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Abstract. Nowadays, selecting the best possible solution among several solu-

tions becomes an important skill for engineering and research. Therefore, engi-

neers are turning to optimization methods as a complementary alternative strat-

egy of exhaustive searching. Metaheuristic algorithms have been used success-

fully for solving different optimization problems. To help engineers select the 

best metaheuristic algorithms for their problems, there is a need to evaluate the 

performance of different metaheuristic algorithms against each other using 

common case studies. This paper aims to compare the performance of two me-

taheuristic algorithms which are Jaya Algorithm (JA) and Cuckoo Search (CS) 

using some common benchmark functions. CS and JA have implemented in the 

same platform (Intellij IDEA Community Edition 2020.2.3) using the same lan-

guage (Java). The experimental results show that JA has better and consistent 

performance as compared to CS in most cases in terms of execution time and 

test suite size; however, the performance of JA is still within acceptable ranges. 

Keywords: Jaya Algorithm, Cuckoo Search Algorithm, Metaheuristic Algo-

rithm, Optimization, Execution Time. 

1 Introduction 

Besides the analysis, optimization has been indicated as one of the vital stages of 

engineering design [1]. Optimization is a vital part of software engineering which 

allows the engineer to find the optimum solution in the presence of design constraints 

and criteria. Whereas the analysis stage of the engineering design is the use of the 

mathematic model to predict the design results optimization method such as metaheu-

ristic algorithms have been used successfully for solving different optimization prob-

lems such as robotic path planning, optimization of neural networks, minimizing 
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weights of Truss Structures, task scheduling over cloudlets, optimization of integrated 

process planning, dynamic vehicle routing, susceptibility mapping of forest fire, etc. 

[2] Engineers and researchers have been working with the implementation of me-

taheuristic algorithms for a long time. As a result, metaheuristic algorithms such as 

Genetic Algorithm(GA), Flower Pollination Algorithm(FPA), Particle Swarm Opti-

mization (PSO), Jaya Algorithm(JA), Hill Climbing(HC), Cuckoo Search (CS), have 

become very popular in the field of optimization. Metaheuristic algorithm based op-

timizations are also being mentioned as metaheuristic optimization now [3]. Metaheu-

ristic based optimizations possess stochastic characteristics [4]. These algorithms 

have a wide range of applications. Every metaheuristic algorithm has unique charac-

teristics. While performing an optimization, there may be a need for an algorithm with 

particular characteristics to solve the optimization problem. So, a specific algorithm 

with some characteristics may not be enough to solve a specific optimization problem.  

Selecting the most suitable metaheuristic algorithm is vital in optimization. Also, 

it's quite a challenging task, especially when the optimization problem is complex [5]. 

So, it's necessary to have ideas about the comparison of different metaheuristic algo-

rithms. The comparisons of the algorithms help to find out their unknown characteris-

tics. For this reason, a comparison between two of the metaheuristic algorithms have 

been done, which are Jaya Algorithm (JA) and Cuckoo Search (CS) Algorithm. There 

has been a minimization process of some functions. The coding of the algorithms has 

been done in Java using Intellij IDEA Community Edition 2020.2.3. The result of the 

comparison will be helpful to determine which one is more suitable for a specific 

optimization problem. 

The next sections will have a detailed discussion of the algorithms and experi-

ments. In section 2, there will be an overview of JA and CS. Section 3 will discuss the 

related works and applications of JA and CS. Section 4 will discuss the methodolo-

gies. Section 5 will describe the tests and results, and related data. Section 6 will ana-

lyze the 2 algorithms based on the test results. Finally, section 7 will conclude the 

overall discussions with future works. 

 

2 Background 

Jaya Algorithm (JA) and Cuckoo Search (CS) Algorithm, both are efficient in gen-

erating test suite, trying to reach the best solutions and avoid worse solutions. 

2.1 Jaya Algorithm 

JA is a global algorithm in the field of optimization. It’s one of the recent metaheuris-

tic algorithms. The algorithm is powerful and simple to implement. JA has some ad-

vantages. The potential solution for JA is based on finding the most optimum solution 

and avoiding the worst solution. JA doesn't require tuning [6]. It's because, mainly the 

common controlling parameters are required for JA. There’s no need for control pa-

rameters that are specific to the algorithm. 
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2.2 Cuckoo Search Algorithm 

CS is an evolutionary optimization algorithm [7]; it’s based on swarm intelligence. 

