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ABSTRACT

The Finite Element Method is a widely used discretization method for mechanical systems. To ensure accu-
rate simulations on the one hand and to ensure an acceptable simulation time on the other hand, Model Order
Reduction is often applied to reduce the mathematical complexity of the system. One possible projection
based Model Order Reduction method for linear systems is moment matching based on Krylov subspaces.
In this method, the size of the reduced order model is directly proportional to the number of inputs and
outputs of the system. Therefore, tangential directions can be applied to reduce the number of inputs used
for Model Order Reduction. In this contribution, we examine the suitability of the Singular Value Decom-
position Model Order Reduction (SVDMOR) method for mechanical systems. SVDMOR is commonly
used for electrical circuit simulation and reduces the number of inputs and outputs based on a singular value
decomposition of the transfer function. The behavior of the singular values, which correspond to the error
between the full order model and the model with a reduced number of inputs and outputs, as well as the
tangential directions are investigated in the frequency domain on a numerical example.

1 INTRODUCTION

The increasing demand for cost reduction and material savings makes computer simulations of complex me-
chanical systems indispensable. The linear Finite Element Method is a widely used discretization method.
This method enables the determination of the eigenfrequencies and eigenmodes of the system, but also to
carry out simulations in the time and frequency domain. These results can then, for example, be used for
design optimization or controller design. From a mathematical point of view, the Finite Element Method
results in a set of ordinary differential equations (ODE). Depending on the required accuracy of the model,
the dimension of the ODE can easily reach up to one million or even more. Model Order Reduction is
a powerful tool to enormously reduce the computational time to solve the ODE while keeping the main
properties of the system. The idea is to approximate the system dynamics in a lower dimensional subspace.
A popular method is moment matching based on Krylov subspaces. It matches the input to output behavior
between the full order model and the reduced order model at so-called expansion points in the frequency
domain. The dimension of the reduced order model directly depends on the number of inputs and outputs
of the system. However, the number of inputs can become very large for example for systems with surface
inputs or when multiple physical domains are coupled in co-simulations. Tangential interpolation reduces
the number of inputs and outputs that are used for Model Order Reduction and weakens the aforementioned
interpolation condition. The Singular Value Decomposition Model Order Reduction (SVDMOR) has been
developed in [10] and was successfully applied and extended for the simulation of electrical circuits with
many terminals in [18, 6, 7, 21]. A detailed investigation of the suitability for Finite Element Models of
mechanical systems is still pending.

This contribution aims at identifying the potential of SVDMOR in the context of Model Order Reduction of
mechanical Finite Element models. It gives insights into the error approximation in the frequency domain
and on the choice of the tangential directions.

This paper is structured as follows. In Section 2, we first introduce the basics about ordinary differential
equations to describe Finite Element models, before we explain projection based Model Order Reduction
and specifically Model Order Reduction using moment matching with Krylov subspaces and tangential
interpolation, and introduce some error measures to determine the accuracy of different models. Section 3



investigates the SVDMOR to reduce the number of inputs and outputs in combination with classical Model
Order Reduction based on moment matching for a mechanical example.

2 THEORETICAL BACKGROUND

In this section, the theoretical background on system description with Finite Element models, Model Or-
der Reduction in general, and especially the method of moment matching and tangential directions using
Singular Value Decomposition Model Order Reduction is explained.

2.1 System description

For complex mechanical systems it is often very difficult or mostly impossible to find an analytical solution.
Therefore, these are typically spatially discretized using the linear Finite Element Method (FEM), see [4, 26]
for details about FEM. The resulting linear second-order ODE

Mq̈(t) +Dq̇(t) +Kq(t) = Bu(t),

y(t) = Cq(t)
(1)

with initial conditions
q(0) = q0, q̇(0) = q̇0, t ≥ 0 (2)

is called equation of motion. This equation contains the time-dependent vector of nodal displacements
q(t) ∈ RN and its first and second derivatives with respect to time, q̇(t) and q̈(t). It has N degrees of
freedom. The mass and stiffness matrices M ,K ∈ RN×N contain information about the mass distribution
and material properties whereas the damping matrix D ∈ RN×N is used to model dissipative effects. A
commonly used damping model is the so-called Rayleigh damping D = αM + βK with the damping
constants α, β ∈ R+. The input vector u(t) ∈ Rb is mapped to the nodal displacements by the input
matrix B ∈ RN×b whereas the output matrix C ∈ Rc×N maps the nodal displacements to the output
vector y(t) ∈ Rc.

