
EasyChair Preprint
№ 1763

One-Shot Template Matching for Automatic
Document Data Capture

Pranjal Dhakal, Manish Munikar and Bikram Dahal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 24, 2019

One-Shot Template Matching for Automatic
Document Data Capture
Pranjal Dhakal, Manish Munikar and Bikram Dahal

Docsumo
{pranjal.dhakal, manish.munikar, bikram.dahal}@docsumo.com

Abstract—In this paper, we propose a novel one-shot template-
matching algorithm to automatically capture data from business
documents with an aim to minimize manual data entry. Given
one annotated document, our algorithm can automatically extract
similar data from other documents having the same format.
Based on a set of engineered visual and textual features, our
method is invariant to changes in position and value. Experiments
on a dataset of 595 real invoices demonstrate 86.4% accuracy.

Index Terms—document processing, automatic data capture,
template matching, one-shot learning

I. INTRODUCTION

Every business needs to process a lot of documents such
as invoices, bills, statements, forms, etc. saved in unstructured
formats such as PDF or scanned images into their accounting
software. The larger ones have to process many thousands
of documents per month. There are few ways to do this
currently: (a) manual data entry and processing, (b) template-
based extraction model, or (c) template-less machine learning
approach. Manual data entry is not only time-consuming
and expensive but very error-prone as well. Template-based
approach requires an initial setup of hard-coded rules for every
template, but it still fails badly when an unseen template is
encountered [1]. Template-less machine learning method tries
to learn generic features of various fields to extract so that they
work well in various templates but they need to be trained with
a large number of annotated documents to perform well.

In this paper, we propose a novel one-shot template match-
ing algorithm that brings the best of both worlds—template-
based engine and template-less machine learning. Our algo-
rithm doesn’t require any initial template setup, nor does it
need a very large amount of data to get high accuracy. Once
provided with one annotated document, future documents
in the same format are processed automatically with 90%
accuracy. We exploit the fact that for a specific vendor and
document type, the document format is very similar, i.e., the
position of annotated values and the neighboring keywords
don’t change much. Moreover, if it extracts a field incorrectly,
the user can correct it very easily using our convenient review
tool and subsequent documents in that format will learn the
corrections as well.

Our algorithm saves the contextual features of every an-
notated value that includes information about both visual as
well as textual features of not just the actual value but the
surrounding keywords as well, which is explained in detail in
Section III. Our algorithm also automatically finds out whether

a new document belongs to any of the previously saved
formats. To match a new document with a saved template, we
use a combination of image similarity [2] and textual similarity
[3] metrics.

The rest of the paper is organized into four sections. In
Section II, we revisit the various previous approaches to solve
similar problems, and also mention how our approach stands
out. In Section III, we explain our algorithm in detail. We
discuss the experiments and their results in Section IV. Finally,
in Section V, we provide concluding remarks and possible
future works.

II. RELATED WORK

Deciding whether two documents are of the same format
requires a combination of image similarity and text similarity
metrics. A number of perceptual hashing methods [4], [5] have
been used to detect near-duplicate images. Zeng et al. used
eigenvalue matrix computed by Singular Value Decomposition
(SVD) of image as features and computed similarity by
comparing the angle between the eigenvalue matrices mapped
into vector space [2]. Similarly, the most common approach for
measuring textual similarity is the Levenshtein edit distance
[3].

Flexible template-based extraction systems [1], [6]–[8] lo-
cate the required text in the document by using the distance
and direction from important surrounding keywords such as
field labels. Cesarini et al. [6] only look at the nearest keyword
whereas d’Andecy et al. [7] computes distances and angles
from every other word in the document and predicts the final
location by averaging over the distances and angles from all
words weighted by their itf-df scores.

The first serious attempt at solving the automatic data
capture problem using machine learning was made by Rossum
[9], [10]. Trying to mimic human brain, they process doc-
uments in three stages: skim-reading, data localization, and
precise reading. Holt et al. [11] and Palm et al. [12] used
a content-based template-less machine learning approach that
can classify any text block into one of predefined labels
thereby claiming to work in unseen document formats as well.
In [11], the authors reported 92.8% percent accuracy after
training the model with 300,000 documents. Completely vision
object-detection models such as Faster-RCNN [13] and YOLO
[14], [15], being trained on natural scenes, produce mixed
results on document images. All these approaches require a
large volume of annotated documents to train well.

Our method automatically utilizes template-features without
needing any template-based rules. Since existing methods are
either rigidly template-dependent or template-less, we cannot
compare our work directly with any of them.