Yang and Deb, being inspired by cuckoos' natural behaviors, developed this algo-

rithm. The algorithm mimics the behavior of some cuckoo species' obligate brood 

parasitism where they lay eggs in other host birds' nests [8]. Obligate brood parasitism 

is a special characteristics of cuckoos. As a bird, cuckoo’s behavior and activity are 

fascinating. It’s not only because of their beautiful sounds, but also due to their ag-

gression in reproduction strategy. Mature cuckoos lay their eggs in the nests of other 

host birds. Basically, this algorithm is based on how cuckoos lay eggs and breed. If 

the host birds find out that the eggs aren’t theirs, they will either throw away these 

unknown eggs or leave their nests and build up new nests somewhere else. 

The CS follows 3 important rules:  

1. Each of the cuckoos lays an egg at a time and drops the egg in a nest chosen 

randomly. 

2. The nest having high-quality eggs is the best one. This nest carries over to the 

next stage or generation. 

3. There's a fixed number of available nests of host birds. The probability Pa Ɛ [0, 

1] determines whether the host bird will discover the cuckoo's laid egg or not 

[9].  

 

3 Related Works and Applications 

This section discusses the existing works of JA and CS. JA and CS have been im-

plemented in various fields and applications. 

3.1 Related Works and Applications of Jaya Algorithm 

Jaya algorithm (JA) has a wide range of applications. Researchers have implemented 

the algorithm for adaptive control for the problem of surge tank indirectly. They have 

scrutinized the adaptive controls based on JA for the surge tanks’ nonlinear models 

and components having nonlinearities. Usually, the formulations of the controllers are 

single objective optimizing problems with different controlling variables to find out 

the optimal solutions for satisfying JA’s different constraints. This approach ensures 

improvement in randomness and performance of systems [10]. 

JA is an effective option to extract different PV model parameters [11]. This pro-

cess controls and tracks maximum power point on photovoltaic systems, and also 

identifies reliable and accurate model parameters of PV modules and cells. This pro-

cess uses an improved JA that quantifies the individual functioning in the population. 

Each individual selects various evolution strategies depending on probability. The 

strategies are designed for exploitation abilities and balancing exploration for the 

search process. The quantified performance is for constructing the searching direction 

by selecting the exemplar. This process ensures an improved population for exploring 
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better solutions; for this, around the present best solution, it introduces a perturbation 

mechanism, which is self-adaptive and chaotic. 

JA can be implemented for load balancing in the cloud. Cloud computing has vari-

ous challenges like automated resource provisioning, server consolidation, event con-

tent dissemination, security, virtual machine migration, etc. For load balancing in the 

cloud, the challenges are decreasing response time, decreasing service request time of 

data center, improving the system’s overall performance, etc. JA uses less controlling 

parameters and ensures a very good optimized result [12]. This approach has been 

proved to have great efficiency while comparing with other approaches. 

Researchers have used the JA to perform fuzzy analysis using approaches based on 

pressure on benchmark networks [13]. Using fuzzy analysis, we can understand the 

uncertainty in different independent parameters of the network of water distribution. 

The parameters include pipe roughness values, nodal demands, pipe diameters, reser-

voir heads, etc. Obtaining the dependent parameters’ membership functions are based 

on considering uncertain independent parameters’ membership functions. According 

to the method of Impact Table, there’s supposed to be a repetitive analysis due to the 

monotonous relationship between independent and dependent parameters. Methods 

based on optimization are more useful for fuzzy analysis when there’s a non-

monotonous relationship between independent and dependent parameters. JA has 

been found to be an efficient option for optimization. The analysis can be done by 

using a hydraulic model in EPANET, linked up with MATLAB for optimization. 

JA can be implemented for tuning PID controllers for DC servo motor’s position 

control [14]. Here, the unit step input’s integral of squared error or ISE is the perfor-

mance index. Using JA, ISE is minimized for obtaining the controller settings. Tuning 

based on JA ensures satisfactory response. 

3.2 Related Works and Applications of Cuckoo Search Algorithm 

Cuckoo Search (CS) based applications have shown very good efficiency in solving 

optimization problems. This algorithm provides better solutions as compared to many 

other algorithms. 