Transferring the equation of motion (1) into the Laplace domain with the complex Laplace variable s ∈ C
and setting the initial conditions to q(0) = q̇(0) = 0 results in the transfer function

H(s) =
Y (s)

U(s)
= C

(
s2M + sD +K

)−1
B ∈ Cc×b. (3)

The transfer function represents a mapping from the inputs in the Laplace domain U(s) ∈ Cb to the outputs
in the Laplace domain Y (s) ∈ Cc. As described in [20], the transfer function is often evaluated along the
imaginary axis which is then called frequency response H(iω) with the angular frequency ω ∈ R and the
imaginary unit i. For systems with multiple inputs and multiple outputs (MIMO-systems), the Frobenius
norm

∥H(s)∥F =

√√√√ c∑
i=1

b∑
j=1

|Hi,j(s)|2 =

√√√√ m∑
i=1

σ2
i (s) (4)

or the spectral norm
∥H(s)∥2 = σ1(s) (5)

can be taken into account to have a frequency dependent scalar function of the input to output behavior of
the system. Here, σi ∈ R are the singular values of the transfer matrix and σ1 is the largest singular value.
The number of singular values is m = min(b, c).

2.2 Model Order Reduction with Krylov subspaces and tangential interpolation

Depending on the complexity of the model and on the requirements on the simulation accuracy, the di-
mension N of the system matrices can easily become very large, potentially exceeding millions. As a
consequence, the simulation time can become infeasible. In such cases, it is possible to apply Model Order



Reduction in order to achieve a compromise between the simulation time and the model accuracy. Projec-
tion based Model Order Reduction (MOR) aims at finding a reduced order model

Mredq̈red(t) +Dredq̇red(t) +Kredqred(t) = Bredu(t),

ȳ(t) = Credqred(t)
(6)

with initial conditions
qred(0) = WTq(0), q̇red(0) = WTq̇(0), t ≥ 0 (7)

by approximating the nodal displacements in a low dimensional subspace V = span(V ) with

q(t) ≈ V qred(t). (8)

In Equations (6) and (8), qred(t) ∈ Rn is the reduced order state vector having n ≪ N degrees of freedom,

Mred = WTMV , Dred = WTDV , Kred = WTKV ,

Bred = WTB, Cred = CV
(9)

are the reduced order system matrices, and ȳ(t) ∈ Rc is the output of the reduced order system. The ma-
trices V ∈ RN×n and W ∈ RN×n are the biorthogonal (i.e. WTV = I) reduction matrices. If W = V ,
the projection is called orthogonal projection or Galerkin projection, otherwise it is called skew projection
or Petrov-Galerkin projection. Since the orthogonal projection maintains symmetry and stability properties,
only orthogonal projection is used in this work. See [9] for some investigations on skew projection for
mechanical systems.

There exist multiple methods for projective Model Order Reduction for linear time-invariant systems that
seek to find a subspace that is as small as possible on the one hand and, on the other hand, minimizes the
error between the full order model and the reduced order model in the desired domain and norm. Well-
known methods are based on modal truncation, balanced truncation or rational interpolation, also called
moment matching, see e.g. [2, 24] or especially [19, 23] for an overview on Model Order Reduction for
mechanical systems.