III. METHODOLOGY

Fig 1 shows the high-level architecture of our model. There
are three major steps: template matching, region proposal, and
final area selection. These are explained in detail shortly. Our
model maintains a database of unique annotated templates,
takes a new document as input, and predicts the annotation for
the new document if such a template exists in our database.

Template
Database

Region Proposal

Document

Final Area Selection

Text Extraction

Manual Annotation &
Library update

Feature Generation
and

Comparison

Yes

Match >
Threshold?

NoTemplate Matching

Fig. 1. Model architecture (placeholder image)

A. Optical Character Recognition (OCR)

A new document may be an image, without any texts
embedded. In that case, we can get the texts present in the
document by OCR. For this research, OCR can be thought
of as a black box that takes an image as input and outputs a
list of words and their positions (bounding boxes). There are
many high-quality commercial OCR engines such as Google
Vision [16], Microsoft Azure Vision [17], Amazon Textract
[18]. We used Amazon Textract for this research because they
produced the best result as they were trained exclusively for
document images.

B. Template Matching

In this step, a matching template from the database is chosen
for the input document. If there is no match, the algorithm
halts and the document is sent for manual annotation. We use
a combination of visual and textual similarity measures to find
a match. For image similarity, we compute the SVD of images
and measure the cosine similarity between the Σ diagonal
matrices [2]. Equation (1) shows the SVD of a matrix I .
However, before SVD, we perform some image preprocessing
to adapt this metric to document images and make it invariant
to image dimensions and lighting conditions.

Let I = preprocessed input document image, and T =
preprocessed template document image.

(UI ,ΣI , VI) = SVD(I) (1)
(UT ,ΣT , VT) = SVD(T)

Now, the visual similarity Simvisual is given by:

Simvisual = cos θ =
ΣI · ΣT

|ΣI ||ΣT |
∈ [−1, 1] (2)

For text similarity, we compute the fuzzy match [19] (based
on Levenshtein distance [3]) of the top-n and bottom-n lines
of text in the documents. Again, before the fuzzy matching,
we perform some preprocessing steps to normalize the text.

Simtext = FUZZY-MATCH(tI , tT) ∈ [0, 1] (3)

where, tI is the concatenation of the preprocessed top-n and
bottom-n lines of text in the input document, and tT is the
same for the template document. The combined similarity is
simply the sum of visual and textual similarities:

Simcombined = Simtext + Simvisual (4)

The template having the highest Simcombined, with Simtext ≥
C, is selected as the final template for the input image, where
C is a manually set threshold. If Simtext < C for all templates
in the database, then the document is manually annotated and
added to the database as a new template.

C. Region Proposal

Once the template document is selected, we use the template
image and annotation to predict the approximate regions of all
the fields in the input document. The annotation object is a
JSON with field names as keys and the associated values and
positions (top-left and bottom-right coordinates of the values)
as the values. An example of an annotation object is given
below:

{”invoice no”:
{”position ” : [53, 671, 452, 702],
”value”: ”INV1234”},

”date”:
{”position ” : [50, 635, 312, 666],
”value”: ”2019−08−24”},

” seller ” :
{”position ” : [259, 27, 464, 58],
”value”: ”ABC Pvt. Ltd.”},

”buyer”:
{”position ” : [821, 445, 1153, 468],
”value”: ”Zinc Enterprises”},

” total ” :
{”position ” : [48, 553, 419, 577],
”value”: ”1,234.56”}}

Listing 1. An annotation sample. The coordinates are calculated from the
top-left corner of the document.

In this illustration, the annotation is a JSON object where
the keys are the fields to be captured and the values have the
position information of the text as well as the actual text for
the field value. The “position” parameter contains the top-left

(xmin, ymin) and bottom-right (xmax, ymax) coordinates of
the rectangle surrounding the text.

Once we have the annotation of the matching template im-
age, the following algorithm is used to get approximate region
proposal for each field. We use the correlation coefficient R
between the input document image and template image [20]
to obtain the approximate region-proposal.

R(x, y) =
∑
x′,y′

(T ′(x′, y′) · I ′(x+ x′, y + y′)) (5)

where,

T ′(x′, y′) = T (x′, y′)−
∑

x′′,y′′ T (x′′, y′′)

w · h

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)

−
∑

x′′,y′′ I(x+ x′′, y + y′′)

w · h

Algorithm 1 Region Proposal
Input:
• Preprocessed input document image (I).
• Preprocessed template document image (T).
• Template document annotation (AT).

Output: Region proposals for all the fields in the input
document.
Procedure:

1: wT ← WIDTH(T) {Template Image Width}
2: hT ← 1.414 ∗ wT

1 {Template Image Height}
3: for each field in AT do
4: Get rectangular area of the field.

