of host birds. The probability Pa Ɛ [0,

1] determines whether the host bird will discover the cuckoo's laid egg or not

[9].

3 Related Works and Applications

This section discusses the existing works of JA and CS. JA and CS have been im-

plemented in various fields and applications.

3.1 Related Works and Applications of Jaya Algorithm

Jaya algorithm (JA) has a wide range of applications. Researchers have implemented

the algorithm for adaptive control for the problem of surge tank indirectly. They have

scrutinized the adaptive controls based on JA for the surge tanks’ nonlinear models

and components having nonlinearities. Usually, the formulations of the controllers are

single objective optimizing problems with different controlling variables to find out

the optimal solutions for satisfying JA’s different constraints. This approach ensures

improvement in randomness and performance of systems [10].

JA is an effective option to extract different PV model parameters [11]. This pro-

cess controls and tracks maximum power point on photovoltaic systems, and also

identifies reliable and accurate model parameters of PV modules and cells. This pro-

cess uses an improved JA that quantifies the individual functioning in the population.

Each individual selects various evolution strategies depending on probability. The

strategies are designed for exploitation abilities and balancing exploration for the

search process. The quantified performance is for constructing the searching direction

by selecting the exemplar. This process ensures an improved population for exploring

4

better solutions; for this, around the present best solution, it introduces a perturbation

mechanism, which is self-adaptive and chaotic.

JA can be implemented for load balancing in the cloud. Cloud computing has vari-

ous challenges like automated resource provisioning, server consolidation, event con-

tent dissemination, security, virtual machine migration, etc. For load balancing in the

cloud, the challenges are decreasing response time, decreasing service request time of

data center, improving the system’s overall performance, etc. JA uses less controlling

parameters and ensures a very good optimized result [12]. This approach has been

proved to have great efficiency while comparing with other approaches.

Researchers have used the JA to perform fuzzy analysis using approaches based on

pressure on benchmark networks [13]. Using fuzzy analysis, we can understand the

uncertainty in different independent parameters of the network of water distribution.

The parameters include pipe roughness values, nodal demands, pipe diameters, reser-

voir heads, etc. Obtaining the dependent parameters’ membership functions are based

on considering uncertain independent parameters’ membership functions. According

to the method of Impact Table, there’s supposed to be a repetitive analysis due to the

monotonous relationship between independent and dependent parameters. Methods

based on optimization are more useful for fuzzy analysis when there’s a non-

monotonous relationship between independent and dependent parameters. JA has

been found to be an efficient option for optimization. The analysis can be done by

using a hydraulic model in EPANET, linked up with MATLAB for optimization.

JA can be implemented for tuning PID controllers for DC servo motor’s position

control [14]. Here, the unit step input’s integral of squared error or ISE is the perfor-

mance index. Using JA, ISE is minimized for obtaining the controller settings. Tuning

based on JA ensures satisfactory response.

3.2 Related Works and Applications of Cuckoo Search Algorithm

Cuckoo Search (CS) based applications have shown very good efficiency in solving

optimization problems. This algorithm provides better solutions as compared to many

other algorithms.

It’s possible to implement enhanced scatter search algorithms using CS [15]. An

example is the problem of traveling salesman using improved and original scatter

search. The improved edition of the scatter search algorithm performs better than the

original one.

CS is an efficient algorithm for solving nurse schedule problems. Lim Huai Tein

used this algorithm for nurse scheduling, which is very useful in healthcare institu-

tions. Also, with the CS, we can solve problems in manufacturing optimization. CS

has been effective in optimizing machine parameters in operations, and has provided

better solutions as compared to other algorithms [16].

5

Quantum Inspired CS is an improved CS developed by A. Layeb [17]. This method

is based on CS and Principles of Quantum Computing. The process includes defining

the algorithm with a proper representation scheme, allowing the application of the

algorithm on combinatorial optimizing tasks and some principles of quantum compu-

ting, such as measurement, qubit state superposition, interference, representation, etc.

Representing the quantum solutions with a probability, it’s possible to code the solu-

tions. This improved algorithm ensures efficient and optimal solutions with the num-

ber of iterations and population size.

Another application of the CS is a flow of OP-AMP optimization assisted by a pol-

ynomial metamodel of 3 steps [18]. This improved algorithm provides solutions to the

issues of inefficient system performance of optimized OP-AMPs. The CS provides

the desired optimization results, ensuring a design flow for OP-AMP optimization.