In this work, we focus on moment matching methods, that are widely used for mechanical engineering
problems, see [17]. Moment matching is based on matching the transfer function and, if desired, also the
derivates of the transfer function with respect to the complex Laplace variable of the full order model and
the reduced order model. The resulting property can be expressed as

∂iH(s)

∂si

∣∣∣∣
s=ŝk

=
∂iHred(s)

∂si

∣∣∣∣
s=ŝk

, (10)

where s = ŝk are specific frequency expansion points that have to be chosen by the user or in iterative
process, see e.g. [15] for point placement of expansion points or [16, 11] for automated iterative shift
selection. In general, Krylov subspaces are used to produce reduction matrices that fulfil the property given
in Equation (10). A second order Krylov subspace is for the expansion point ŝk ∈ C up to the moment
Jk ∈ N is explained in [24, 12] and is given by

ŝkKJk
(A1,A2,G1) = span(R0,R1, . . . ,RJk−1)

with R0 = G1,

R1 = A1R0,

Rj = A1Rj−1 +A2Rj−2 for j = 2, 3, . . . , Jk − 1,

A1 = −(ŝ2kM + ŝkD +K)−1(2ŝkM +D),

A2 = −(ŝ2kM + ŝkD +K)−1M ,

G1 = −(ŝ2kM + ŝkD +K)−1B.

(11)

Multipoint moment matching matches the transfer function and its derivatives at multiple frequency expan-
sion points and the resulting reduction matrix

span(V ) = span(ŝ1KJ1 ∪ . . . ∪ ŝKKJK
) (12)



is spanned by the union of the individual Krylov subspaces. Deflation strategies such as the modified Gram
Schmidt algorithm are typically used to ensure a full rank of the reduction matrix. Furthermore, it ensures
that the columns of the reduction matrix are orthogonal. These subspaces are often called input Krylov
subspaces, because they use the input matrix B. The output Krylov subspaces to obtain the reduction
matrix W can be built similarly, using the output matrix C.

Obviously, the rank of the reduction matrix V , and, therefore, the size of the reduced order model, depends
on the number of expansion points, the number of matched moments at each expansion point and on the
number of system inputs. Especially the number of inputs is crucial since the number of inputs can easily
become very large, for example for systems with a surface input. To overcome this issue, the concept of
tangential interpolation has been developed by [13] and is also explained in [3, 5, 8, 22]. The idea is, to
introduce left tangential directions l ∈ Cc and right tangential directions r ∈ Cb such that the transfer
function

H(ŝi)ri = Hred(ŝi)ri (13)

lTjH(ŝj) = lTjHred(ŝj) (14)

is only interpolated along these specific directions. The resulting subspaces are built with the reduced input
matrix B̃ = Br ∈ CN and reduced output matrix C̃ = lTC ∈ C1×N , respectively. Multiple methods exist
to construct the tangential directions. In [8, 22] randomly chosen tangential directions as well as tangential
directions based on the eigenvalues of the system were investigated.

A well-known method in Model Order Reduction of microelectronic systems with many input ports is
Singular Value Decomposition Model Order Reduction (SVDMOR) [10] and the Extended SVDMOR (ES-
VDMOR) [18]. The SVDMOR approach is based on the singular value decomposition of the transfer
function

H(s) = U(s)Σ(s)PH(s) (15)

with a unitary matrix of left singular vectors U(s) ∈ Cc×c, a unitary matrix of right singular vectors
P (s) ∈ Cb×b with the superscript H indicating the conjugate transpose of the matrix and a matrix Σ(s) =
diag(σ1(s), . . . , σm(s)) ∈ Rc×b with the singular values σi(s) ∈ R on the diagonal in descending order
sorted by their dominance. These matrices are now structured in two parts such that

U(s) =
[
U1(s) U2(s)

]
, Σ(s) =

[
Σ1(s) 0
0 Σ2(s)

]
, P (s) =

[
P1(s) P2(s)

]
(16)

with U1(s) ∈ Cc×r being the first r left singular vectors and P1(s) ∈ Cb×r are the first r right singular
vectors. Using these matrices, the transfer function can be represented as a low-rank approximation

U(s)Σ(s)PH(s) ≈ U1(s)Σ1(s)P
H
1 (s) = Ĥ(s) ∈ Cc×b. (17)

The ESVDMOR method is an extension of the SVDMOR method where also higher order moments of the
transfer function are considered and the singular value decomposition is performed separately for input and
output moments.