(xmin, ymin, xmax, ymax)
5: Increase the area of the rectangle slightly in all direc-

tions.2

6: Crop out the new rectangular area in the template
image.

7: Find the area in the input image where the cropped area
from template image is most likely to match using (5).

8: end for

Algorithm 1 presents the pseudocode of our region proposal
algorithm.

D. Final Area Selection

Next, we pinpoint the location of the annotation values in
the input document by finding common words—present in
both the input region and the template region of the field—
and projecting the distance and displacement from the template
region to the input region. This method was first devised in
[1], but they looked for common words in whole document.

1This is done to make the regions have the same aspect ratio to handle
documents with different aspect ratios.

2We expand the area in order to include some keywords common in both
the template and the input image. Those keywords will help us accurately
pinpoint the location of field values in the input regions proposed.

We only look for common keywords inside the proposed
regions for computational efficiency. Algorithm 2 shows the
pseudocode for this algorithm.

Algorithm 2 Final Area Selection
Input:
• Input document OCR
• Template document OCR
• Region Proposals RPI in input document (from Algo-

rithm 1)
• Input document and Template document dimensions.

Output: Final bounding-boxes for all fields in the input
document.
Procedure:

1: for each field in RPI do
2: Find the texts that are common in this proposed area in

the input image and corresponding area in the template
image.

3: if matches > 0 then
4: Find the text that is closest to the actual value for the

field in the template image.
5: Get the vector from the center of the closest text and

the actual value for the field in template image.
6: Normalize the vector with the dimensions of template

image. De-normalize using the input image dimen-
sions.

7: Using the vector in the input image, predict the center
where the value of the field is present.

8: Using this center coordinates and the dimensions of
rectangle surrounding the value of the field in the
template image, obtain the rectangle in the input
image using appropriate scaling.

9: else
10: Using the dimensions of rectangle surrounding the

value of the field in the template image, obtain a
rectangle at the center of the approximate area.

11: end if
12: end for

E. Text extraction

Finally, once we have the final bounding box of the value,
we can extract the text from the OCR data. We extract all
the words in the OCR data whose area overlaps with the
proposed bounding box by more than a preset threshold and
then combine them in natural reading order to get the final
text for each of the fields.

IV. EXPERIMENT AND RESULT

A. Dataset

There are no publicly available dataset of modern business
documents such as invoices, bank statements or employee
forms, which is understandable given their strict confidential-
ity. Therefore, for this research, we acquired a dataset of 595
annotated invoices from a large international invoice financing

company. All of them were in the English language and there
were about 35 unique formats or templates. For fields to
extract, we considered the most common ones: (a) invoice
number, (b) date, (c) seller, (d) buyer, and (e) total due. We
used one sample each of every template as the training set
and the rest 560 documents as the test set. Again, due to
confidential reasons, we cannot make the dataset public.

B. Evaluation Metrics
The ground truth values don’t have positional values, so we

can’t compute the quality of output bounding boxes. Therefore,
we evaluate our model by comparing the output values of the
extracted fields. Since text output may have few erroneous
characters, mostly due to OCR error, we define two metrics
for evaluation—MEAN-FUZZY-MATCH and ACCURACY—as
follows:

MEAN-FUZZY-MATCH =

∑N
i=1 FUZZY-MATCH(ŷi, yi)

N
(6)

ACCURACY =
no. of samples where ŷi = yi

N
(7)

where, ŷ and y are the output and ground truth values
respectively both with length N , and FUZZY-MATCH ∈ [0, 1]
is the fuzzy text matching function based on Levenshtein
distance. In our implementation, we used the fuzzywuzzy
library [19] for this.

The ACCURACY, which checks for exact match between
the predicted value and the ground-truth, is affected by minor
OCR errors (such as recognizing “0” as “O”). We include the
MEAN-FUZZY-MATCH metric to see how our model would
perform in cases where exact match isn’t required.

C. Result
The results of our model on the 560 test invoices are

shown in Table I. We can see that MEAN-FUZZY-MATCH
is significantly greater than ACCURACY, implying that our
model can leverage better accuracy if the minor OCR errors
are corrected by post-processing. For instance, the buyer and
seller names can be matched with a lookup table. Similarly,
dates and amounts can be canonicalized to eliminate format
discrepancies. Other texts can be normalized by trimming
whitespaces, converting to lowercase, and so on.

TABLE I
THE PERFORMANCE OF OUR MODEL.

