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Abstract : In order to discuss the 1 �⁄  problem, the statistics of branching process of particle in 
a multiplicative medium are developed by taking account of random particle immigration.  
The probability distribution function of the number of particles founded in the medium at a 
moment and/or of particles detected in a time interval are derived in close forms.  Also derived 
are conditional probabilities, conditioned on having a given number of particles at time t=0.  
These are applied to the case that exactly two particles are produced by branching.  
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1. Introduction 
  Since the observation of the 1 �⁄  power spectral density (PSD) of shot noise by Johnson in 1925(1), 
many works have been published to elucidate the phenomenon theoretically, where � represents 
the frequency of the phenomenon.  Most of them, however, are insufficient to simulate the 
phenomenon with a 1 �⁄  PSD covering a wide range of frequencies or are too sophisticated.  The 
aim of the present work is to give a model for generating a series in which its PSD is characterized 
by a 1 �⁄  distribution for a wide range of frequencies. 
  When a PSD of events �(�) at time t behaves like 1 ��⁄  (� ≥ 0), a large exponent � results in a 
long-term correlation between the events because the intensities of fluctuations with low 
frequencies are relatively large compared with those with high frequencies. In the case that 
0 ≤ � < 1, the correlation function is given by 
 〈�	�
�(� + �)〉 = ���� (0 < � < 1)�(�) (� = 0)  (1-1) 
which is independent of time t, and the phenomenon is stationary.  When � > 1, the correlation 
function depends on t and the non-stationary phenomenon occurs.  Therefore, phenomena with a 
1 �⁄  PSD are intermediate between stationary and non-stationary phenomena. 
  The basic idea of the present work is to give the representations for generating the series with a 
PSD behaving like 1 �⁄  by using the branching process model.  Here an event may have 
correlation with other events through the branching processes.  The branching process model was 
first applied in 1874 to discuss the statistics of family lines(2).  Many other applications of this 
model have been made in various fields, i.e. to the discussion of the fluctuations of the neutron 
number in a nuclear reactor, to that of electron number in solids, to the discussion of the particle 
spectra obtained by a high-energy collider, and so on. 
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  In the model of this work, the statistics of particle number in a medium, in which each single 
particle may branch into several particles, be captured or be observed by a detector in the presence 
of random particle immigration, are developed and the representations of time series are derived.  
A part of the present discussions is already developed in my previous works(3, 4). 
 
2. Branching started from a single particle 
  Consider a medium in which a particle may be subjected to capture and multiplicative reactions.  
By a multiplicative reaction, several particles appear in the medium and a branch is produced.  We 
suppose in the present work that the system is homogeneous, i.e. the system is well stirred or the 
velocity of particles is infinitely large. 
 
2.1. Existing particles 
  Suppose no particle existed in the medium before the time � = 0, and one particle has been 
injected at � = 0.  We consider then the probability �(�, �) that n particles are found in the 
medium at time � > 0.  When �� is an infinitely short time interval, the probability �(�, � + ��) 
that n particles are found in the medium at time � + �� is given by the sum of the probability that n 
particles are found at t and nothing happens during the successive time interval ��, the probability 
that � + 1 particles are found at t and one particle is absorbed during the successive ��, and the 
probability that � − � + 1 particles are found at t and one particle branches off intoνparticles 
during the successive ��, i.e. 
 �	�, � + ��
 = �	�, �
	1 − �����
+ �	� + 1, �
	� + 1
����       

       +��	� − � + 1, �
	� − � + 1
������ ,         �

��	

 (2-1) 

whereλa andλm are probabilities of absorption and multiplicative reactions, respectively, in unit 
time for a particle, 
 �� = �� + ��, (2-2) 
and p

ν

 is the distribution function of the number of particles produced by a multiplicative reaction.  
It is normalized to .1
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p
  
Introducing the probability generation functions (PGF) 

 ℎ	�, �
 = ����(�, �)


��	
 (2-3) 

and 
 �	�, �
 = �����,




���
 (2-4) 

Eq. (2-1) can be expressed as 
 �ℎ	�, �
�� = ����	�
− ��� + ��� �ℎ	�, �
��

= �	�
�ℎ	�, �
��    ,            
 (2-5) 

where 
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 �	�
 = ���	�
− ��� + ��. (2-6) 
The initial and boundary conditions for ℎ(�, �) are 
 ℎ	�, 0
 = � (2-7) 
and 
 ℎ	1, �
 = 1, (2-8) 
respectively.  Whenλa andλm are constant, the general solution of the linear partial differential 
equation Eq.(2-5) is solved in a close form so that 
 ℎ	�, �
 = ��� + �(�)�, (2-9) 
where 
 �	�
 = � ���(�) (2-10) 
and )(wF  is the inverse function of �(�), i.e.   wwkF )(  due to Eq.(2-7).  Equation (2-8) is 
satisfied since k(1)=∞ and so F(∞)=1. 
  The probability �(�, �) is calculated by the following equation, 
 �	�, �
 = 1�! ���ℎ������	