With U1(s) and P1(s) as tangential directions, the modified input and output matrices

B̃(s) = BP1(s) ∈ CN×r and C̃(s) = UH
1 (s)C ∈ Cr×N (18)

have only r inputs and outputs. The input output reduced transfer function becomes

H̃(s) = C̃(s)
(
s2M + sD +K

)−1
B̃(s) ∈ Cr×r, (19)

which can be projected back to the full input output space resulting in the projected transfer function

Ĥ(s) = U1(s)C̃(s)
(
s2M + sD +K

)−1
B̃(s)PH

1 (s) ∈ Cc×b. (20)

It should be noted that, since U1(s) and P1(s) are frequency dependent, the reduced input and output
matrices B̃(s) and C̃(s) also become frequency dependent. The classical Model Order Reduction to re-
duce the dimension of the system matrices as explained in Equations (6) to (9) is carried out with the



input reduced system H̃(s), which then results in the reduced order model with reduced number of inputs
H̃red(s) ∈ Cr×r. This reduced model can finally be projected back to the full input space, equivalent to
Equation (20), resulting in Ĥred(s) ∈ Cc×b.

The following list gives a structured overview of the resulting models:

• H(s) ∈ Cc×b: full order model with all inputs and outputs (initial model),

• H̃(s) ∈ Cr×r: full order model with reduced number of inputs and outputs,

• Ĥ(s) ∈ Cc×b: full order model with inputs and outputs projected back to full dimension,

• Hred(s) ∈ Cc×b: reduced order model with all inputs and outputs (reduced initial model),

• H̃red(s) ∈ Cr×r: reduced order model with reduced number of inputs and outputs,

• Ĥred(s) ∈ Cc×b: reduced order model with inputs and outputs projected back to full dimension.

2.3 Error measure

To evaluate the quality of the low-rank approximation as well as the Model Order Reduction, it is important
to have some decent error measures. According to the Eckhart–Young theorem [14], the spectral norm error
between the transfer function H(s) and its singular value decomposition based low-rank approximation
Ĥ(s) is defined as

εout(s) = ∥H(s)− Ĥ(s)∥2 = σr+1(s) (21)

and the Frobenius norm error is

∥H(s)− Ĥ(s)∥F =

√√√√ m∑
i=r+1

σ2
i (s). (22)

This is only valid in the special case of low-rank approximation with the singular value decomposition. If
the number of inputs or outputs is reduced with another method, the error cannot be calculated in this way.
The relative approximation error is

εout,rel(s) =
εout(s)

∥H(s)∥2
. (23)

Due to the invariance of the spectral norm under unitary transformation, the reduction error

εred(s) = ∥Ĥ(s)− Ĥred(s)∥2
= ∥U1(s)H̃(s)PH

1 (s)−U1(s)H̃red(s)P
H
1 (s)∥2

= ∥H̃(s)− H̃red(s)∥2

(24)

can be calculated either with the transfer functions projected back to the full input output space or with the
transfer function with the reduced number of inputs and outputs. Additionally, the relative reduction error
is calculated by

εred,rel(s) =
εred(s)

∥H̃(s)∥2
. (25)

According to [7] the total error, i.e. the error between the initial full order model and the reduced order
model with inputs and outputs projected back to full dimension, can be bounded by the sum of the previously
derived errors and results in

εtot(s) = ∥H(s)− Ĥred(s)∥2 ≤ ∥H(s)− Ĥ(s)∥2︸ ︷︷ ︸
εout(s)

+ ∥H̃(s)− H̃red(s)∥2︸ ︷︷ ︸
εred(s)

. (26)

This relation is useful because the reduction of the input and output dimension and the Model Order Reduc-
tion can be applied independently.



3 SVDMOR FOR A MECHANICAL SYSTEM

The investigated plate structure is shown in Figure 1. It is modeled with solid elements in Ansys. Due to
the clamping of all three degrees of freedom of every node on the left side of the structure, the resulting
mass- and stiffness matrices have N = 3900 degrees of freedom. Rayleigh damping with α = 3.86 and
β = 2.25 · 10−5 is added to the system. At every node on the upper surface of the structure, an input is
defined in vertical direction. All inputs are considered independent of each other, resulting in a Boolean
input matrix B with b = 651 inputs and as many columns. The outputs are defined equivalently resulting
in CT = B. The norm of the transfer function of the system from 0Hz to 1500Hz is depicted in Figure 2.
There are 14 eigenfrequencies in the frequency spectrum shown. As can also be seen in Equations (4) and
(5), the spectral norm is always smaller than or equal to the Frobenius norm.