Field ACCURACY MEAN-FUZZY-MATCH

Invoice number 79.2 80.7
Date 86.4 89.4
Seller 91.5 93.8
Buyer 90.2 94.1
Total due 84.7 88.2

Overall 86.4 89.2

Considering the fact that our model doesn’t require per-
template rules and requires very few training samples, com-
bined with our easy review tool, getting over 86% accuracy

can result in a significant reduction in time, cost, and effort it
takes for businesses to process documents.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new way of solving the
problem of automatic data capture from documents. Requiring
only one example per template, our method is very effective
for dataset with recurring templates.

This research has many areas for improvement though. First
of all, it can’t handle multi-page documents. Future works can
attempt to tackle this. In addition, our model, which right now
only looks at only one saved sample to predict the outputs, can
be made to predict based on all saved samples of the specific
template to generalize better and improve overall accuracy.
Also, further research can be done to make it work with
recurring fields like table line items.

ACKNOWLEDGMENT

We would like to thank Rushabh Sheth for providing us the
required funding and resources. We are also grateful for the
Documso annotators for manually labeling the dataset.

REFERENCES

[1] M. Rusinol, T. Benkhelfallah, and V. Poulain dAndecy, “Field extraction
from administrative documents by incremental structural templates,”
in 2013 12th International Conference on Document Analysis and
Recognition (ICDAR). IEEE, 2013, pp. 1100–1104.

[2] J. X. Zeng, D. G. Bi, and X. Fu, “A matching method based on svd
for image retrieval,” in 2009 International Conference on Measuring
Technology and Mechatronics Automation, vol. 1. IEEE, 2009, pp.
396–398.

[3] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[4] X. M. Niu and Y. H. Jiao, “An overview of perceptual hashing,” Acta
Electronica Sinica, vol. 36, no. 7, pp. 1405–1411, 2008.

[5] O. Chum, J. Philbin, A. Zisserman et al., “Near duplicate image
detection: min-hash and tf-idf weighting.” in BMVC, vol. 810, 2008,
pp. 812–815.

[6] F. Cesarini, M. Gori, S. Marinai, and G. Soda, “Informys: A flexible
invoice-like form-reader system,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 7, pp. 730–745, 1998.

[7] V. P. d’Andecy, E. Hartmann, and M. Rusinol, “Field extraction by
hybrid incremental and a-priori structural templates,” in 2018 13th IAPR
International Workshop on Document Analysis Systems (DAS). IEEE,
2018, pp. 251–256.

[8] D. Schuster, K. Muthmann, D. Esser, A. Schill, M. Berger, C. Weidling,
K. Aliyev, and A. Hofmeier, “Intellix–end-user trained information ex-
traction for document archiving,” in 2013 12th International Conference
on Document Analysis and Recognition (ICDAR). IEEE, 2013, pp. 101–
105.

[9] Rossum, “Rossum: Data extraction with artificial intelligence,” Accessed
on: Aug 27, 2019. [Online]. Available: https://rossum.ai

[10] M. Holeček, A. Hoskovec, P. Baudiš, and P. Klinger, “Line-items
and table understanding in structured documents,” arXiv preprint
arXiv:1904.12577, 2019.

[11] X. Holt and A. Chisholm, “Extracting structured data from invoices,”
in Proceedings of the Australasian Language Technology Association
Workshop 2018, 2018, pp. 53–59.

[12] R. B. Palm, O. Winther, and F. Laws, “Cloudscan—a configuration-free
invoice analysis system using recurrent neural networks,” in 2017 14th
IAPR International Conference on Document Analysis and Recognition
(ICDAR), vol. 1. IEEE, 2017, pp. 406–413.

[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

https://rossum.ai

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[15] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[16] Google, “Google Cloud Vision OCR,” Accessed on: Aug 27, 2019.
[Online]. Available: https://cloud.google.com/vision/docs/ocr

[17] Microsoft. Microsoft Azure Computer Vision. Accessed on: Aug 27,

2019. [Online]. Available: https://azure.microsoft.com/en-us/services/
cognitive-services/computer-vision

[18] Amazon Web Services. Amazon Textract. Accessed on: Aug 27, 2019.
[Online]. Available: https://aws.amazon.com/textract

[19] A. Cohen, “FuzzyWuzzy: Fuzzy string matching in python,” Accessed
on: Aug 27, 2019, 2011. [Online]. Available: https://pypi.org/project/
fuzzywuzzy

[20] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

https://cloud.google.com/vision/docs/ocr
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://aws.amazon.com/textract
https://pypi.org/project/fuzzywuzzy
https://pypi.org/project/fuzzywuzzy

	Introduction
	Related Work
	Methodology
	Optical Character Recognition (OCR)
	Template Matching
	Region Proposal
	Final Area Selection
	Text extraction

	Experiment and Result
	Dataset
	Evaluation Metrics
	Result

	Conclusion and Future Work
	References