. (2-11) 
 
2.2. Detedted particles 
  In order to consider the statistics of particles counted by a detector in the medium, we introduce 
the probability �( ,�, �) that the detector counts m particles during a time interval (0, t) and n 
particles are found in the medium at time � > 0 when one particle has been injected at � = 0.  
Introducing the PGF of �( ,�, �), 
 !	",�, �
 = � "�����( ,�, �)


��	




��	
.  

(2-12) 
the equation equivalent to Eq.(2-5) is represented to 
 �!	",�, �
�� = �(",�) �!	",�, �
��         

. (2-13) 
The function �(",#) in Eq.(2-13) is given by 
 �	",�
 = ���	�
− 	�� + � + ��
� + � + ��" (2-14) 
when the detector is of absorption type, that is, the detected particle is absorbed by the detector.  
In Eq.(2-14), λd is the detection rate for a particle, andλc describes capture of particles in the 
medium other than absorption by the detector, and, therefore, the absorption rateλa is described by 
 �� = � + �� (2-15) 
in this case.  When the detector is of non-absorption type, the function �($,#) is expressed by 
 �	",�
 = ���	�
− 	�� + � + 	1 − "
��
� + �, (2-16) 
andλa in this case is equivalent toλc, i.e. 
 �� = � . (2-17) 
The PGF !(",�, �) satisfies the conditions 
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 !	",�, 0
 = �,. (2-18) 
 !	1,1, �
 = 1 (2-19) 
and 
 !	1,�, �
 = ℎ	�, �
. (2-20) 
The solution of Eq.(2-13) is 
 !	",�, �
 = %&", � + '	",�
(, (2-21) 
where 
 '	",#
 = � ���(",�) (2-22) 
and %(",�) is the inverse function of '(",�) with regard toｗ, i.e. %&", '	",�
( = �. 
 
3. Branching with random immigration 
  When a random particle source exists in the medium, all the individual particles from the source 
can produce branches and, therefore, many branches having different origins are found in the 
medium. 
 
3.1. Existing particles 
  Suppose )�(�, �) is the probability that n particles are found in the medium at time � > 0 after 
we had k particles at � = 0..  The PGF of )�	�, �
, 
 *	+,�, �
 = �+����




��	




��	
)�	�, �
, (3-1) 

is given by 
 *	+,�, �
 = 1

1 − +ℎ	w, t
 ,	�, �
. (3-2) 
Here 
 ,	�, �
 = exp-� .(τ)/ℎ	�, � − �
 − 10���

	
1, (3-3) 

and S(t) is the random immigration rate of source particles at time t.  The coefficient of Eq.(3-2), 
),( twQ , gives the effect of source particles appearing in (0, t) and the other part of ),,( twuG  is 

that of particles existing at � = 0.  The formalization of Eq.(3-2) is described in detail in Ref.(3). 
  The conditional probability ),( tnPk  can be obtained easily and expressed as 
 )�	�, �
 = 1�! �! 2 ���+� ����� *(+,�, �)3

����	

=�4�(���),	(�)              �

��	

, (3-4) 

where 
 ,	(�) = 15! &,(�)(��	 = 15!2 ����� ,(�, �)3

��	
 (3-5) 

and 
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 4�(���) =��	6, �
4����������,
���

��	
 (3-6) 

which is obtained successively using the relation 
 4	(�) = ��,	. (3-7) 
The term )(

0
iQ  will be calculated when a more definite model is given. 

 
3.2. Detected particles 
  We next consider the conditional probability )�( ,�, �) that m counts have been recorded during 
a time interval (0, t) and n particles are found in the medium at time � > 0 after we had k particles 
at � = 0.  Repeating the familiar procedure, we obtain the expression for the PGF of )�( ,�, �), 
 7	+,",�, �
 = �+� � "����)�	 ,�, �
,


��	




��	




��	
 (3-8) 

as 
 7	+,",�, �
 = 1

1 − +!	", w, t
 8	",�, �
, (3-9) 
where 
 8	",�, �
 = exp-� .(τ)/!	",�, � − �
 − 10���

	
1. (3-10) 

The coefficient ),,( twvR  in Eq.(3-9) is the effect of source particles appearing in (0, t) and the 
other part of ),,,( twvuT  is that of particles existing at � = 0. 
  The conditional probability )�( ,�, �) is obtained similarly as before; 
 
 )�	 ,�, �
 = ��4�(���,���)8	(�,�),�

��	

�

��	
 (3-11) 

where 
 8	(�,�) = 15! 9! &8(�,�)(����	 = 15! 9!2 ���"� ����� 8(",�, �)3

����	
 (3-12) 

and 
 
 4�(���,���) = �� �	6�, 6�, �
4����������,�������.