It’s possible to implement enhanced scatter search algorithms using CS [15]. An 

example is the problem of traveling salesman using improved and original scatter 

search. The improved edition of the scatter search algorithm performs better than the 

original one. 

CS is an efficient algorithm for solving nurse schedule problems. Lim Huai Tein 

used this algorithm for nurse scheduling, which is very useful in healthcare institu-

tions. Also, with the CS, we can solve problems in manufacturing optimization. CS 

has been effective in optimizing machine parameters in operations, and has provided 

better solutions as compared to other algorithms [16]. 
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Quantum Inspired CS is an improved CS developed by A. Layeb [17]. This method 

is based on CS and Principles of Quantum Computing. The process includes defining 

the algorithm with a proper representation scheme, allowing the application of the 

algorithm on combinatorial optimizing tasks and some principles of quantum compu-

ting, such as measurement, qubit state superposition, interference, representation, etc. 

Representing the quantum solutions with a probability, it’s possible to code the solu-

tions. This improved algorithm ensures efficient and optimal solutions with the num-

ber of iterations and population size. 

Another application of the CS is a flow of OP-AMP optimization assisted by a pol-

ynomial metamodel of 3 steps [18]. This improved algorithm provides solutions to the 

issues of inefficient system performance of optimized OP-AMPs. The CS provides 

the desired optimization results, ensuring a design flow for OP-AMP optimization. 

The process estimates the performance of OP-AMP; for this, it generates extremely 

accurate and ultra-fast polynomiameta models and facilitates quick time-domain sim-

ulating system of a metamacromodel of OP-AMP. These are integrated into a module 

of Verilog-AMS. 

The particle approach based on CS helps to achieve energy efficiency in multi-

modal objective functions and wireless sensor networks [19]. This approach formu-

lates network optimization. This process randomly deploys the nodes, and organizes 

those as static clusters using CS. The collection and aggregation of information are 

done after the selection of cluster heads. Then by the generalized algorithm of particle 

approach, this process forwards the information to the base station. CS helps to select 

cluster heads and form clusters among sensor nodes. This approach provides compa-

rable results as compared to simulation results of LEACH protocols. Sensor net-

work’s longevity increases due to this protocol. Also, complications in chain for-

mation reduces due to this approach. 

 

4 Methodologies 

4.1 Implementing Jaya Algorithm 

While implementing the JA, the process is based on searching for the best solution 

and avoiding the worst solution for a certain problem. In the process, there are basic 

parameters, such as the size of the population, termination condition, number of de-

sign variables, etc. The termination condition is usually the maximum number of 

iteration. Maximizing or minimizing an objective function f(x) is the primary objec-

tive of this algorithm [20]. Suppose we have m design variables at iᵗ ͪ  iteration. Also, 

there are n candidate solutions. The best-obtained candidate solution for f(x) from all 

candidate solutions is represented as f(x)best. Similarly, we represent the worst candi-

date solution as f(x)worst. We use Xj,k,i to represent the jᵗ ͪ  designing variable for kᵗ ͪ  

candidate at iteration number i. The modification of Xj,k,i is X'j,k,i. We do this modifi-

cation by the following equation: 
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X'j,k,i  =  Xj,k,i  +  r1,j,i  (Xj,best,i - |X j,k,i|) – r2,j,i  (Xj,worst,i - |X j,k,i|)      (1) 

In the equation, Xj,best,i represents j variable's value for the best candidate, and 

Xj,worst,i represents j variable's value for the worst candidate. r1,j,i and r2,j,i are two 

random numbers ranging from 0 to 1 [21]. With this equation, the search moves to-

wards the best solution. Depending on which one is bigger between X'j,k,i and Xj,k,i, 

we update the solution. The process continues as a loop. As the iteration keeps mov-

ing forward, the solution becomes more and more optimum. 

4.2 Implementing Cuckoo Search Algorithm 

The CS has some stages. Usually, we begin with an objective function f(x). Then 

initial population is generated having n host nests xi (i=1,2,….,n). The search contin-

ues till the maximum generation. In each generation, a cuckoo is selected randomly 

by lévy flight. We evaluate the fitness or quality of the cuckoo. We choose a nest 

randomly. Then we compare the fitnesses of cuckoo and nest and replace the one 

having lower fitness [22]. 

