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Abstract—Physically Unclonable Functions (PUFs) primitives and
blockchain technologies, also known as PUFchain, are recently taking
huge attention to integrate the security parameters in Supply Chain
Management (SCM) system. In this work, we devise a technique to
interface an electronic chip and a blockchain platform by providing
access to a unique hardware fingerprint and the stored information
of chips on blockchain at one single point. To the best of our
knowledge, this is the only scalable and automated technique that
has been successfully implemented to authenticate the hardware device
at any stage of the supply chain management system. The technique
realises the concept of embedded PUF instance and the smart contract
deployment on the ethereum blockchain. In the proposed technique,
we have highly reduced the cost of implementing the interaction by
storing the CRP on a distributed file system called as InterPlanetary
File System (IPFS). Further, we implement and analyse the interfacing
for ‘IC traceability’ to ensure the current ownership of a product, its
point of origin, and ownership history in the SCM system. We employ
Nexys 4 DDR Artix-7 FPGA board and go-ethereum blockchain library
for implementing “IC traceability” to demonstrate the workflow and
overhead involved in our interfacing technique.

Index Terms—Electronic Supply Chain, Ethereum, Physically Un-
clonable Functions, Blockchain

I. INTRODUCTION

Since the development of blockchain technology, a lot of attention
has been shifted towards blockchain to utilise it for the purpose of
authentication and integrity checking of devices in the supply chain
management system. Although the blockchain and PUF integrated
techniques fit suitable for the electronic supply chain to prevent
counterfeiting, a lot of human interventions like collecting CRPs
from embedded PUF and manually feeding it into a smart contract
to get stored on the blockchain in [1] and [2] might create some
insecure channel for an adversary to alter the CRPs. To avoid such
human intervention, we propose an automated interfacing technique
to interconnect the hardware chip and the smart contract commu-
nication at one place. According to the state-of-the-art literature,
[3], [1] and [2] have implemented the smart contract for their
proposed methodology but no discussion on the overhead of storing
the CRPs on the blockchain can be found. Therefore, we discuss
the overhead of storing CRPs on the blockchain, and thereby in our
proposed automated interfacing techniques, we reduce the storage
on blockchain by storing the CRP hashes generated after uploading
the CRP on InterPlanetary File System (IPFS) [4] [5] for the first
time. An IPFS is a peer-to-peer, distributed, versioned file system
that generates a fixed-length string that is unique to the file and its
data. Now, we summarise our contribution in this article as follows:

• We propose an automated interfacing technique for hardware
and blockchain interaction powered by IPFS to facilitate the
verifiability of transactions in supply chain network.

• We develop the supply chain business logic in the form of smart
contract written in solidity to automate the authentication and
ownership transfer protocol.

Fig. 1: The schematic diagram for proposed electronic supply chain

• We implement a prototype for ’IC traceability’ on Nexys 4
DDR Artix-7 FPGA board and ethereum blockchain to show
the workflow of interfacing technique and its corresponding
overhead. The code for the same can be found at github [6].

The remainder of the paper is organised as follows: Section II
discusses our proposed automated technique for dealing with coun-
terfeits in SCM system and its possible implementation methodology.
In Section III, we present our experimental setup and comparison
results with previously proposed methodologies and finally section
IV concludes our work.

II. THE AUTOMATED ELECTRONIC SUPPLY CHAIN FRAMEWORK

In this section, we give an overview of the proposed automated
interfacing technique and then we discuss the methodology for
implementing the proposed scheme via smart contract algorithms
and finally we brief the benefits of using IPFS in supply chain
management system.