���

���	

���

���	
 (3-13) 

The coefficient ),( jnim
kK   for � > 0 can be calculated successively using the relation 

 4	(�,�) = ��,	��,	. (3-14) 
 
 
4. Application 
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  In the above formalization, the branching is described by a distribution function p
ν

.  Usually, p
ν

 
is unknown.  In the present section, we suppose that exactly two particles are produced by a 
branching reaction, which is a particular but very important and useful branching mode.  The 
distribution function p

ν

 is, therefore, 
 

ｐ� = 1       (� = 2)
0       (� ≠ 2) (4-1) 

and its PGF defined by Eq.(2-4) is given by 
 �	�
 = ��. (4-2) 
 
4.1. Branching started from a single particle 
4.1.1. Existing particles 
  Equation (2-6) is written as 
 �	�
 = ��	� − 1
	μ� − 1
, (4-3) 
where 
 : = ���� . (4-4) 
This ratio can be considered a multiplication rate of a particle.  In Eq.(4-4), λa is given by 
Eq.(2-15) and (2-17) according to the detector type. 
(i) Case ofμ≠1 (non-critical case) 
The function k(ω) defined by Eq.(2-10) is, in this case, 

 �	�
 = 1; ln <� − 1 :=� − 1 <, (4-5) 
where 

 ; = �� − �� = 	1 − :
λ� . (4-6) 
Consequently the PGF shown in Eq.(2-9) is, therefore, obtained as 

 ℎ	�, �
 = 	: − >���
� − 	1 − >���
:	1 − >���
� − 	1 − :>���
, (4-7) 
which satisfies the conditions (2-7) and (2-8).  The probability �(�, �) is given, using Eq.(2-11), 
by 

 �	�, �
 = ⎩⎪⎨⎪⎧
C�        (� = 0)� 1 − :

1 − :>����� >���        (� = 1):C� ∙ �(� − 1, �)        (� ≥ 2)
, (4-8) 

where 
 C� = 1 − >���

1 − :>���. (4-9) 
(ii) Case ofμ=1 (critical case) 
  In a similar way to the previous case, 
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 ℎ(�, �) = 	��� − 1
� − ������� − (��� + 1). (4-10) 
This expression satisfies the condition (2-7) and (2-8) as well.  The probability �(�, �) in this case 
is described as 
 �	�, �
 = ⎩⎪⎨⎪⎧

C�       	� = 0
�C������       	� = 1
C� ∙ �(� − 1, �)       	� ≥ 2
, (4-11) 

where 
 C� = ������ + 1. (4-12) 
4.1.2. Detected particles 
  Using the function �(",�) which is obtained by substituting Eq.(2-6) with Eq.(4-2) in Eq.(2-14) 
or Eq.(2-16), the PGF in Eq.(2-21) is derived by the familiar procedure 
 !	",�, �
 = &D − E>���(� − ED&1 − >���)(	1 − >���)
� − 	E − D>���
 , (4-13) 
where, for an absorption-type detector, 
 F = G	� + �� − ��
� + 4����	1 − "
 E = �� + F

2��  D = �� − F
2�� , 

(4-14) 

and, for a non-absorption-type detector, 
 F = G	�� − ��"
� + 4��� E = �� − ��" + F

2��  D = �� − ��" − F
2�� . 

(4-15) 

Here, in Eq.(4-14) and Eq.(4-15), 
 �� = �� + �� = � + �� + �� (absorption type)� + ��          (non − absorption type). (4-16) 
  The probability is estimated from the following equation: 
 �( ,�, �) = ⎩⎪⎨⎪

⎧ 1 ! H ���"� -ED(1 − >���)E − D>��� 1I
ｖ�	

(� = 0)

1 ! H ���"� -(E − D)�>��� (1 − >���)���
(E − D>���)���1I

ｖ�	
(� ≥ 1)

. (4-17) 

  It is complicated to obtain the mth differential coefficient at v=0 for a large number of m, but the 
detection probability in a very short time interval (0, t) is usually small and estimation of the 
probability is, therefore, necessary only for small m. 
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  The probability for m=0, �(0,�, �), is easily estimated by 
 �	0,�, �
 = ⎩⎪⎨⎪⎧

