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Abstract—The increasing complexity of intelligent services 

requires new paradigm to overcome the problems caused by

resource-limited mobile devices. Mobile edge computing systems 

with energy harvesting devices is such a promising technology. By 

offloading the computation tasks from the mobile devices to the 

MEC servers, users could experience services with low latency. In 

addition, energy harvesting technology releases the tension 

between high energy consumption of intelligent services and 

capacity-constrained mobile device batteries. However, in multi-

user and multi-server scenarios where mobile devices can move 

arbitrarily, computation offloading strategies are faced with new 

challenges because of resource competition and server selection. In 

this paper, we will develop an intelligent computation offloading 

strategy. The quality of user experience cost and the cell capacity 

in terms of the ratio of computation tasks offloaded will be adopted 

as the performance metrics. An online algorithm, namely, the 

LODCO-Based1 Genetic Algorithm with Greedy Policy, will be 

proposed. Specifically, the algorithm is based on Lyapunov 

Optimization and the LODCO Algorithm. By choosing the 

execution mode among local execution, offloading execution and 

task dropping for each mobile device, our algorithm can 

asymptotically obtain the optimal results for the whole system. The 

algorithm proposed is low-complexity and could work without too 

much priori knowledge. Moreover, the algorithm not only inherits 

every advantage from the LODCO Algorithm but also adapts

perfectly to the more complex environment. Simulation results 

illustrate that the algorithms could improve the ratio of offloading 

computation tasks by more than 10% while the QoE is guaranteed.

Keywords—Intelligent services; Mobile edge computing; Energy 

harvesting; Computation offloading; Genetic algorithm; Greedy 

policy.

                                                          
1 LODCO is the abbreviation of the Lyapunov Optimization-based 
dynamic computation offloading, which is an algorithm designed in 
[5].
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I. INTRODUCTION

The rapid development of wireless communication 
technology and the increasing popularity of smart mobile 
devices are paving the way towards more intelligent services, 
such as virtual reality, augmented reality and face recognition. 
However, those services are usually computational-intensive, 
latency-sensitive and energy-consuming, which could not be 
supported by mobile devices with limited computational 
resources and energy provided by batteries [1]. Therefore, new 
paradigms are needed to carter to the requirements of intelligent 
services. Mobile edge computing (MEC) systems with energy 
harvesting (EH) devices is such a promising technology that IT 
services and cloud computing capability are provided within the 
radio access network [2]. By offloading the computation tasks 
from the mobile devices to the MEC servers, users could 
experience services with low latency [3]. Furthermore, energy 
consumption becomes not such an urgent problem because the 
mobile devices could be powered by free recycling energy 
sources [4].

The design of efficient computation offloading strategies has 
attracted research interest in recent years. Most works focus on 
single-user and single-server MEC systems with energy 
harvesting devices [5]. Nevertheless, for a system with multiple 
users and multiple servers, which are more typical scenarios in 
the real world [8], those strategies will not be applicable directly 
because of new challenges. To be specific, the computational 
resource and the radio resource are shared by multiple mobile 
devices. As a result, interference and competition could not be 
ignored. How to allocate limited resources among mobile 
devices should be investigated. Furthermore, a mobile device
probably could connect to more than one MEC server. Then, the 

QoE aware and trustworthy cloud services selection in mobile 
commerce, Project No. 16YJCZH014), the Natural Science 
Foundation of Hubei Province of China (Project Name, Research on 
the replica-aware data acquiring mechanism for mobile cloud 
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mobile device could choose one server to offload its task. So, 
how to choose a proper server according to the system 
optimization metrics or the user’s preference has to be studied.
Additionally, as is known, the infrastructure providers will earn 
more profit with larger cell capacity for each base station [9], 
which is quantified by the ratio of computation tasks offloaded
in this paper. On the other hand, more offloading means fiercer
resource contention and thus worse quality of user experience 
(QoE). How to achieve the tradeoff between cell capacity 
enhancement and QoE guarantee will be a realistic problem.

In this paper, we design an intelligent computation 
offloading strategy for multi-user and multi-server MEC 
systems with EH devices. Our major contributions are 
summarized as follows:

 We consider a general MEC system with multiple EH 
mobile devices and multiple resource-constrained MEC 
servers where every mobile device can move arbitrarily 
within certain areas.

 User mobility and its effect on resources competition 
and server selection are embodied in the system model, 
which is formulated as a non-convex optimization 
problem finally.

 The quality of user experience cost (i.e. execution 
latency and penalty for dropped tasks) and the cell 
capacity in terms of the ratio of offloading computation 
tasks are optimized simultaneously.

 After applying Lyapunov Optimization, the original 
stochastic optimization problem is converted to a 
deterministic optimization problem at each time slot, 
which is a cornerstone of the proposed intelligent 
algorithm.

 The proposed algorithm, i.e., the LODCO-Based 
Greedy Algorithm with Greedy Policy, can deal with the 
correlation between any two mobile devices when
choosing the computation modes, especially the 
offloading execution, which is out of the scope 
considered by the LODCO Algorithm.

 The proposed algorithm can obtain the optimal results 
after several iterations. By comparison with the 
LODCO Algorithm, our algorithm can not only keep 
perfectly the advantages of the LODCO Algorithm but 
also promote notably the ratio of offloading 
computation tasks while guaranteeing the QoE.

The organization of this paper is as follows. We survey state 
of the art in Section II. In section III, the system model will be 
introduced. In section IV, the LODCO-Based Genetic 
Algorithm with Greedy Policy will be proposed based on the 
formulated problem. Simulation results and Conclusion of this 
paper will be demonstrated in Section V and Section VI, 
respectively.

II. RELATED WORKS

Computation offloading for multi-user and multi-server 
mobile systems is a very challenging problem because of 
complexity of the scenario and interdependence among users 
and servers. A few strategies have proposed in recent years. In 

[10], the power-delay tradeoff in the context of task offloading 
was studied. The problem was formulated as a computation and 
transmits power minimization subject to latency and reliability 
constraints. In [11], the power minimization for the mobile 
devices by data offloading was investigated. Centralized and 
distributed algorithms for joint power allocation and channel 
assignment together with decision making were proposed. In 
[12], the problem of joint task offloading and resource allocation 
was formulated as a mix integer non-linear program. The task 
offloading decision, uplink transmission power of mobile users 
and computational resource allocation at the MEC servers were 
jointly optimized. The users’ task offloading gains, which are 
measured by the reduction in task completion time and energy 
consumption, were maximized. Obviously, energy consumption 
is always optimized in all the works mentioned above. However, 
the optimization objective of MEC systems with EH devices is 
shifted from minimizing the battery energy consumption as the 
harvested energy is ample and free. As a result, those 
computation offloading strategies dedicated to the energy 
conservation cannot be utilized without modification.