Figure 1. Finite Element plate model with
3900 degrees of freedom. 651 inputs and
outputs are defined in vertical direction on
all nodes of the top surface of the plate.
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Figure 2. Spectral norm and Frobenius
norm of the transfer function of the plate
model.

When applying a classical moment matching based Model Order Reduction without any input reduction to
the given model, every new expansion point, that matches only the transfer function but doesn’t match higher
order moments, increases the dimension of the reduced order model by roughly 2b = 1302. The factor 2
occurs because the system is damped and a real-valued matrix with twice as many columns is created from
the initially complex-valued projection matrix, see [12]. The actual dimension is slightly smaller due to
deflation. Very often, the reduction error becomes significantly smaller with every new expansion point, but
it’s not always desired to have a comparatively small error and a relatively large reduced order model. For
some applications, larger errors with smaller models are more preferable. For this reason, we first examine
which tangential directions are dominant in the frequency range of interest.

Figure 3 shows the spectrum of the singular values of the transfer function in the frequency range mentioned
above. The first singular value is in the range from 2 ·10−7 to 6 ·10−4 for all evaluated frequencies. The size
of this interval decreases with higher numbers of the singular values. This also means that the approximation
error εout(s) is strongly dependent on the frequency if only few tangential directions are used, but the error
becomes almost constant if more tangential directions are taken into account. It is also noticeable that the
decay rate becomes much smaller for higher numbers of singular values. While the approximation error
can be reduced by approximately two orders of magnitude by increasing the number of used tangential
directions from 10 to 100, the approximation error cannot further be reduced significantly by using more
than 100 tangential directions.

The behavior of the singular values in the frequency range can be seen in Figure 4. A specific color rep-
resents the singular value that is associated with a specific tangential direction. Following for example the
dark green line shows that the associated tangential direction is most dominant in the lower frequencies and
looses importance for higher frequency range. Many singular values that are less dominant at low frequen-
cies remain almost constant within the frequency range. This is equivalent to what was shown in Figure 3.
The figure only shows the first 100 singular values, but singular values with a higher number also remain



almost constant in the given frequency range. The data in the figure is closely related to the Complex Mode
Indicator Function, see e.g. [25], that can be used to identify modal parameters from measurement data.
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Figure 3. Range of the singular values
in the frequency spectrum from 0Hz to
1500Hz.
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Figure 4. Frequency dependency of the singular values.

In Figure 5 the tangential directions at 0Hz and at 1500Hz are compared using the Modal Assurance
Criterion

MACi,j =

∣∣∣uH
i wj

∣∣∣2(
uH
i ui

)(
wH

j wj

) . (27)

The Modal Assurance Criterion gives information about the consistency between a vector ui and a vector wi

and returns values between 0 and 1 where 1 indicates full consistency, see [1]. The figure shows the 40 most
dominant tangential directions. Since CT = B in this example, H(s) is symmetric and the left tangential
directions are equal to the right tangential directions. Comparing the lines and the columns in Figure 5 it
can clearly be seen that all tangential directions that occur at 0Hz also occur at 1500Hz, even though the
order, i.e. the dominance or importance, of the first 17 tangential directions has changed. This shows that
the tangential directions do not have to be calculated for every new expansion point. Consequently, we
would have to take at least 17 tangential directions to have the most dominant tangential directions in the
whole frequency range. If only the first 5 tangential directions at 0Hz were taken into account, this would
not lead to reasonable results at 1500Hz because other tangential directions are dominant there.