E	D	J       	� = 0

(E	 − D	)�>����	E	 − D	>����
�       	� = 1
J ∙ �(0,� − 1, �)       	� ≥ 2
, (4-18) 

where 
 J = 1 − >����E	 − D	>����, (4-19) 
 E	 = �� + F	

2�� ,     D	 = �� − F	
2�� , (4-20) 

and 
 F	 = KG(� + �� − ��)� + 4���� (absorption type)L��� − 4��� (non − absorption type)

. (4-21) 

  Introducing the ratio of the detection rate to the absorption rateεof a particle, this ratioεand 
the multiplication rateμgiven in Eq.(4-4) are described as follows; 
 : = ��

�� = K ��
����� (absorption type)
��
�� (non − absorption type)

. (4-22) 

 M = ��
�� = K ��

����� (absorption type)
��
�� (non − absorption type)

. (4-23) 

The parameters in Eq.(4-20) and Eq.(4-21) are given again withμandε, which are 
 F	 = - ��G(1 − :)� + 4M: (absorption type)��G(1 + M + :)� − 4: (non − absorption type), (4-24) 
   
 E	 = ⎩⎨⎧ 1

2: N1 + : +G(1 − μ)� + 4εμO (absorption type)
1

2: N1 + M +G(1 + M + :)� − 4:O (non − absorption type)
, (4-25) 

and 
 D	 = ⎩⎨⎧ 1

2: N1 + : −G(1 − μ)� + 4εμO (absorption type)
1

2: N1 + M −G(1 + M + :)� − 4:O (non − absorption type)
. (4-26) 

 
4.2. Branching with random immigration 
4.2.1. Existing particles 
  The source strength S(t) is assumed to be a constant S. 
(i) Case ofμ≠1 (non-critical case) 
  The PGF of )�	�, �
, i. e.  *	+,#, �
 in Eq.(3-2), is given by 
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 *	+,�, �
 = 	1 −�
:>��� − 	1 − :�
	: − +
	1 −�
>��� − 	1 − +
	1 − :�
 
                        × exp P .:�� ln 1 − +

1 − :>��� − (1 − >���):�Q (4-27) 

in the present binary branching mode.  In the probability )�	�, �
 described in Eq.(3-4), the factor ,	(�) is obtained, in the binary branching mode, as 
 ,	(�) = R exp S �

��� ln ���
�����	
T       (5 = 0)

�
������

� :C� ∙ ,	(���)       (5 ≥ 1)
, (4-28) 

where C� is given in Eq.(4-9).  The probability �	6, �
 in Eq.(3-6) is estimated with Eq.(4-8). 
(ii) Case ofμ=1 (critical case) 
  In a similar way 
 *	+,�, �
 = −�1 + ���(1 −�)�+� − 1 − ���(1 − +)(1 −�) 

                        × exp S− �
�� ln �1 + ���(1 −�)�T, (4-29) 

and 
 ,	(�) = Rexp S− �

�� ln (1 + ���)T       (5 = 0)
�
�����

� :C�,	(���)       (5 ≥ 1)
. (4-30) 

Here C� is given in Eq.(4-12), and the probability �	6, �
 in Eq.(3-6) is estimated with Eq.(4-11). 
4.2.2. Detected particles 
  In the present binary branching mode, the PGF in Eq.(3-9) and the coefficient 8(",�, �) in 
Eq.(3-10) are easily obtained as 
 7	+,",�, �


= U&1 − >���(� − (E − D>���)V× 8(",�, �)/	1 − D+
 − (1 − E+)>���0� − /E	1 − D+
 − D(1 − E+)>���0   (4-31) 

and 
 8	",�, �
 = exp P	D − 1
.� + .:�� ln E − D	E − D>���
− 	1 − >���
�Q (4-32) 
In the coefficient 8	(�,�) in Eq.(3-12) for calculating the probability )�( ,�, �) in Eq.(3-11), the order 
i is the number of counts due to source particles appearing in a time interval (0, t).  It is, therefore, 
sufficient to estimate 8	(�,�) only for small i when the detection efficiency is small.  When i=0, this 
coefficient is described as 
 8	�	,�� = 19! 2 ����� 8(",�, �)3

����	
  

 
 
(4-33) 
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=Rexp S	D	 − 1
.� + �
��� ln �����

���������
T        (9 = 0)
�

������
� ∙ J ∙ 8	�	,����                                     (9 ≥ 1)

, 

where 
 J = ������


���������
. (4-34) 
The probability )�(0,�, �) is, therefore, expressed as 
 )�(0,�, �) = �4�(	,���) ∙ 8	�	,��,�

��	
 (4-35) 

 
where 
 4��	,���� = ��(0, 6, �)4����	,������

���

��	
 4	(	,�) = ��,	. (4-36) 

 
  Using the representations obtained in this paper, a series formed by time intervals between 
successive detections of particles will be generated in a computer and be discussed the 1 �⁄  
problem in the next paper. 
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