In [13], a device-edge-cloud MEC system was investigated. 
A network aware multi-user and multi-edge computation 
partitioning problem was formulated. Computation and radio 
resources were allocated such that the average throughput of the 
users was maximized. The system considered in [13] is similar 
to this paper. Nevertheless, a partial offloading model was 
utilized in [13] while a binary offloading is exploited in our work.

There are works dedicated on the computation offloading for 
MEC systems with EH devices [5]. In [6], a “hotbooting” Q-
learning based computation offloading scheme for IoT devices 
with energy harvesting to achieve the optimal offloading was 
presented. Also, a fast DQN-based IoT computation offloading 
scheme to compass the state space dimension was proposed. 
However, similar to [13], a partial offloading model was 
discussed in [6]. In [7], the problem of solving an optimal 
computation offloading policy was modeled as a Markov 
decision process, where the objective was to minimize the long-
term cost. A deep Q-network-based strategic computation 
offloading algorithm was designed. Nevertheless, the system 
consisted of one telecom cloud, which was connected to multiple 
base stations. And the strategy was for base station selection. 
Obviously, both the system and the problem considered in [7]
are different from that considered in our work. In [5], a green 
MEC system with EH devices was analyzed, and an effective 
computation offloading strategy was developed. Moreover, the 
execution cost, which includes both the execution latency and 
task failure, was adopted as the performance metric. Finally, a 
low-complexity online algorithm was proposed. 

Although [5] is the most similar work to ours, several key 
differences should be addressed. Firstly, while the system 
discussed in [5] focused on a single user and single MEC server
system, we dedicate on a multi-user and multi-server scenario. 
Secondly, user mobility, which was ignored in [5], is considered 
in this paper. Thirdly, the MEC server in this paper has limited 
computation capability, which generalizes the work in [5], 
where the MEC server was assumed to be with unlimited 
computational resources. Fourthly, compared to the single-
objective optimization problem formulated in [5], we are 
interested in optimizing two objectives simultaneously. Due to 



the differences mentioned above, our work is more complicated 
and difficult than that in [5].

III. SYSTEM MODEL

A. System Description

We consider a MEC system consisting of 𝑁 mobile devices 
equipped with EH components and 𝑀 MEC servers, where 
each mobile device and each MEC server share the same 
property, respectively. We assume that time is slotted, and 
denote the time slot length and the time slot index set by 𝜏 and 
𝒯 ≜ {0,1, … }, separately. We use 𝒩 ≜ {1,2, … , 𝑁} to denote 
the set of mobile devices and ℳ ≜ {1,2, … , 𝑀} to denote the 
set of MEC servers.

Fig. 1. The system with multiple mobile devices and multiple MEC servers.

As shown in Fig. 1, all mobile devices and MEC servers are 
limited to a specific area, where each MEC server is located at 
a particular position without moving and each mobile device 
can move around arbitrarily. Meanwhile, each MEC server is 
accessible to each mobile device. Besides, each mobile device’s 
location is assumed to be independent and identically 
distributed (i.i.d.), i.e., the 𝑖th mobile device’s location remains 
static within each time slot but varies among different time slots. 
We use 𝒲 and ℒ to denote the width and length of the 
specific area, respectively. Denote the distance between the 𝑖th 
mobile device and the 𝑗th MEC server at the 𝑡th time slot as 

𝑑𝑖,𝑗
𝑡 , and 𝑑𝑖,𝑗

𝑡 ~𝑈(0, 𝒹) , 𝑡 ∈ 𝒯 , 𝑖 ∈ 𝒩 , 𝑗𝜖ℳ , where 𝒹 ≤

√𝒲2 + ℒ 2 . i.e., the distance matrix 𝐷𝑡 ≜ (𝑑𝑖,𝑗
𝑡 )𝑁×𝑀 is

deterministic at each time slot while could vary among different 
time slots.

B. Computation Task Model

We focus on delay-sensitive computation tasks with the 
execution deadline no greater than the length of each time slot
[10]. Denote the computation task generated by the 𝑖th mobile 

device at the 𝑡th time slot as 𝐶𝑇𝑖
𝑡, which has the fixed size 𝐿

(in bits). We assume the computation tasks are modeled as an 
i.i.d. Bernoulli process [5], i.e., at the beginning of each time slot, 

for each mobile device one computation task 𝐶𝑇𝑖
𝑡 is requested 

with probability 𝜌 where 0 < 𝜌 < 1. Denote 𝜁𝑖
𝑡 = 1 if the

𝑖th mobile device gets computation task request at the 𝑡th time 
slot.

In our system, there exists no cache queue either in mobile 

devices or MEC servers. As a result, computation task 𝐶𝑇𝑖
𝑡 can 

either be executed locally at the 𝑖 th mobile device, or be 

offloaded to the 𝑗th MEC server and then be executed, where 𝑗
is the chosen MEC server for the 𝑖th mobile device by a system 
operation. Besides, if the energy of the 𝑖 th mobile device is 

insufficient or 𝜁𝑖
𝑡 = 0, the computation task at the 𝑡th time slot 

will be dropped, but the latter one will not be counted into the 
ratio of dropped tasks. Similar to [5], denote the computation 
mode indicators for the 𝑖th mobile device at the 𝑡th time slot as 

𝐼𝑖,𝑐
𝑡 ∈ {0,1} with 𝑐 = {𝑙, 𝑟, 𝑑} , where 𝐼𝑖,𝑙

𝑡 = 1 , 𝐼𝑖,𝑟
𝑡 = 1 and 

𝐼𝑖,𝑑
𝑡 = 1 indicate that the computation task is executed locally, 

executed remotely by a MEC server and dropped, respectively. 
Because there exists only three modes for the 𝑖th mobile device
to choose at the 𝑡th time slot, those indicators should follow the 
equation as below:

𝐼𝑖,𝑙
𝑡 + 𝐼𝑖,𝑟

𝑡 + 𝐼𝑖,𝑑
𝑡 = 1, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.         (1)

C. Offloading Computation Model

Denote the indicator of the 𝑖th mobile device choosing the 

𝑗th MEC server to offload as 𝑐𝑖,𝑗
𝑡 = 1, where 𝑐𝑖,𝑗

𝑡 ∈ {0,1}. Thus, 

the connection matrix 𝐶𝑡 ≜ (𝑐𝑖,𝑗
𝑡 )𝑁×𝑀 is time-varying, which 

is the same as the distance matrix. Similar to [5], each 
computation task is assigned to only one server when choosing 
the offloading computation mode, i.e., 

∑ 𝑐𝑖,𝑗
𝑡𝑀

𝑗=1 = 1, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩, 𝑗𝜖ℳ.         (2)

Denote the small-scale fading channel power gains from the

𝑖th mobile device to the 𝑗th MEC server by 𝛾𝑖,𝑗
𝑡 , which are 

assumed to be exponentially distributed with unit mean. 