The process estimates the performance of OP-AMP; for this, it generates extremely

accurate and ultra-fast polynomiameta models and facilitates quick time-domain sim-

ulating system of a metamacromodel of OP-AMP. These are integrated into a module

of Verilog-AMS.

The particle approach based on CS helps to achieve energy efficiency in multi-

modal objective functions and wireless sensor networks [19]. This approach formu-

lates network optimization. This process randomly deploys the nodes, and organizes

those as static clusters using CS. The collection and aggregation of information are

done after the selection of cluster heads. Then by the generalized algorithm of particle

approach, this process forwards the information to the base station. CS helps to select

cluster heads and form clusters among sensor nodes. This approach provides compa-

rable results as compared to simulation results of LEACH protocols. Sensor net-

work’s longevity increases due to this protocol. Also, complications in chain for-

mation reduces due to this approach.

4 Methodologies

4.1 Implementing Jaya Algorithm

While implementing the JA, the process is based on searching for the best solution

and avoiding the worst solution for a certain problem. In the process, there are basic

parameters, such as the size of the population, termination condition, number of de-

sign variables, etc. The termination condition is usually the maximum number of

iteration. Maximizing or minimizing an objective function f(x) is the primary objec-

tive of this algorithm [20]. Suppose we have m design variables at iᵗ ͪ iteration. Also,

there are n candidate solutions. The best-obtained candidate solution for f(x) from all

candidate solutions is represented as f(x)best. Similarly, we represent the worst candi-

date solution as f(x)worst. We use Xj,k,i to represent the jᵗ ͪ designing variable for kᵗ ͪ

candidate at iteration number i. The modification of Xj,k,i is X'j,k,i. We do this modifi-

cation by the following equation:

6

X'j,k,i = Xj,k,i + r1,j,i (Xj,best,i - |X j,k,i|) – r2,j,i (Xj,worst,i - |X j,k,i|) (1)

In the equation, Xj,best,i represents j variable's value for the best candidate, and

Xj,worst,i represents j variable's value for the worst candidate. r1,j,i and r2,j,i are two

random numbers ranging from 0 to 1 [21]. With this equation, the search moves to-

wards the best solution. Depending on which one is bigger between X'j,k,i and Xj,k,i,

we update the solution. The process continues as a loop. As the iteration keeps mov-

ing forward, the solution becomes more and more optimum.

4.2 Implementing Cuckoo Search Algorithm

The CS has some stages. Usually, we begin with an objective function f(x). Then

initial population is generated having n host nests xi (i=1,2,….,n). The search contin-

ues till the maximum generation. In each generation, a cuckoo is selected randomly

by lévy flight. We evaluate the fitness or quality of the cuckoo. We choose a nest

randomly. Then we compare the fitnesses of cuckoo and nest and replace the one

having lower fitness [22].

While generating new solution x(t+1) for, suppose cuckoo i, we can use the follow-

ing equation,

x(t+1) = x(t) + α Lévy(β) (2)

We use the product meaning entry-wise walk during multiplications. There's

esentially a random walk due to the Lévy flights [23]. We draw random steps of Lévy

flights from a distribution of Lévy for large steps.

Lévy ~ u = t-1- β (0 < β ≤ 2) (3)

This has an infinite variance, and with it, there's an infinite mean. The consecutive

steps or jumps of a cuckoo develop a random walk process following a power-law

and step-length distribution having a heavy tail. We abandon the worst nest's fraction

Pa to help to build up new nests at new locations by randomly walking and mixing.

The eggs or solutions get mixed by the random permutation depending on the differ-

ence or similarity to the host eggs. The step size sample generation isn’t trivial using

the Lévy flights. A simple scheme can be shown as:

xi
(t+1) = xi

(t) + α Lévy(β) ~ 0.01 (u / |v|) (xi
(t) – xb

(t)) (4)

Here, we have drawn u and v from normal distribution.

u = N(0, σu
2) (5)

v = N(0, σv
2) (6)

7

σu =
1/ β (7)

σv = 1 (8)

Here, we have used Γ as the standard Gamma function.

5 Tests and Results

All tests of the functions have been done on Intellij IDEA Community Edition

2020.2.3. The tests were performed on Intel(R) Core(TM) i5-8250U (1.60 GHz, 3.4

GHz) with 8 GB of DDR4 RAM on Windows 10 operating system. We have done the

minimization of the functions and updated the minimized values and time perfor-

mances in milliseconds. Each test has been done with 1000 iterations.