Although it is sufficient to calculate the tangential directions only once and apply it at every expansion point
if enough tangential directions are taken into account, it is not possible to obtain information about the
required number of tangential directions and the resulting approximation error by carrying out the singular
value decomposition only once. Therefore, we suggest using the singular value decomposition at least twice,
e.g. at the lowest and at the highest frequency of interest, and compare the obtained right singular vectors
using the Modal Assurance Criterion from Equation (27) resulting in a representation like Figure 5. This
shows for which singular vectors the dominance fluctuates the most. At least all singular vectors that have
a different dominance in both frequencies, e.g. singular vectors 1 to 17 in Figure 5 should be considered as
tangential directions. As can be seen from Figure 3, using at least those 17 singular vectors as tangential
directions, the error over the whole frequency range stays here almost constant and can thus be calculated
sufficiently well by using the singular vectors from the previously performed singular value decomposition.

For the given example, the following results are obtained. The number of reduced inputs and outputs to
ensure the relative approximation error εout,rel(s) to be below 1% is r = 72. In comparison to the initial
model, this reduces the number of used inputs by a factor of 9. The resulting absolute approximation
error εout(s) can be seen in red in Figure 6. Applying a classical moment matching based Model Order
Reduction to the obtained input reduced model and requesting the relative reduction error εred,rel(s) to be
lower than 1% in the given frequency range results in a reduced order model with one expansion point at
750Hz with n = 144 degrees of freedom. The absolute reduction error is shown in green. The dashed
yellow line shows the sum of the input reduction error and the model reduction error and is approximately
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Figure 5. Modal Assurance Criterion of the 40 most dominant tangential directions at 0 Hz and 1500 Hz.

the total error εtot(s). In comparison, a Model Order Reduction scheme without any input reduction, i.e.
using all b = c = 651 inputs and outputs with a maximum error of 2%, which is the sum of the allowed
error for the input reduction and for the dimensionality reduction, results also in a reduced order model with
one expansion point at 750Hz with n = 1302 degrees of freedom, which is a factor of 9 larger than with
SVDMOR. The absolute reduction error for the model without input reduction is depicted as a blue line.
This clearly shows the benefit of tangential directions and specifically of SVDMOR also for the application
on mechanical systems. While the reduced order model with tangential directions is by a factor of 9 smaller
than without tangential directions, the resulting error εout(s) is within the given tolerance, although it is
some orders of magnitude larger than the error of the one-step Model Order Reduction without SVDMOR.
It is not possible to bring the error of the reduced order model without SVDMOR closer to the given bounds
because it is not possible to further reduce the number of shifts.
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Figure 6. Comparing the reduction error of a classical Model Order Reduction scheme without any
input reduction with a two-step approach using SVDMOR to reduce the number of inputs and outputs
and moment matching to reduce the system dimension.



Note, that the number of inputs and outputs that are necessary for an appropriate approximation highly
depends on the frequency range of interest. Figure 7 shows, how many inputs are necessary to have an
approximation error εout,rel(s) that is below 1% depending on the frequency range of interest. If we just
want static accordance at 0Hz, already r = 5 inputs are required. The number of required input rises very
fast and reaches all 651 inputs if we are interested in the frequency range from 0Hz to 3470Hz. For a larger
frequency interval it is no longer feasible to reduce the number of required inputs while ensuring an error
below 1%.
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Figure 7. Number of required inputs to reach an approximation error εout,rel(s) below 1% depending
on the frequency range of interest.

4 CONCLUSION

In this contribution, we examined the Singular Value Decomposition Model Order Reduction method for a
mechanical system modeled with the Finite Element Method. It was shown that SVDMOR can be applied
successfully for mechanical systems, but it is important to gain enough information about the singular
values and the singular vectors. With the help of the Model Assurance Criterion the most important singular
vectors in the given frequency domain were identified. In total, 72 singular vectors were used as tangential
directions to reduce the number of inputs and outputs by a factor of 9. With the resulting model, a moment
matching based Model Order Reduction was conducted to get a dimensionality reduced order model with
144 degrees of freedom instead of 1302 for the reduced order model that is obtained with all inputs and
outputs. However, the benefit gained from SVDMOR strongly depends on the desired frequency interval to
be examined. The number of required tangential directions increases significantly as the frequency spectrum
increases.
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