A. Overview
We divide the entities involved in our electronic supply chain into

two broad categories: a) trusted authority (TA node) and b) peer node.
A TA node is a privileged authority such as IP owner and original
component manufacturers (OCM) that can do PUF characterization of
a chip. The peer nodes have restricted privilege meaning they are not
allowed to write data on the blockchain, and hence no change of state
of ethereum is possible by peer nodes. Authorities like IP owners,
OCM, distributors, PCB assemblers, integrators in the SCM system
are linked with blockchain as a node and act as buyers or sellers
in the chip transfer protocol. In our framework, as chip registration



needs to be completed by a TA node, so IP owners or OCM are
given the privilege of a TA node. Other authorities like distributors,
PCB assemblers and, integrators are peer nodes. Every buyer, in
our framework, has the freedom to authenticate the device before
purchasing it. A chip once registered to the blockchain will again
be de-registered only by the TA node. So, if any node detects any
counterfeit then it should inform a TA node to de-register the chip
or update the chip by removing the defects from it.

Throughout the paper, we use the term “automated” in the
following three contexts:

• Every end-user and intermediaries who have joined the system
are permitted to authenticate an electronic device without get-
ting assistance from any other authority.

• The use of permission-less blockchain allows all entities to
access any chip-related information at any point without going
to a particular authority for that information.

• The manual collection of CRP, the chip information from
blockchain, and IPFS files have been avoided now with intro-
ducing a standard interface for them.

System Assumptions: Here we assume that the communication
between trusted authority and IPFS is secure and confidential. An
adversary can only register himself as a peer node. A TA node can
register into the system only through a contract deploying authority.
So, a contract deploying authority should have the information about
all TAs prior to the deployment of the contract.

B. Proposed methodology

In an electronic supply chain, the tracking of chips while transfer-
ring from one stage to another is one of the most crucial steps to check
the integrity and the authenticity of chips to mitigate counterfeiting.
During authentication, an authenticating body needs to interact with
several independent systems such as blockchain, PUF-embedded
hardware, and some storage systems. However, there remains a
possibility of counterfeiting due to the manual intervention during
such interaction with those systems. This motivates us to propose an
automated tool for providing an interface to interact among different
independent systems. Secondly, an efficient methodology to store the
challenge-response pairs for the embedded PUF instances of every
chip on distributed database throughout the supply chain is one of
the major factors that decide the cost efficiency of any authentication
protocol. Here we use IPFS as cost-effective solution to such problem.
In Figure 1, the small enumerated circles show the steps for a chip
transfer protocol. We discuss these steps one by one taking the system
setup as the beginning of blockchain based electronic supply chain.

1) System Setup: In the setup phase, we deploy our smart contract
on Ethereum blockchain after including certain TA node addresses
to the contract. Our smart contract is privately administered contract
in the sense that some externally owned accounts on Ethereum
blockchains are given higher privilege than others, for instance TA
nodes possess more privilege than peer nodes. The permission-less
blockchain here allows any peer node to access/call the smart contract
anywhere. The smart contract is equipped with the following two
structures to store informations for chip transfer protocol.

1) authority: This structure stores the details of nodes registered
into the system. It has member variables as, Entity to store
a 160-bit unique address associated with each node, and
Permission to store the permission of an entity in an integer
format. Based on the properties of a node, its value can be 0
for peer node, 1 for a TA node and, -1 for a revoked node.
A revoked node is a node who has been marked as a part of
some counterfeit.

2) deviceInfo: This structure stores the information related to
chips (devices) registered in the system. It has member vari-
ables as, deviceID to store the unique identity for every chip,
owner to store the current owner of the chip, addedby to store
the address of the TA node who added this device, chalHash to
store the hash of challenge set uploaded on IPFS, respHash to
store the hash of response set (corresponding to the challenge
set) uploaded on the IPFS, lastupdatedby to store the address
of the TA node who has recently updated the chip’s CRP hash
on the blockchain, and deviceOwnershipTrace to store a list of
all previous owners of this device so that if any counterfeit is
detected at any stage then it becomes easy to trace the point
of counterfeit and further possible legal action can be taken
against such authority.

The system begins with deployment of smart contract by a
contract deploying authority. A contract deploying authority has same
power as a TA node except this ability to deploy smart contract.
Once the contract is deployed on Ethereum, even a contract deploying
authority cannot modify the contract at any cost. After the deployment
of the smart contract, the address of smart contract is made available
to all nodes publicly.