For JA, there was no need for any fixed parameter values. After taking the initial

population, the process had moved towards the next iterations, where the population

was updated using equation (1). For CS, there were some fixed parameter values.

Probability, Pa = 0.25. σu = 0.6969 was used based on previous study[24]. The pa-

rameters varied in the iterations.

We have used 11 functions for the tests as shown in table 1.

Table 1. Benchmark functions

No. Functions Conditions

1. f1(x) = x1
2 – x1x2 + x2

2 + 2x1 + 4x2 +3 -100 ≤ x1, x2 ≤ 100

2. f2(x) = x1
2 + 2x2

2 – 0.3cos(3πx1) – 0.4cos(4πx2) + 0.7 -100 ≤ x1, x2 ≤ 100

3. f3(x) = (x1
2 + x2 – 11)2 + (x1 + x2

2 – 7)2 -5 ≤ x1, x2 ≤ 5

4. f4(x) = |x1
2 + x2

2 – 2x1x2| + |sinx1| + |cosx2| -500 ≤ x1, x2 ≤ 500

5. f5(x) = 10x4 – 8x2 + 12x + 16 -100 ≤ x ≤ 100

6. f6(x) = 17x5 – 11x2 + 11x + 6 -100 ≤ x ≤ 100

7. f7(x) = 3x1
2 + 5x2

2 – 0.6cos(3πx1+4πx2) + 4 -5 ≤ x1,x2 ≤ 5

8. f8(x) = 3x1
2 + 7x2

2 + 15(sin2x1+sin2x2) -100 ≤ x1,x2 ≤ 100

9. f9(x) = (2.7 – x1 + x1x2)2 + (1.85 – x1 + x1x2
2)2 + (3.1 – x1 + x1x2

3)2 -100 ≤ x1,x2 ≤ 100

10. f10(x) = (x1
2 + x2 -19)2 + (3x1 + x2

2 – 16)2 -100 ≤ x1,x2 ≤ 100

11. f11(x) = 104x1
2 + x2

2 – (x1
2 + x2

2) + {10-4(x1
2 + x2

2)} -100 ≤ x1,x2 ≤ 100

8

Table 2. Results for Jaya Algorithm for minimized problems

No. Best Results Worst Mean Time (ms)

f1 -6.33 33.2 -2.934 53.6

f2 0 0 0 59

f3 0 4.3 0.891 56.3

f4 1.00 1.41 1.116 64

f5 5.23 5.23 5.23 54.3

f6 -1.699 x 1011 -1.677 x 1011 -1.692 x 1011 74.9

f7 3.4 3.45 3.407 63.46

f8 0 0.01 0.001 65.55

f9 0.68 2.88 2.265 83.67

f10 0 1.02 0.104 59.1

f11 0 0.84 0.107 44.1

Table 3. Results for Cuckoo Search Algorithm for minimized problems

No. Best Results Worst Mean Time (ms)

f1 -6.33 -6.33 -6.33 33.5

f2 0 0 0 35.1

f3 0 0 0 32.9

f4 1.00 1.15 1.055 151.5

f5 5.23 5.23 5.23 29.6

f6 -1.7 x 1011 -1.7 x 1011 -1.7 x 1011 672391

f7 3.4 3.4 3.4 40.85

f8 0 0 0 37.5

f9 0 0.68 0.612 99.3

f10 0 0 0 40.5

f11 0 0 0 26.5

Table 2 and Table 3 show the test obtained results. Each test was run 20 times and

the best-minimized value, the worst minimized value, mean value, and the execution

time were reported. The execution time of the two algorithms are shown in the tables.

Also, Fig. 1 and Fig. 2 show the comparison of the two algorithms in terms of mean

values and execution times for the functions.

9

-2
.9

3
4

0

0
.8

9
1

1
.1

1
6

5
.2

3

3
.4

0
7

0
.0

0
1

-6
.3

3

0 0

1
.0

5
5

5
.2

3

3
.4

0

F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8

M
ea

n
 v

al
u

e

Jaya Cuckoo Search

Fig. 1. Performance Comparison between Jaya algorithm and Cuckoo Search in term of test

size

5
3

.6

5
9

5
6

.3 6
4

5
4

.3 6
3

.4
6

6
5

.5
5 8
3

.6
7

5
9

.1

4
4

.1

3
3

.5

3
5

.1

3
2

.9

1
5

1
.5

2
9

.6 4
0

.8
5

3
7

.5

9
9

.3

4
0

.5

2
6

.5

F 1 F 2 F 3 F 4 F 5 F 7 F 8 F 9 F 1 0 F 1 1

Ti
m

es
 in

 m
ill

is
ec

o
n

d
s

Functions

Jaya Cuckoo Search

Fig. 2. Execution time comparison between Jaya algorithm and Cuckoo Search.