While generating new solution x(t+1) for, suppose cuckoo i, we can use the follow-

ing equation, 

x(t+1) = x(t) + α      Lévy(β)           (2) 

We use the product      meaning entry-wise walk during multiplications. There's 

esentially a random walk due to the Lévy flights [23]. We draw random steps of Lévy 

flights from a distribution of Lévy for large steps. 

Lévy ~ u = t-1- β (0 < β ≤ 2)             (3) 

This has an infinite variance, and with it, there's an infinite mean. The consecutive 

steps or jumps of a cuckoo develop a random walk process following a power-law 

and step-length distribution having a heavy tail. We abandon the worst nest's fraction 

Pa to help to build up new nests at new locations by randomly walking and mixing. 

The eggs or solutions get mixed by the random permutation depending on the differ-

ence or similarity to the host eggs. The step size sample generation isn’t trivial using 

the Lévy flights. A simple scheme can be shown as: 

 

xi
(t+1) = xi

(t) + α     Lévy(β) ~ 0.01 (u / |v|) (xi
(t) – xb

(t))       (4) 

Here, we have drawn u and v from normal distribution. 

u = N(0, σu
2)            (5) 

v = N(0, σv
2)            (6) 
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σu = 
1/ β          (7) 

σv = 1          (8) 

Here, we have used Γ as the standard Gamma function. 

5 Tests and Results 

All tests of the functions have been done on Intellij IDEA Community Edition 

2020.2.3. The tests were performed on Intel(R) Core(TM) i5-8250U (1.60 GHz, 3.4 

GHz) with 8 GB of DDR4 RAM on Windows 10 operating system. We have done the 

minimization of the functions and updated the minimized values and time perfor-

mances in milliseconds. Each test has been done with 1000 iterations. 

For JA, there was no need for any fixed parameter values. After taking the initial 

population, the process had moved towards the next iterations, where the population 

was updated using equation (1). For CS, there were some fixed parameter values. 

Probability, Pa = 0.25. σu = 0.6969 was used based on previous study[24]. The pa-

rameters varied in the iterations. 

We have used 11 functions for the tests as shown in table 1. 

Table 1. Benchmark functions 

No. Functions Conditions 

1.  f1(x) = x1
2 – x1x2 + x2

2 + 2x1 + 4x2 +3 -100 ≤ x1, x2 ≤ 100 

2.  f2(x) = x1
2 + 2x2

2 – 0.3cos(3πx1) – 0.4cos(4πx2) + 0.7 -100 ≤ x1, x2 ≤ 100 

3.  f3(x) = (x1
2 + x2 – 11)2 + (x1 + x2

2 – 7)2 -5 ≤ x1, x2 ≤ 5 

4.  f4(x) = |x1
2 + x2

2 – 2x1x2| + |sinx1| + |cosx2| -500 ≤ x1, x2 ≤ 500 

5.  f5(x) = 10x4 – 8x2 + 12x + 16 -100 ≤ x ≤ 100 

6.  f6(x) = 17x5 – 11x2 + 11x + 6 -100 ≤ x ≤ 100 

7.  f7(x) = 3x1
2 + 5x2

2 – 0.6cos(3πx1+4πx2) + 4 -5 ≤ x1,x2 ≤ 5 

8.  f8(x) = 3x1
2 + 7x2

2 + 15(sin2x1+sin2x2) -100 ≤ x1,x2 ≤ 100 

9.  f9(x)  = (2.7 – x1 + x1x2)2 + (1.85 – x1 + x1x2
2)2 + (3.1 – x1 + x1x2

3)2 -100 ≤ x1,x2 ≤ 100 

10.  f10(x)  = (x1
2 + x2 -19)2 + (3x1 + x2

2 – 16)2 -100 ≤ x1,x2 ≤ 100 

11.  f11(x) = 104x1
2 + x2

2 – (x1
2 + x2

2) + {10-4(x1
2 + x2

2)} -100 ≤ x1,x2 ≤ 100 
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Table 2. Results for Jaya Algorithm for minimized problems 

No. Best Results Worst Mean Time (ms) 

f1 -6.33 33.2 -2.934 53.6 

f2 0 0 0 59 

f3 0 4.3 0.891 56.3 

f4 1.00 1.41 1.116 64 

f5 5.23 5.23 5.23 54.3 

f6 -1.699 x 1011 -1.677 x 1011 -1.692 x 1011 74.9 

f7 3.4 3.45 3.407 63.46 

f8 0 0.01 0.001 65.55 

f9 0.68 2.88 2.265 83.67 

f10 0 1.02 0.104 59.1 

f11 0 0.84 0.107 44.1 

 