Besides, each mobile device shares the same 𝛾𝑖,𝑗
𝑡 at the 𝑡th 

time slot. According to communication theory, the channel 
power gain from the 𝑖th mobile device to the 𝑗th MEC server

can be expressed by ℎ𝑖,𝑗
𝑡 = 𝛾𝑖,𝑗

𝑡 𝑔0(𝑑0 𝑑𝑖,𝑗
𝑡⁄ )𝜃 , where 𝑑0

denotes the reference distance, 𝜃 denotes the path-loss 
exponent and 𝑔0 denotes the path-loss constant. As a result, 

we can obtain the achievable rate 𝛤(ℎ𝑖,𝑗
𝑡 , 𝑝𝑖

𝑡) by 

𝛤(ℎ𝑖,𝑗
𝑡 , 𝑝𝑖

𝑡) = 𝜔log2(1 + ℎ𝑖,𝑗
𝑡 𝑝𝑖

𝑡 𝜎⁄ ), 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩, 𝑗𝜖ℳ (3)

according to Shannon Theorem, where 𝜔 represents the 
bandwidth assigned to the 𝑖th mobile device, 𝜎 is the noise 

power at each MEC server and 𝑝𝑖
𝑡 is the transmit power who 

cannot exceed the maximum value 𝑝max. Note that we assume 
that every mobile device connecting to the 𝑗th MEC server is 
assigned the same bandwidth and each MEC server shares the 
same noise power, i.e., the bandwidth of each MEC server is 
equally divided into 𝑁 sub-bands, and each mobile device is 
assigned to one sub-band with 𝜔 MHz in (3).

Denote the numbers of CPU cycles required to process one 
bit task by each mobile device and each MEC server as 𝑋mobile

and 𝑋server , respectively. We assume that the computational 
abilities of MEC servers are constrained, i.e.,

∑ I(𝑖∈𝒩 𝐼𝑖,𝑟
𝑡 ) ∙ 𝑐𝑖,𝑗

𝑡 𝐿𝑋server ≤ 𝑓server
max 𝜏, 𝑡 ∈ 𝒯, 𝑗𝜖ℳ,   (4)

where 𝑓server
max denotes the upper bound of each MEC server’s 

CPU-cycle frequency and I(∙) is the indicator function.

Similar to [5], we take no consideration of execution latency 
consumed by the MEC server’s execution process, i.e., for the 



𝑖 th mobile device, the total execution latency of this mode 
equals to the transmission delay for the input task. Thus,

𝐷𝑖,remote
𝑡 =

𝐿

𝛤(ℎ𝑖,𝑗
𝑡 ,𝑝𝑖

𝑡)
, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩, 𝑗𝜖ℳ.       (5)

Meanwhile, we take no consideration of MEC server’s 
energy consumption. Thus, the energy consumed by the 𝑖th 
mobile device can obtained by

𝐸𝑖,remote
𝑡 = 𝑝𝑖

𝑡 𝐿

𝛤(ℎ𝑖,𝑗
𝑡 ,𝑝𝑖

𝑡)
, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩, 𝑗𝜖ℳ.      (6)

D. Local Computation Model

In order to execute 𝐿 bits computation task successfully, 
𝐿𝑋mobile CPU cycles are required. By applying the dynamic 
voltage and frequency scaling technologies (DVFS) [14], mobile 
devices can control the energy consumption and the execution 
latency. Thus, the total execution latency of this mode can be 
obtained by

𝐷𝑖,local
𝑡 = ∑ (𝑓𝑖,𝑣

𝑡 )−1, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩
𝐿𝑋mobile
𝑣=1 .       (7)

According to [5], the energy consumed by the 𝑖th mobile 
device can obtained by

𝐸𝑖,local
𝑡 = ∑ 𝓈(𝑓𝑖,𝑣

𝑡 )2, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩
𝐿𝑋mobile
𝑣=1 ,       (8)

where 𝓈 is the effective capacitance coefficient.

Moreover, we denote the upper bound of each mobile 
device’s CPU-cycle frequency as 𝑓mobile

max , i.e., ∀𝑣 ∈
{1,2, … , 𝐿𝑋mobile}, 𝑓𝑖,𝑣

𝑡 ≤ 𝑓mobile
max , 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.

E. Energy Harvesting Model

In order to embody the stochastic and intermitted nature of 
the renewable energy process [15], we assume that the 

harvestable energy 𝐸𝑖,𝐻
𝑡 of the 𝑖 th mobile device at the 

beginning of the 𝑡th time slot is uniformly distributed with the 
maximum value of 𝐸𝐻

max.

Similar to [5], the system needs to decide the amount of 
energy which will be stored in the battery of the 𝑖th mobile 

device. Denote this part of energy as 𝑒𝑖
𝑡, then we have

0 ≤ 𝑒𝑖
𝑡 ≤ 𝐸𝑖,𝐻

𝑡 , 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.            (9)

We assume that other kinds of energy consumption besides 
local-execution and remote-execution is sufficient small. We 

use ℰ(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) to denote the energy consumed by the 𝑖 th 

mobile device at the 𝑡 th time slot, where 𝑰𝑖
𝑡 ≜ [𝐼𝑖,𝑙

𝑡 , 𝐼𝑖,𝑟
𝑡 , 𝐼𝑖,𝑑

𝑡 ]

and 𝒇𝑖
𝑡 ≜ [𝑓𝑖,1

𝑡 , … , 𝑓𝑖,𝐿𝑋mobile

𝑡 ]. Then we can obtain ℰ(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡)

by the following equation:

ℰ(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) = 𝐼𝑖,𝑙

𝑡 𝐸𝑖,local
𝑡 + 𝐼𝑖,𝑟

𝑡 𝐸𝑖,remote
𝑡 , 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩. (10)

Denote the battery level of the 𝑖th mobile device at the 𝑡th 

time slot as 𝑏𝑖
𝑡 . Obviously, the energy consumption at each 

time slot cannot surpass the battery level, i.e.,

ℰ(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) ≤ 𝑏𝑖

𝑡, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.         (11)

Besides, 𝑏𝑖
𝑡 evolves according to the following equation:

𝑏𝑖
𝑡+1 = 𝑏𝑖

𝑡 − ℰ(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) + 𝑒𝑖

𝑡 , 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.     (12)

F. QoE-Cost Function

User’s QoE [16] consists of execution delay and the penalty 
for dropping the task. Denote QoE-cost of the 𝑖 th mobile 

device at the 𝑡th time slot as cost𝑖
𝑡 , then we can obtain the 

following equation:

costsum
𝑡 ≜ ∑ cost𝑖

𝑡
𝑖𝜖𝒩

= ∑ [𝒟(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) + ∅ ∙ I(𝜁𝑖

𝑡⋂𝐼𝑖,𝑑
𝑡 )]𝑖𝜖𝒩 , 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩, (13)

Where costsum
𝑡 denotes the total QoE-cost of all mobile 

devices, ∅ denotes the weight of task dropping cost, and 

𝒟(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) denotes the execution delay of the 𝑖th mobile 

device at the 𝑡th time slot, which is given by

𝒟(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) = I(𝜁𝑖

𝑡 = 1) ∙

(𝐼𝑖,𝑙
𝑡 𝐷𝑖,local

𝑡 + 𝐼𝑖,𝑟
𝑡 𝐷𝑖,remote

𝑡 ), 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.      (14)

G. Optimization Model

In our system, each MEC server has more computing power 
than each mobile device, i.e., when the cost of offloading the 
task is still lower than the cost of local execution, the more 
computation tasks executed remotely, the better user’s quality 
of experience. We can obtain the number of offloading 
computation tasks at 𝑡th time slot by

∑ I(𝜁𝑖
𝑡 ∩ 𝐼𝑖,𝑟

𝑡 )𝑖∈𝒩 , 𝑡 ∈ 𝒯,             (15)

where I(∙) is the indicator function. As a result, we focus on 
two optimization goals, i.e., the average weighted sum QoE-
cost minimization and the number of offloading computation 
tasks maximization.

Denote the system operation at the 𝑡th time slot as

𝑺𝑶𝑡 ≜ [𝑰𝑡 , 𝒇𝑡 , 𝒑𝑡 , 𝐶𝑡 , 𝒆𝑡], 𝑡 ∈ 𝒯,          (16)

in which 𝑰𝑡 ≜ [𝐼1,𝑐
𝑡 , … , 𝐼𝑁,𝑐

𝑡 ], 𝒇𝑡 ≜ [𝒇1
𝑡 , … , 𝒇𝑁

𝑡 ], and 𝒑𝑡 ≜
[𝑝1

𝑡 , … , 𝑝𝑁
𝑡 ], 𝒆𝑡 ≜ [𝑒1

𝑡 , … , 𝑒𝑁
𝑡 ]. Consequently, the optimization 

problem can be expressed as

𝒫1 : min
𝑺𝑶𝑡

 lim
𝑇→∞

1

𝑇
∑ costsum

𝑡𝑇−1
𝑡=0 − 𝜓 ∙ ∑ I(𝜁𝑖

𝑡 ∩ 𝐼𝑖,𝑟
𝑡 )𝑖∈𝒩

s.t. (1), (2), (4), (9), (10), (11)

0 ≤ 𝑓𝑖,𝑣
𝑡 ≤ 𝑓mobile

max , 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩, 𝑣 ∈ {1, … , 𝐿𝑋mobile} (17)

ℰ(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) ≤ 𝐸max, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩       (18)

0 ≤ 𝑝𝑖
𝑡 ≤ 𝑝max, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩         (19)

𝐼𝑖,𝑐
𝑡 ∈ {0,1}, 𝑐 ∈ {𝑙, 𝑟, 𝑑}, 𝑡 ∈ 𝒯,          (20)

where 𝜓 defines the weight of the second optimization goal. 
(17) and (19) incarnate the constraints of mobile devices’ CPU-
cycle frequency and maximum transmit power, respectively. 
(18) incarnates the upper bound of battery discharging for 
security reasons, i.e., the amount of energy output energy 
cannot exceed 𝐸max at each time slot. (20) represents the 0-1 
indicator constraint which has been described in subsection B
of Section III.



IV. A LOW-COMPLEXITY ALGORITHM FOR JOINT QOE-COST 

AND CELL-CAPACITY OPTIMIZATION

In this section, we will develop the LODCO-Based Genetic
Algorithm to solve 𝒫1 on account of the LODCO algorithm [5]. 
First of all, we will convert the original problem which is time-
dependent to a per-time slot deterministic problem 𝒫2 by 
taking advantages of Lyapunov Optimization. Then the LODCO 
Algorithm will be upgraded and reconstructed for the multi-user 
and multi-server MEC system by virtue of Genetic Algorithm 
and Greedy Strategy. We will not demonstrate the details of the
LODCO Algorithm, but we will explain closely about why we 
can apply it to our model.

A. Drift Plus Penalty Formula

Lyapunov optimization demands that the allowable action 
sets are i.i.d., which cannot be satisfied by the time-dependent 
battery queues of mobile devices modeled in this paper. Similar 
to one part of the LODCO Algorithm, for each mobile device we 
use the perturbation parameter 𝜃 (which is lower bounded by 

�̃�max + 𝑉∅) to define virtual battery queue �̃�𝑖
𝑡 by

�̃�𝑖
𝑡 ≜ 𝑏𝑖

𝑡 − 𝜃, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩,          (21)

where �̃�max ≜ min {max {𝓈𝐿𝑋mobile(𝑓mobile
max )2, 𝑝max𝜏}, 𝐸max}.

Besides, if a task requested at the 𝑡 th time slot is being 
executed locally, the optimal frequencies of the 𝐿𝑋mobile CPU 

cycles should be the same, i.e., 𝑓𝑖,𝑣
𝑡 = 𝑓𝑖

𝑡 , 𝑖 ∈ {1, … , 𝐿𝑋mobile}, 

which can be obtained by Inequality of arithmetic and geometric 
means.

According to the analysis above, we define the Lyapunov 
function as

𝐿(𝑡) ≜
1

2
∑ (�̃�𝑖

𝑡)
2

𝑖𝜖𝒩 =
1

2
∑ (𝑏𝑖

𝑡 − 𝜃)2, 𝑡 ∈ 𝒯.𝑖𝜖𝒩     (22)

Thus, the conditional Lyapunov drift can be written as

∆(𝑡) ≜ 𝔼[𝐿(𝑡 + 1) − 𝐿(𝑡)|�̃�𝑡], 𝑡 ∈ 𝒯,        (23)

where �̃�𝑡 ≜ [�̃�1
𝑡 , … , �̃�𝑁

𝑡 ]. Then the Lyapunov drift-plus-penalty 
function can be written as

∆𝑉(𝑡) ≜ ∆(𝑡) + 𝑉 ∙ 𝔼[costsum
𝑡 |�̃�𝑡], 𝑡 ∈ 𝒯.      (24)

Because of the energy evolution equation (12), we can obtain 
that

(�̃�𝑖+1
𝑡 )

2
≤ (�̃�𝑖

𝑡)
2

+

2�̃�𝑖
𝑡(𝑒𝑖

𝑡 − ℰ(𝑰𝑖
𝑡 , 𝑓𝑖

𝑡 , 𝑝𝑖
𝑡)) + (𝑒𝑖

𝑡)2 + ℰ2(𝑰𝑖
𝑡 , 𝑓𝑖

𝑡 , 𝑝𝑖
𝑡), 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩.