Fig. 3 shows the screenshot of a Cuckoo Search program done in Intellij IDEA

Community Edition 2020.2.3. The coding of the algorithms has been done in Java.

10

Fig. 3. Screenshot of the part of a program of the Cuckoo Search based function solution with

output in Intellij IDEA Community Edition 2020.2.3

6 Discussions

As observed from the tests, JA has performed well consistently for all the 11 func-

tions. CS hasn’t been consistent like JA, but the mean values determined from the

tests of the CS were nearer to the best-minimized values as compared to JA for many

functions. As shown in table 2 and 3, for 8 of the 11 functions, CS required less exe-

cution time as compared to that of JA but the differences weren’t much. For 3 func-

tions, which are function 4 (f4), function 6 (f6), and function 9 (f9), JA took less execu-

tion time as compared to that of CS. But in these cases, the time differences were

larger as compared to those of other functions. In the case of function 6 (f6), the aver-

age execution time of JA was 74.9 ms, but the average execution time of CS algo-

rithm was 672391 ms. Here, the difference is huge. For function 4 (f4), CS takes

151.5 ms, where JA takes only 64 ms. But when JA takes larger execution time as

compared to CS, the difference isn’t much. There has been no case in the tests where

JA took equal to or more than twice the execution time of CS, according to Fig 2. So,

it indicates that CS may take much larger execution time for some functions as com-

pared to JA. Considering this case, JA is more consistent.

CS showed better performance for 8 of the 11 functions in terms of mean values

and execution times as shown in table 2 and 3, but lacked consistency as compared to

JA. For function 9 (f9), CS was better than JA, but the exection time was a little high-

er. Regarding execution time, in Fig. 2, CS’s performance isn’t always efficient for all

functions. There are some functions, where CS performs at a much slower speed. For

some functions, CS can take extremely large execution time, as shown in the case of

function 6 (f6). Regarding these issues, JA is a simpler and more consistent algorithm,

providing solutions to most functions with an acceptable execution time. But regard-

ing mean values, JA performs well but is less optimum as compared to CS. From the

11

overall scenario, JA is more consistent due to its performances in acceptable ranges

for most functions.

7 Conclusion and Future Works

This paper evaluated the performances of CS and JA using the benchmark func-

tions in terms of mean values and execution times. Each of the algorithms has shown

impressive results in many cases. There has also been complexities for both algo-

rithms regarding execution time and mean values in some cases. In the overall scenar-

io, JA has turned out to be a more consistent algorithm. The analysis of these 2 algo-

rithms will help engineers to select the right algorithm for specific problems.

As for the future works, we can make a detail analysis explaining for which func-

tions CS works well with acceptable execution times and for which functions, CS

struggles to maintain a faster execution time. Also, there are works to be done with

the functions, for which, CS takes much longer execution time.

ACKNOWLEDGMENTS

This research is funded by Universiti Malaysia Pahang (UMP) under grant: “Priori-

tized T-way Test Suite Generation Strategy Based on Chaotic Flower Pollination

Algorithm”, Grant no: RDU190372. We thank UMP for the contribution and sup-

ports.

References

1. Kelley, T.R.: Optimization, an Important Stage of Engineering Design. The

Technology Teacher 69(5), 18-23 (2010).