2) Adding peer node: To add a peer node an address associated
with the peer node is given as input. Then, it checks the permission
of the message sender, if the message sender is a TA node then it
adds the node in the system with permission value 0. In Figure 1,
Step 1 and 2 show a peer node requesting for enrolment and a TA
node completing the enrolment of the peer node on blockchain.

3) Device Registration: The device registration is the most cru-
cial stage of the electronic supply chain. Algorithm 1 shows the logic
for registering a chip. It takes a unique deviceID, the address of
the owner of the device, a challenge hash, and a response hash as
inputs and register the chip. To collect a set of responses, the TA
node generates a set of challenges and feeds it to the embedded PUF
instance of the chip. Then, it connects with the IPFS and stores the set
of challenges and responses to get back a corresponding constant hash
value of 92 bytes. These constant size challenges and response hashes
are used as a parameter for registering a device on the blockchain. In
Figure 1, Steps 3-7 altogether add-up to register a device successfully.
The algorithm first checks the permission of the message sender,
and if the message sender is a TA node, then it registers the chip
successfully otherwise aborts. Once a device is registered, any node
can access the information related to the chip, like the owner of the
device, who added this device, etc.

Algorithm 1: registerDevice
Data: deviceID, owner, chal hash, resp hash
if authority[msg.sender].permission == 1 then

deviceInfo[deviceID].addedby = msg.sender;
deviceInfo[deviceID].lastupdatedby = msg.sender;
deviceInfo[deviceID].chalHash = chal hash;
deviceInfo[deviceID].respHash = resp hash;
deviceInfo[deviceID].owner = owner;
deviceInfo[deviceID].deviceOwnershipTrace.push(owner)

end

4) Authenticating Device: Before buying a chip, a buyer authen-
ticates the chip by calling smart contract with function authenti-
cateDevice. Algorithm 2 shows the logic behind authenticateDevice
function. The algorithm intakes the deviceID and the hash of the
challenge and response available on the blockchain. Then, the hash
of challenge is given to IPFS to retrieve the plaintext of the challenge



set, then the algorithm feeds this challenge to the device and receives
the corresponding responses from the embedded PUF. The response
received from the device is again posted on the IPFS; if the hash
received is same as the response hash available on the blockchain,
its authentication returns true otherwise false. In Figure 1, Steps 9-14
altogether represent authentication of a chip.

Algorithm 2: authenticateDevice
Data: deviceID, respHashFromBlockchain,

chalHashFromBlockchain
Result: True or False
chal = IPFSGetFile(chalHashFromBlockchain);
respFromDevice = CRPGeneratorOnDevice(chal);
hashedResp = IPFSUploadFile(respFromDevice);
if respHashFromBlockchain == hashedResp then

return True;
else

return False;
end

5) Tracing Ownership: Every node connected to the system can
trace all the previous and current owners of a particular chip. This
helps in catching a node involved in counterfeit. The node involved
in counterfeit is also blacklisted, and the permission for that node is
assigned -1 with the help of a TA node.

6) Device Information: Any valid node in the system can call
deviceInfo function to get informations like the address of current
device owner, address of TA node who added this particular device
into the system, and the relevant challenge and response hashes stored
on the blockchain.

7) Ownership Transfer: The ownership of a chip is transferred
from a seller to a buyer in three steps:

• Ownership verification: A buyer calls the smart contract to
retrieve the information stored for a particular chip, It then
verifies the seller by checking the permission of the seller. If
the permission is found to be -1, it aborts the process otherwise
the seller is authentic.

• Chip authentication: It calls the smart contract with authenticate
device function and checks if the chip is authentic or not.

• Payment & ownership transfer: The buyer makes a payment on
condition that the seller transfers the ownership of the chip to
him on the blockchain. A payment made in terms of Letter of
Credit (LoC) allows to settle the payment only if seller makes
a transaction for transferring the ownership. The Ownership
Transfer algorithm first checks the address of the message
sender; if the message sender is the owner of the chip then
the function executes otherwise aborts.