(25)

Denotes the upper bound of the real energy consumed by the 𝑖th 

mobile device at the 𝑡 th time slot as �̃�max , we have 

ℰ(𝑰𝑖
𝑡 , 𝑓𝑖

𝑡 , 𝑝𝑖
𝑡) ≤ �̃�max . Because 𝑒𝑖

𝑡 ≤ 𝐸𝑖,𝐻
𝑡 and 𝐸𝑖,𝐻

𝑡 are i.i.d. 

among different time slots with the maximum value of 𝐸𝐻
max

for each mobile device, we can get 𝑒𝑖
𝑡 ≤ 𝐸𝐻

max. As a result, we 
have

                                                          
2 Both 𝒫ME and 𝒫SE are the sub-problems defined in [5], where 
the former one is a problem to obtain the optimal CPU-cycle 
frequency for a task being executed locally and the latter one is a 

∆(𝑡) ≤ ∑ 𝔼[�̃�𝑖
𝑡(𝑒𝑖

𝑡 − ℰ(𝑰𝑖
𝑡 , 𝑓𝑖

𝑡 , 𝑝𝑖
𝑡))|�̃�𝑡] + 𝐶𝑖𝜖𝒩 , 𝑡 ∈ 𝒯,(26)

where 𝐶 =
𝑁

2
(�̃�max + 𝐸𝐻

max)2 . Combing with (24), we can 

obtain that

∆𝑉(𝑡) ≤ ∑ �̃�𝑖
𝑡(𝑒𝑖

𝑡 − ℰ(𝑰𝑖
𝑡 , 𝑓𝑖

𝑡 , 𝑝𝑖
𝑡)) +𝑖𝜖𝒩

𝑉 ∙ 𝔼[costsum
𝑡 |�̃�𝑡] + 𝐶, 𝑡 ∈ 𝒯,         (27)

which means ∆𝑉(𝑡) is upper bounded.

Obviously, the upper bound of ∆𝑉(𝑡) has the same 
structure with the problem defined in [5]. Thus, the LODCO 
Algorithm can hopefully be applied to decide 𝑺𝑶𝑡 by solving 
the following deterministic problem

𝒫2 : min
𝑺𝑶𝑡

 ∑ �̃�𝑖
𝑡(𝑒𝑖

𝑡 − ℰ(𝑰𝑖
𝑡 , 𝑓𝑖

𝑡 , 𝑝𝑖
𝑡)) + 𝑉 ∙𝑖𝜖𝒩

𝔼[costsum
𝑡 |�̃�𝑡] ∈ 𝒯, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩,

which subjects to every constraint condition of 𝒫1. In the above 
deterministic problem 𝒫2, we ignore the second optimal goal 
because it is not relative to the stability and reliability of the 
system. Besides, it can be added to 𝒫2 directly. We will 
describe the process in detail in subsection C of this section.

B. Application of the LODCO Algorithm

𝒫2 is an optimized format of 𝒫1 by Lyapunov
Optimization except maximizing the number of offloading 
computation tasks. According to the LODCO Algorithm, the 
problem can be decomposed to two sub problems. The first one 
is to find the optimal energy harvesting, and the second one is 
to decide the optimal computation modes.

Optimal energy harvesting: the optimal amount of 

harvested energy 𝑒𝑖
𝑡∗ for the 𝑖th mobile device can be obtained 

by solving the following problem:

min 
0≤𝑒𝑖

𝑡≤𝐸𝑖,𝐻
𝑡 ,𝑖𝜖𝒩,𝑡∈𝑇

∑ �̃�𝑖
𝑡𝑒𝑖

𝑡.𝑖𝜖𝒩

Because each mobile device’s decision on optimal energy 

harvesting is mutually independent, the optimal 𝑒𝑖
𝑡∗ can be 

obtained separately for each mobile device. Thus, we obtain 𝑒𝑖
𝑡∗

for each mobile device by (21) in [5].

Decide the computation modes: we need to obtain the 

mode with the minimum value of 𝐽𝐶𝑂(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) for each

mobile device, where

𝐽𝐶𝑂(𝑰𝑖
𝑡 , 𝒇𝑖

𝑡 , 𝑝𝑖
𝑡) ≜ I(𝐼𝑖,𝑙

𝑡 ) ∙ 𝐽mobile
𝑡 (𝑓𝑖

𝑡) +

I(𝐼𝑖,𝑟
𝑡 ) ∙ 𝐽server

𝑡 (𝑝𝑖
𝑡) + I(𝐼𝑖,𝑑

𝑡 ) ∙ 𝑉∅, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩,   (28)

where 𝐽mobile
𝑡 (𝑓𝑖

𝑡) and 𝐽server
𝑡 (𝑝𝑖

𝑡) denote the optimal goals
for 𝒫ME and 𝒫SE

2 , which are sub-problems for local-
execution mode and remote-execution mode, respectively.

We have the same Lyapunov structure with [5], thus we can 
obtain the optimal 𝑺𝑶𝑡 when each mobile device can make 
decision separately. However, there exists correlation between 
any two mobile devices when choosing the computation modes, 

problem to obtain the optima transmit power for computation 
offloading. Both of them are parts of the LODCO Algorithm.



especially when choosing the offloading computation mode. 
The reason is that our system has more than one server. As a 
result, the LODCO Algorithm cannot be utilized directly on our 
problem. In order to solve the problem, we propose the
LODCO-Based Genetic Algorithm with Greedy Policy for the 
multi-user and multi-server system.

At the 𝑡th time slot, the genetic algorithm will be used to 
obtain the minimum value of 𝒫2 when each mobile device’s 
battery energy level is sufficient for local execution or 
offloaded execution. Otherwise, the key-value pair method will 
be used by virtue of 𝜖-greedy policy [17].

C. The LODCO-Based Genetic Algorithm with Greedy Policy

In this section, we demonstrate the details of proposed 
algorithm.

Determine the decision variables. There will be much 
redundancy if we use the system operation 𝑺𝑶𝑡 as the decision 
variables directly, which can lead to slow convergence of 
genetic algorithm. To overcome the above problem, we define
the decision vector 𝒙𝑡 for the whole system as

𝒙𝑡 ≜ [𝒙1
𝑡 , 𝒙2

𝑡 , … , 𝒙𝑁
𝑡 ], 𝑡 ∈ 𝒯,           (29)

where

𝒙𝑖
𝑡 ≜ [𝐼𝑖,𝑙

𝑡 , 𝐼𝑖,𝑑
𝑡 , 𝑐𝑖,1

𝑡 , 𝑐𝑖,2
𝑡 , … , 𝑐𝑖,𝑀

𝑡 ], 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩     (30)

is the decision vector for the 𝑖th mobile device. Denote the 
length of 𝒙𝑡 as |𝒙𝑡|, then we can obtain that |𝒙𝑡| is 𝑁 ×
(𝑀 + 2). Besides, each element in 𝒙𝑡 is either 0 or 1, i.e.,

𝑥𝑘
𝑡 ∈ {0,1}, 𝑡 ∈ 𝒯, 𝑘𝜖{1,2, … , |𝒙𝑡|}.         (31)