2. Mansour, N.: Search Algorithms and Applications. (2011)

3. Yang, X.-S.: Metaheuristic Optimization: Algorithm Analysis and Open Problems.

Paper presented at the International Symposium on Experimental

Algorithms, Berlin. Heidelberg,

4. WK Wong, C.I.M.: A Review on Metaheuristic Algorithms: Recent Trends,

Benchmarking and Applications. Paper presented at the 2019 7th

International Conference on Smart Computing & Communications (ICSCC),

5. Y. A. Alsariera, H.S.A., A. M. Nasser, M. A. Majid and K. Z. Zamli: Comparative

Performance Analysis of Bat Algorithm and Bacterial Foraging Optimization

Algorithm using Standard Benchmark Functions. Paper presented at the

2014 8th. Malaysian Software Engineering Conference (MySEC), Langkawi,

Malaysia,

6. Willa Ariella Syafruddin, M.K., Brahim Benaissa: Does the Jaya Algorithm Really

Need No Parameters? . Paper presented at the 10th International Joint

Conference on Computational Intelligence,

12

7. Pandey, H.M.: Jaya a Novel Optimization Algorithm: What, How and Why? Paper

presented at the 2016 6th International Conference - Cloud System and Big

Data Engineering (Confluence),

8. Swati Sharma, B.B.: Adaptive Control using Jaya Algorithm. In: AIP Conference

Proceedings 2136, 020001 2019

9. Kunjie Yua, B.Q., Caitong Yuea, Shilei Gea, Xu Chenc, Jing Lianga: A

performance-guided JAYA algorithm for parameters identification of

photovoltaic cell and module. Applied Energy, Elsevier 237, 241-257

(2019).

10. Subhadarshini Mohanty, P.K.P., Mitrabinda Ray, Subasish Mohapatra: An

Approach for Load Balancing in Cloud Computing Using JAYA Algorithm.

International Journal of Information Technology and Web Engineering

14(1), 27-41 (2019).

11. Sreethu Subrahmanian, R.G.: Fuzzy node flow analysis of water distribution

networks using Jaya algorithm. Paper presented at the IOP Conference Series

Earth and Environmental Science 491:012010

12. ANKIT K. SAHU, J.K.B., V.P. SINGH, S.P. SINGH: JAYA ALGORITHM

BASED TUNING OF PID CONTROLLER. International Journal of

Industrial Electronics and Electrical Engineering 4(12) (2016).

13. Azizah Mohamad, A.M.Z., Nor Erne Nazira Bazin, Amirmudin Udin: Cuckoo

Search Algorithm for Optimization Problems - A Literature Review. Applied

Mechanics and Materials 421, 502-506 (2013).

14. Iztok Fister Jr.*, D.F., Iztok Fister: A comprehensive review of cuckoo search:

variants and hybrids. International Journal Mathematical Modelling and

Numerical Optimisation 4(4), 387-409 (2013).

15. Azizah Binti Mohamad, A.M.Z., Nor Erne Nazira Bazin: Cuckoo Search

Algorithm for Optimization Problems—A Literature Review and its

Applications. Applied Artificial Intelligence: An International Journal 28(5),

419-448 (2014).

16. Al-Obaidi, A.T.S.: Improved Scatter Search Using Cuckoo Search. International

Journal of Advanced Research in Artificial Intelligence 2(2) (2013).

17. Lim Huai Tein, R.R.: Recent Advancements of Nurse Scheduling Models and A

Potential Path. In: Proceedings of the 6th IMT-GT Conference on

Mathematics, Statistics and its Applications (ICMSA2010), Kedah, Malaysia

2010

18. Yildiz, A.R.: Cuckoo search algorithm for the selection of optimal machine

parameters in milling operations. The International Journal of Advanced

Manufacturing Technology 64, 55-61 (2012).

19. Layeb, A.: A novel quantum-inspired cuckoo search for Knapsack problems.

International Journal of Bio-Inspired Computation 3(5) (2011).

20. G. Zheng, S.P.M.a.E.K.: Metamodel-Assisted Fast and Accurate Optimization of

an OP-AMP for Biomedical Applications. Paper presented at the 2012 IEEE

Computer Society Annual Symposium on VLSI, Amherst, MA, USA,

21. Al-Hakam Ayad Salih, A.H.A., Nada Yousif Hashim: Jaya: An Evolutionary

Optimization Technique for Obtaining the Optimal Dthr Value of Evolving

13

Clustering Method (ECM). International Journal of Engineering Research

and Technology 11(12), 1901-1912 (2018).

22. Dhivya Manian, M.S.: Energy Efficient Computation of Data Fusion in Wireless

Sensor Networks Using Cuckoo Based Particle Approach (CBPA).

International Journal of Communications, Network and System Sciences

4(4), 249-255 (2011).

23. Hongqing ZHENG, Y.Z.: A Novel Cuckoo Search Optimization Algorithm Base

on Gauss Distribution. Journal of Computational Information Systems 8(10),

4193-4200 (2012).

24. Nasser, A.B., Alsewari, A.R.A., Zamli, K.Z.: Tuning of cuckoo search based

strategy for t-way testing. In: International Conference on Electrical and

Electronic Engineering 2015, vol. 9, p. 8948. Journal of Engineering and

Applied Sciences