8) Update Device: This is special feature available to all TA,
whenever a doubt about counterfeit in a chip is detected. The
previous recorded challenge-response pair (CRP) hash is deleted from
blockchain and updated with newly CRPs hash values. This update
feature can help to bring the chip back into supply chain by mitigating
the counterfeits.

C. Automation through interface

The interfacing is defined to allow a node to connect all the
independent and unrelated systems to meet at one place to achieve
interaction and communication among themselves without human
intervention. Our interfacing technique consolidates the interaction
and operations related to the blockchain, the PUF CRPs and, the
IPFS with the help of python code. Our python interface interaction

Fig. 2: Flow diagram for interfacing technique

is shown in Figure 2. The interface creates a dependency among other
independent systems to synchronise all the involved operations at a
particular stage of electronic supply chain. We discuss the peer node
and the TA node interface for our framework as follows:

• Peer node interface: The interface for a peer node first connects
to a chip through digilent adept software and programs the
chip with a bit file (to configure the chip for serial port
communication from the interface). Next, it develops a program
to send the challenge to the chip and receive the response from
it. Secondly, it creates connection to ethereum blockchain via
a web3 python library. The web3 helps the interface to query
the blockchain about any transaction and also about the blocks
that are getting added. Thirdly, it connects to the IPFS system
through another python library called ipfsAPI. Once the connec-
tions are established, it can provide the trace of the ownership
by calling smart contract with function traceOwnership, which
in turn returns all the owners from the beginning till now of
that particular device. A significant feature available to all peer
nodes is authenticateDevice; using this function it receives the
CRP hash from blockchain, which in turn is used as input to
IPFS to get back the original stored CRP. Now the hardware
instance is called from this interface to collect the response
from a particular chip currently attached to this peer node.
The hash of responses received from the IPFS and hashed
responses received from the blockchain are matched, and the
authenticity of the chip is decided based on a comparison of
results. transferOwnership is another feature available to update
the ownership in the blockchain.

• TA node interface: The TA nodes also connect to the chip,
blockchain and, IPFS in similar way as peer node interface
does. Besides all the functionalities available to peer node’s
interface, TA nodes have some extra privilege with functions
addPeer, registerDevice and, updateDevice. While registering a
device, the TA interface triggers a python code and sends a set
of challenges to collect responses from the board on which PUF
instance is embedded. The TA interface now connects to IPFS
and uploads the challenge file to get back the corresponding
unique hash. This way, even if the IPFS hash for CRP is getting
leaked to an adversary (peer) in the later stages of the supply
chain, he would never get any chance to modify the CRPs stored
in the blockchain as blockchain is immutable in nature and, also
IPFS generates hash according to the content of the file so any
modification in challenge-response will lead to the generation of
a new hash and will never overwrite the previous hashed value.
updateDevice is very much similar to registerDevice, and it
needs to update challenge-response hashes stored in blockchain.

Advantages of using IPFS: IPFS, being version-controlled and
distributed in nature, provides the availability of the hashes of
challenge and response to all TA and peer nodes globally. Secondly,
the challenge-response stored on the IPFS remain immutable forever.
It increases the trust of all the intermediate seller-buyer on the



responses available on IPFS. Thirdly, unlike blockchain storage, it
requires investing only one-time money to store a file on the IPFS [4].
We only keep the hashes of challenge and response file on blockchain
in our proposed technique to minimize the cost of storage.