Compared with system operation 𝑺𝑶𝑡 , 𝑰𝑡 is decomposed

to 𝐼𝑖,𝑙
𝑡 and 𝐼𝑖,𝑑

𝑡 in 𝒙𝑡 , and then 𝐼𝑖,𝑟
𝑡 is replaced to

[𝑐𝑖,1
𝑡 , 𝑐𝑖,2

𝑡 , … , 𝑐𝑖,𝑀
𝑡 ].. We ignore 𝒇𝑡, 𝒑𝑡 and 𝒆𝑡 in 𝑺𝑶𝑡 because 

all of them can be obtained by the LODCO Algorithm separately. 
For convenience, we use the index between 1 and 𝑁 × (𝑀 + 2)
of 𝒙𝑡 to describe each element of it. For example, 𝐼𝑖,𝑙

𝑡 can be 

written as 𝑥1+(𝑖−1)×(𝑀+2)
𝑡 , 𝑐𝑖,𝑀

𝑡 can be written as 𝑥𝑖×(𝑀+2)
𝑡

and so on.

Modify the constraints. The computational abilities of 
MEC servers are constrained in (4), which can be written as

𝑆UB ∙ 𝐿𝑋server ≤ 𝑓server
max 𝜏, 𝑡 ∈ 𝒯,         (32)

where 𝑆UB is the maximum number of mobile devices that
could connect to a MEC server simultaneously. Having 
considered the fact that 𝑆UB must be an integer, we can obtain 
it by

𝑆UB ≤ ⌊𝑓server
max 𝜏 𝐿𝑋server⁄ ⌋.           (33)

Thus, we can rewrite (4) in the following way:

∑ 𝑥𝑘+(𝑖−1)×(𝑀+1)
𝑡𝑁

𝑖=1 ≤ 𝑆UB, 𝑡 ∈ 𝒯, 𝑘𝜖{3,4, … , 𝑀 + 2}. (34)

By combining (1) with (2), we have the following constraint:

∑ 𝑥𝑘+(𝑖−1)×(𝑀+1)
𝑡𝑀+2

𝑘=1 ≤ 1, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒩,      (35)

which means each mobile device can choose only one mode.

Modify the optimization goals. We formulate 𝒫3 by 
adding the second optimal goal to 𝒫2, i.e.,

𝒫3 : min
𝒙𝑡

∑ �̃�𝑖
𝑡 (𝑒𝑖

𝑡 − 𝑥1+(𝑖−1)×(𝑀+1)
𝑡 ∙ 𝐸𝑖,local

𝑡∗ − ∑ 𝑥𝑘+(𝑖−1)×(𝑀+1)
𝑡 ∙ 𝐸𝑖,𝑗

𝑡∗

𝑀+2

𝑘=3

)

𝑁

𝑖=1

+ ∑ (𝑥1+(𝑖−1)×(𝑀+1)
𝑡 ∙ 𝐷𝑖,local

𝑡∗ + ∑ 𝑥𝑘+(𝑖−1)×(𝑀+1)
𝑡 ∙ 𝐷𝑖,𝑗

𝑡∗

𝑀+2

𝑘=3

+ ∅ ∙ 𝑥2+(𝑖−1)×(𝑀+1)
𝑡 )

𝑁

𝑖=1

+𝜓 ∙ ∑ ∑ 𝑥𝑘+(𝑖−1)×(𝑀+1)
𝑡

𝑀+2

𝑘=3

𝑁

𝑖=1

, 𝑡 ∈ 𝒯,

where 𝐸𝑖,local
𝑡∗ and 𝐷𝑖,local

𝑡∗ are the optimal energy consumption 

and execution delay of local execution for the 𝑖th mobile device

separately, 𝐸𝑖,𝑗
𝑡∗ and 𝐷𝑖,𝑗

𝑡∗ are the optimal energy consumption 

and execution delay when the 𝑖th mobile device offloads its 
tasks to the 𝑗th MEC server, respectively.

According to the LODCO Algorithm, at the very beginning 
of the iteration, the computation task has to be dropped because 
of the insufficient battery energy, which means there exists no 
optimal energy consumption or execution delay, i.e., 𝒫3 will 
not work. Besides, if the sub-problems, i.e., 𝒫ME and 𝒫SE, are 
infeasible, 𝒫3 will not work, too. In this case, we develop a 
key-value pair method by virtue of 𝜖-greedy policy. To be more 
specific, we use a map to store each mobile device and its 
optimal MEC server which is chosen to offload. At each time 

slot, the key-value pair “𝑖-𝑗” with the minimum 𝐽server
𝑡 (𝑝𝑖

𝑡) will 
be chosen to compare with other modes for the 𝑖 th mobile 
device. We will always choose the offloading execution mode 

whatever 𝐽server
𝑡 (𝑝𝑖

𝑡) is the minimum among three modes with 
the probability of 𝜖 . With the probability of 1 − 𝜖 , we will 
choose the mode with the minimum value of optimal goal among 

𝐽mobile
𝑡 (𝑓𝑖

𝑡) , 𝐽server
𝑡 (𝑝𝑖

𝑡) and 𝑉∅ , where 𝐽server
𝑡 (𝑝𝑖

𝑡) and 

𝐽mobile
𝑡 (𝑓𝑖

𝑡) are the optimization goals for 𝒫SE and 𝒫ME , 
respectively.

Algorithm 1
LODCO-Based Genetic Algorithm with Greedy Policy

1: At the beginning of the 𝑡th time slot, initialize flag[𝑀] 
with 0 and establish a map to store the indexes of mobile 
device and the corresponding chosen MEC server.

2: Initialize Boolean variable useKeyValuePair with false.
3: for each mobile device 𝑖 do

4:   Obtain the task request indicator 𝜁𝑖
𝑡 , virtual energy 

queue �̃�𝑖
𝑡 and harvestable energy 𝐸𝑖,𝐻

𝑡 .

5:   Generate the location of each mobile device.



6:   Obtain the optimal harvested energy 𝑒𝑖
𝑡∗ by the

LODCO Algorithm.

7:   Obtain the optimal 𝑓𝑖
𝑡∗ for local execution by the

LODCO Algorithm, then record the optimal value 

𝐽mobile
𝑡 (𝑓𝑖

𝑡). If the battery energy is insufficient or 𝒫ME

is infeasible, set useKeyValuePair as true.
8:   for each MEC server 𝑗 do

9:     Obtain the channel power gain ℎ𝑖,𝑗
𝑡 from the i th 

mobile device to the 𝑗 th MEC server by ℎ𝑖,𝑗
𝑡 =

𝛾𝑖,𝑗
𝑡 𝑔0(𝑑0 𝑑𝑖,𝑗

𝑡⁄ )𝜃.