Table 3.  Results for Cuckoo Search Algorithm for minimized problems 

No. Best Results Worst Mean Time (ms) 

f1 -6.33 -6.33 -6.33 33.5 

f2 0 0 0 35.1 

f3 0 0 0 32.9 

f4 1.00 1.15 1.055 151.5 

f5 5.23 5.23 5.23 29.6 

f6 -1.7 x 1011 -1.7 x 1011 -1.7 x 1011 672391 

f7 3.4 3.4 3.4 40.85 

f8 0 0 0 37.5 

f9 0 0.68 0.612 99.3 

f10 0 0 0 40.5 

f11 0 0 0 26.5 

 

Table 2 and Table 3 show the test obtained results. Each test was run 20 times and 

the best-minimized value, the worst minimized value, mean value, and the execution 

time were reported. The execution time of the two algorithms are shown in the tables. 

Also, Fig. 1 and Fig. 2 show the comparison of the two algorithms in terms of mean 

values and execution times for the functions. 
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Fig. 1. Performance Comparison between Jaya algorithm and Cuckoo Search in term of test 
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Fig. 2. Execution time comparison between Jaya algorithm and Cuckoo Search. 

Fig. 3 shows the screenshot of a Cuckoo Search program done in Intellij IDEA 

Community Edition 2020.2.3. The coding of the algorithms has been done in Java. 
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Fig. 3.   Screenshot of the part of a program of the Cuckoo Search based function solution with 

output in Intellij IDEA Community Edition 2020.2.3 

6 Discussions 

As observed from the tests, JA has performed well consistently for all the 11 func-

tions. CS hasn’t been consistent like JA, but the mean values determined from the 

tests of the CS were nearer to the best-minimized values as compared to JA for many 

functions. As shown in table 2 and 3, for 8 of the 11 functions, CS required less exe-

cution time as compared to that of JA but the differences weren’t much. For 3 func-

tions, which are function 4 (f4), function 6 (f6), and function 9 (f9), JA took less execu-

tion time as compared to that of CS. But in these cases, the time differences were 

larger as compared to those of other functions. In the case of function 6 (f6), the aver-

age execution time of JA was 74.9 ms, but the average execution time of CS algo-

rithm was 672391 ms. Here, the difference is huge. For function 4 (f4), CS takes 

151.5 ms, where JA takes only 64 ms. But when JA takes larger execution time as 

compared to CS, the difference isn’t much. There has been no case in the tests where 

JA took equal to or more than twice the execution  time of CS, according to Fig 2. So, 

it indicates that CS may take much larger execution time for some functions as com-

pared to JA. Considering this case, JA is more consistent. 

CS showed better performance for 8 of the 11 functions in terms of mean values 

and execution times as shown in table 2 and 3, but lacked consistency as compared to 

JA. For function 9 (f9), CS was better than JA, but the exection time was a little high-

er. Regarding execution time, in Fig. 2, CS’s performance isn’t always efficient for all 

functions. There are some functions, where CS performs at a much slower speed. For 

some functions, CS can take extremely large execution time, as shown in the case of 

function 6 (f6). Regarding these issues, JA is a simpler and more consistent algorithm, 

providing solutions to most functions with an acceptable execution time. But regard-

ing mean values, JA performs well but is less optimum as compared to CS. From the 
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overall scenario, JA is more consistent due to its performances in acceptable ranges 

for most functions. 

7 Conclusion and Future Works 

This paper evaluated the performances of CS and JA using the benchmark func-

tions in terms of mean values and execution times. Each of the algorithms has shown 

impressive results in many cases. There has also been complexities for both algo-

rithms regarding execution time and mean values in some cases. In the overall scenar-

io, JA has turned out to be a more consistent algorithm. The analysis of these 2 algo-

rithms will help engineers to select the right algorithm for specific problems. 

As for the future works, we can make a detail analysis explaining for which func-

tions CS works well with acceptable execution times and for which functions, CS 

struggles to maintain a faster execution time. Also, there are works to be done with 

the functions, for which, CS takes much longer execution time. 
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