TABLE I: The Gas Costs for various operations in proposed elec-
tronic supply chain (Gasprice= 1 GWEI, 1 ETH = 2285 USD)

Operations GAS LIMIT ETH USD ($)
DeployContract 1402381 0.028048 64.09

addPeer 44502 0.000891 2.03
registerDevice 252821 0.00506 11.56
updateDevice 34456 0.00069 1.59

transferOwnership 55646 0.00112 2.56

TABLE II: Storage overhead per device registration on blockchain

Number of CRPs [7] Proposed work
128 2176 bytes 92 bytes
512 8704 bytes 92 bytes
1024 17408 bytes 92 bytes

III. EXPERIMENTAL SETUP AND RESULTS

In our experimental setup, we chose go-ethereum (geth) [8] ver-
sion 1.9.25-stable-e7872729 for creating a local ethereum blockchain
network running on Intel(R) core i7-4790 CPU @3.60GHz with
12GB RAM. The proposed smart contract is written in a solidity
scripting language and is compiled through solc 0.4.0 compiler.
We generate bytecode and application binary interface (abi) using
the commands solc –bin eletronicSupplyChain.sol and solc –abi
electronicSupplyChain.sol respectively. Next, the web3 python library
utilises the bytecode and abi to help smart contracts getting deployed.
It has been also used to develop the interface for TA and peer
node. Python-based web3 library assists interfaces to connect to
a blockchain node and the IPFS both at one place through two
different ports. Before connecting to IPFS, we initialise the IPFS with
command ’ipfs init’ to perform all internal settings. This command
also creates a repository where all internal data can be stored. Next,
running command ’ipfs daemon’ makes the IPFS and gateway server
start listening for a client. For PUF related setup, we use Digilent
Adept software to program Nexys 4 DDR Artix-7 FPGA board. Later,
we use 5-4 Double Arbiter PUF [9] and take a set of multiple of 32
challenges to generate 128-bit response. We have applied the majority
voting technique where a PUF instance is characterised for nine times
for every challenge at the time of enrolment. The response obtained
after the majority voting is considered as golden response to be used
for authentication. The number of measurements for the majority
voting is chosen so that the probability that the correct response bit
gets the majority vote is higher than some threshold.

The cost of using ethereum needs to be paid in terms of ether in
the blockchain. The amount of gas used during a particular operation
is directly linked with cost in US dollars. So, with the current
value, 1 ETH = 2285 USD and 1 gas = 20 Gwei where 1 Gwei
= 0.000000001 ETH, we calculate the cost of executing different
operation for our smart contract in Table I. The transactions that
cause the alteration in the ethereum virtual machine’s state are only
responsible for calculating the cost overhead. Our smart contract
has addPeer, registerDevice, updateDevice and transferDevice that
modify the state of EVM and hence responsible for pricing. The gas
used during the smart contract deployment is directly proportional to
the lines of codes written. In our case, the deployment cost is coming
out to be 64.09 USD, but this would be a one-time investment. The
logic is that the more functionality you achieve through the smart
contract, the more operation you need to do and hence more ethers

Fig. 3: Comparison of ether used during device registration with [7]

you have to spend during the deployment. Given the cost of ownership
transfer operation, we can use the following formula to calculate the
total cost incurred until nth stage of a chip, Total cost = registration
cost + (n - 1) * (ownership transfer cost) . For a typical 5 stage
electronic supply chain, it would cost approximately 21.56 USD.

Registering a device on the blockchain is a one time process. But,
if it increases linearly with the number of CRPs that is getting stored
for the authentication purpose, it can cost high in terms of ether.
We made a similar comparison of our proposed technique and [7]
in Figure 3 to highlight the expense of registering a device when it
requires storing a large number of CRPs for authentication purposes.
The overhead of storing CRPs on the blockchain has been calculated
and compared with [7] in Table II. In this comparison, we would like
to highlight that we store only IPFS hash on the blockchain, which
is quite small in size and remains constant even after increasing the
number of challenges.

IV. CONCLUSION
This article outlines a methodology which allows any stack

holder to automatically authenticate the chip without depending upon
any other authority in the system. The permission-less blockchain
ethereum helps deploy the proposed smart contract and execute it
through the ethereum virtual machine (EVM). The use of IPFS for
storing challenge and response have profusely reduced the storage
overhead on blockchain and makes our proposed automatic technique
of chip authentication more practical. Our interfacing tool is adaptable
to all blockchain-based PUF authentication scheme developed so far
in the literature for electronic supply chain management system.
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