10:     Obtain the optimal 𝑝𝑖,𝑗
𝑡∗ from the 𝑖th mobile device

to the 𝑗th MEC server by the LODCO Algorithm, then 

record the optimal value 𝐽server
𝑡 (𝑝𝑖,𝑗

𝑡 ) . If the battery 

energy is insufficient or 𝒫SE is infeasible, set 
useKeyValuePair as true.

11:     Choose the optimal 𝑝𝑖
𝑡∗ by selecting the one with 

minimum 𝐽server
𝑡 (𝑝𝑖,𝑗

𝑡 ), denote as 𝐽server
𝑡 (𝑝𝑖

𝑡) and then 

record 𝑗.
12:   end for

13:   Compare 𝐽mobile
𝑡 (𝑓𝑖

𝑡) , 𝐽server
𝑡 (𝑝𝑖

𝑡) and 𝑉∅ , choose 
the mode with the minimum value and set the 

corresponding indicator variable 𝐼𝑖,𝑐
𝑡 as 1.

14:   if 𝐼𝑖,𝑟
𝑡 = 1 then

15:     obtain the 𝑖th mobile device and the corresponding 
𝑗th MEC server, then insert them into the map with key 
𝑖 and value 𝑗.

16:   end if
17: end for
18: if useKeyValuePair == false then
19:   Use Genetic Algorithm to solve 𝒫3 with constraints of 

(31), (34), (35).
20: else
21:   Call the Key-value Pair Method.
22: end if
23: Obtain each mobile device’s execution cost and energy 

consumption at each time slot, then calculate the 
proportion of each mode.

24: Update the battery level for each mobile device.
25: Update 𝑡 to 𝑡 + 1.

Algorithm 1 gives the main parts of the proposed algorithm, 
then we will show the details of Key-value Pair Method.

Subroutine 1 Key-value Pair Method

1: while the map is not null do
2:   Obtain the key-value pair “ 𝑖 -𝑗” with the minimum 

𝐽server
𝑡 (𝑝𝑖

𝑡).
3:   if rand() < 𝜖 then

4:     if flag[𝑗] ≤ 𝑆UB then

5:       Remove the key-value pair “𝑖-𝑗” from the map and 

then flag[𝑗 ]++ no matter whether 𝐽server
𝑡 (𝑝𝑖

𝑡) is the 

minimum among 𝐽mobile
𝑡 (𝑓𝑖

𝑡) , 𝐽server
𝑡 (𝑝𝑖

𝑡) and 𝑉∅ . 

Then set 𝐽server
𝑡 (𝑝𝑖,𝑗

𝑡 ) as inf.

6:     else

                                                          
3 𝐽server

𝑡 (𝑝𝑖,:
𝑡 ) is defined as 

[𝐽server
𝑡 (𝑝𝑖,1

𝑡 ), 𝐽server
𝑡 (𝑝𝑖,2

𝑡 ), … , 𝐽server
𝑡 (𝑝𝑖,𝑀

𝑡 )].

7:       if min{𝐽server
𝑡 (𝑝𝑖,:

𝑡 )} != inf then3

8:         Find the optimal 𝑗 by min{𝐽server
𝑡 (𝑝𝑖,:

𝑡 )} and 

the insert them to the map. Then continue.
9:       else
10:         Select the optimal mode from other 2 modes: 

local execution and dropping the task. Then remove the 
corresponding key-value pair from map.

11:       end if
12:     end if
13:   else if rand()≥ 𝜖 then

14:     Compare 𝐽mobile
𝑡 (𝑓𝑖

𝑡), 𝐽server
𝑡 (𝑝𝑖

𝑡) and 𝑉∅, choose 
the mode with the minimum value and set the 

corresponding indicator variable 𝐼𝑖,𝑐
𝑡 as 1 (we have to 

do the search again because it is possible that 

𝐽server
𝑡 (𝑝𝑖

𝑡) has been modified).

15:     if 𝐼𝑖,𝑟
𝑡 = 1 then

16:       if flag[𝑗] ≤ 𝑆UB then
17:         Remove the key-value pair “𝑖-𝑗” from the map

and flag[𝑗]++. Then set 𝐽server
𝑡 (𝑝𝑖,𝑗

𝑡 ) as inf.

18:       else

19:         if min{𝐽server
𝑡 (𝑝𝑖,:

𝑡 )} != inf then

20:           Find the optimal 𝑗 by min {𝐽server
𝑡 (𝑝𝑖,:

𝑡 )}
and then insert them to the map. Then continue.

21:         else
22:           Select the optimal mode from other two

modes: local execution and dropping the task. Then 
remove the corresponding key-value pair from map.

23:         end if
24:       end if
25:     else

26:       Keep the corresponding 𝐼𝑖,𝑐
𝑡 = 1 without change 

and then remove the corresponding key-value pair from 
map.

27:     end if
28:   end if
29: end while

V. SIMULATION RESULTS

In this section, we will demonstrate the results of the 
proposed algorithm and verify its effectiveness. Then, we will 
show the impact of the system parameters by control variable 
method. As mentioned in section IV, we will not elaborate upon
the details about the verification of the LODCO Algorithm.

The simulation was run on a laptop with an Intel Core 2.5 
GHz i7-4710MQ CPU. The algorithm was implemented in 
MATLAB R2015b and was given up to 8 GB of memory if 
needed.

In our system, the harvestable energy 𝐸𝑖,𝐻
𝑡 is uniformly 

distributed with the maximum value of 𝐸𝐻
max, where 𝐸𝐻

max can 
be obtained by average EH power 𝑃𝐻 , i.e.,

𝐸𝐻
max = 𝑃𝐻 ∙ 2𝜏, 𝑡 ∈ 𝒯.             (36)



We assume that 𝑃𝐻 = 12 mW, 𝑔0 = −40 dB (path-loss 
constant), 𝓈 = 10−28 (effective capacitance coefficient), 𝜏 =
∅ = 2 ms (time slot length and the weight of the task dropping 
cost, respectively). In addition, 𝜔 = 1 MHz (bandwidth of one 
sub-band), 𝜎 = 10−13 W (noise power at each MEC server), 
𝑓mobile

max = 𝑓server
max = 1.5 GHz (upper bounds of each mobile 

device and each MEC server’s CPU-cycle frequency, 
respectively), 𝐸max = 2 mJ (the upper bound of the real energy 
consumed by mobile device at each time slot), 𝐿 = 1000 bits 

(size of each computation task), 𝑉 = 10−5 (coefficient of the 
penalty in Lyapunov Optimization), and 𝑋server = 𝑋mobile =
5900 cycles per byte (the numbers of CPU cycles required to 
process one bit task by each mobile device and each MEC 
server). Besides, we assume there are 10 mobile devices and 
5 MEC servers, i.e., 𝑁 = 10, 𝑀 = 5, and 𝐸min = 0.02 mJ 
(the non-zero lower bound of mobile devices defined in [5]).

In the following part, the default value of 𝜌 (task request 
probability), 𝜓 (the weight of the second optimization goal) 
and 𝜖 in Algorithm 1 are 0.7, 0.002 and 0.1 unless stated, 

respectively. 𝛾𝑖,𝑗
𝑡 (the small-scale fading channel power gains 

at the 𝑡th time slot) is exponentially distributed with mean 1. 
Besides, we assume the maximum distance between random 
mobile and random MEC server is 80 m unless stated, which 
is the upper bound for the uniform distribution.

Because no work has been found to solve the same problem 
as we have done, we introduce one benchmark algorithm, 
namely, the LODCO-Based Greedy Algorithm, it works as 
follows: At each time slot, this algorithm always chooses the 
mode with the minimum target value of 𝒫2 between local 
execution and offloaded execution for each mobile device, 
which means it will not take the second optimization goal into 
consideration; otherwise, if neither one is infeasible, then the 
computation tasks will be dropped. Besides, the greedy policy in 
this algorithm has the same structure with Key-value Pair 
method.

A. Validation of Effectiveness

In this subsection, we will compare the effectiveness of the 
LODCO-Based Genetic Algorithm with Greedy Policy
compared with the LODCO Algorithm and the LODCO-Based 
Greedy Algorithm. As shown in Fig. 2, the battery energy level 
of each mobile device demonstrates the feasibility of our 
improvement on the LODCO Algorithm. The energy level of 
each mobile device keeps accumulating at earlier stage, and 
finally stabilizes around the perturbed energy level, which 
exactly keeps the advantages of the LODCO Algorithm. Under 
current parameters, the battery energy level of each mobile 
device stabilizes at the beginning of the 200th time slot.

Fig. 3 demonstrates the average QoE-cost of all mobile 
devices at each time slot obtained by the LODCO-Based Genetic 
Algorithm with Greedy Policy. As we can see, the average QoE-
cost declines steeply at the early stage and then stabilizes at a 
low level, which is the embodiment of inheriting advantages 
from the LODCO Algorithm.

                                                          
4 0.005 and 0.00002 are the specific value of 𝜃 + 𝐸𝐻

max and 𝐸min, 
respectively.

Fig. 2. Battery energy level of each mobile device vs. time.

Fig. 3. Average QoE-Cost of all mobile device vs. time.

As depicted in Fig. 4, the Y-axis describes the average value 
of each mobile device’s energy level during 500 time slots. As 
can be seen, each energy level is confined within 
[0.00002,0.005] J4, which conforms to the theoretical results 
derived in the LODCO Algorithm.

Fig. 4. Average energy level of each mobile device.

Fig. 5 demonstrates the ratio of each chosen modes in our 
multi-user and multi-server system by the LODCO-Based 
Genetic Algorithm with Greedy Policy. At the very earlier stage, 
plenty of computation tasks are dropped due to the insufficient 
energy level. During the first 150 time slots, the average ratio of 
dropped tasks is 1.8942%, which significant decreases to 0
along with the ascending battery energy level of each mobile 
device. Meanwhile, the ratio of offloading tasks (which is 
94.6291%) clearly greater than the ratio of locally-executed 
tasks (which is 3.4767%) and the average ratio of offloading 
tasks obtained by the LODCO Algorithm (which is 84.4401%), 



which means the LODCO-Based Genetic Algorithm with 
Greedy Policy can obtain better performance than the LODCO 
Algorithm can do in terms of maximizing the number of 
offloading computation tasks.

Fig. 5. The ratio of each chosen modes vs. time.

In Fig. 6, the performance of the LODCO-Based Genetic
Algorithm with Greedy Policy is compared with that of the 
benchmark algorithm (the LODCO-Based Greedy Algorithm) 
on the second optimization goal (the number of offloading 
computation tasks maximum).

As depicted in Fig. 6, the average ratio of offloading tasks 
obtained by the LODCO-Based Genetic Algorithm with Greedy 
Policy (which is 95.0698%) is greater than the one obtained by 
the LODCO-Based Greedy Algorithm (which is 92.8549%5) , 
while both ratios are larger than the average ratio of offloading 
tasks obtained by the LODCO Algorithm (which is 84.4401%) . 
The results prove that our algorithm can obtain better cell 
capacity than the benchmark algorithm can do.

Fig. 6. Average ratio of offloading tasks by different algorithms.

B. Effects of system parameters

In this subsection, we will demonstrate the impacts of system 

parameters on the performance of the proposed algorithm.
Fig. 7 depicts the impact of the maximum distance between 

random mobile device and random MEC server on cell capacity. 
As can be seen, along with the increase of the maximum distance, 
the average ratio of offloading tasks gradually decreases. When 
the distance is arbitrarily far, the number of offloading 

                                                          
5 Considering that this is a stochastic optimization problem, the 
simulation results may exist slightly difference.

computation tasks will be zero. The reason is that the channel 
power gain grows with the distance between each mobile device 
and each MEC server, which will lead to larger energy 
consumption and longer execution delay. As a result, more and 
more mobile devices will choose to execute the computation 
tasks locally.

Fig. 7. Average ratio of offloading tasks vs. maximum distance.

As depicted in Fig. 8, along with the increase of 𝜖, which 
belong to [0,1], the average ratio of offloading tasks gradually 
increases with a slowdown rate and finally converges to the 
specific value (which is 97.5731%). The reason is that the 
LODCO-Based Genetic Algorithm with Greedy Policy is based 
on the 𝜖-Greedy Strategy, i.e., a greater 𝜖 will bring a lager 
probability to choose the offloading mode.

Fig. 8. Average ratio of offloading tasks vs. 𝜖.

As depicted in Fig. 9, along with the increase of 𝜓 , the 
average ratio of offloading tasks gradually increases with a 
slowdown rate and finally converges to the specific value (which 
is 98.5315%). The reason is that 𝜓 determines the weight of the 
second optimization goal, which is an important component of
𝒫3.

.

Fig. 9. Average ratio of offloading tasks vs. 𝜓.



VI. CONCLUSIONS

In this paper, we investigate a multi-user and multi-server
mobile-edge computing system with energy harvesting devices. 
Then we propose one algorithm to obtain the lowest execution 
cost and largest number of offloading computation tasks based 
on the LODCO Algorithm, i.e., the LODCO-Based Genetic
Algorithm with Greedy Policy, which is an online algorithm
with low-complexity. Most importantly, it has no need of too 
much priori knowledge. After simulation and performance 
analysis, we can see that the proposed algorithm inherits every 
advantage from the LODCO Algorithm and adapts to the more 
complex environment perfectly and offers more than 10% ratio 
of offloading computation tasks. The proposed algorithm can 
choose the offloading mode as far as possible, which can bring 
resource-limited MEC servers’ superiority into full play. In 
conclusion, our study provides a viable strategy to design a 
complex system which much more approaches to reality.
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