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Abstract. Spatial data mining aims at the discovery of unknown, useful patterns 

from large spatial datasets. This article presents a thorough analysis of the 

Portuguese adopters of distributed energy resources using explorative spatial data 

mining techniques. Results show clustering of distributed energy resources that 

currently passing the early adoption stage in Portugal. Furthermore, spatial 

adoption patterns are simulated over a 20 year horizon, analyzing technology 

concentration changes over time while comparing three different energy policy 

designs. Outcomes provide useful indication for both electrical network planning 

and energy policy design. 
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1   Introduction 

 

Recently, residential consumers have been adopting new distributed energy 

resources (DER), energy technologies like solar photovoltaics (PV), electric vehicles 

(EV) and electric heating, ventilation and air conditioning devices (HVAC). With the 

constant growth in utilization of these technologies experienced in recent years, studies 

started to focus on the likely impact of such DER, as they are expected to substantially 

reshape the European energy system [1]. With its Clean Energy For All Europeans 

package the European Union (EU) aims at further strengthening the role of consumers 

and local energy communities within an increasingly decentralized European energy 

system [2].  

Installation and subsequent adequate operation of DER offers several potential 

benefits, including self-consumption, arbitrage trade, shifted consumption and 

flexibility provision [2]. The Portuguese government has recently committed to a 

renewable energy transition as outlined in its National Energy Plan towards 2020 [3].  

This strategy includes several goals, i.e. i) to increase the share of renewable energy on 

final energy consumption by 40% until 2030 and ii) to promote microgeneration, 

mostly by PV; the target is 300 MW of microgeneration by 2020. Furthermore, 

ambitious targets to stimulate the uptake of electric mobility technologies is contained. 
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Given the political backing, a strong uptake of DER could be observed in Portugal 

(Figure 1). 

This motivates a thorough and combined assessment of the spatial patterns of PV, 

EV, and HVAC adoption. These patterns are especially interesting to electricity 

network planners, whose job is to connect consumers to generation sources, thus 

satisfying the rising electricity needs at a constant, balanced and cost-optimized pace. 

With regard to energy technologies such as DER, network planners are especially 

interested in understanding timing and magnitude of the appearance of such new 

appliances [4]. Therefore, the assessment of spatial DER adoption patterns can 

contribute with important insights both to policy analysis and electricity network 

planning [5]. Having the analysis of DER adoption patterns as main topic of this paper, 

the addressed research questions can be differentiated into the following: 

 

• Does the adoption process of EV, HV and HVAC exhibit spatially clustered 

or homogeneous patterns? 
• Can a decomposition of spatial autocorrelation patterns identify EV, PV or 

HVAC adoption hotspots (or coldspots) that are statistically significant? 

• If we simulate technology adoption over time, how are spatial autocorrelation 

measures (e.g. Moran’s I) evolving?  

 

The report is structured the following way (Figure 2): While Chapter 2 is dedicated 

to a short introduction of the emerging field of spatial data mining, Chapter 3 includes 

a description of the data-set analysed. Then, Chapter 4 introduces the mathematical 

framework of spatial autocorrelation and the detection of localized clusters used 

throughout this work. Thus, this part of this work is dedicated to what has been called 

“Exploratory Spatial Data Mining” [6]. Chapter 5 builds on previous explanations and 

investigates the temporal variability of Moran’s I along a 20-year timespan, with a 

simulated full technology adoption. Chapter 6 contains conclusions and an outlook on 

the further applications of the developed application of the previous chapter.  

 

Figure 1. EV, HVAC (both adopters) and PV (in MW) stock in Portugal 2009-2018 

 

 

Figure 2. Model architecture 



2   Spatial Data Mining  

Spatial data mining is an emerging, very recent research area that has developed on 

top of data mining research which itself exists since the 1980s [7]. Spatial data mining 

has been defined as the “the process of discovering interesting and previously unknown, 

but potentially useful patterns from large spatial datasets” [8]. The main difference to 

traditional data mining thus lies in the very nature of spatial data. Spatial data 

intrinsically relate to space, therefore carrying information on location, distance and 

topology/form of spatial objects [7]. Therefore, spatial data is also always assessed with 

tools that aim to analyze these specific spatial characteristics, such as spatial join, 

spatial overlay and spatial intersection among others. An extensive overview of the 

computation of spatial pattern analysis can be found in [9]. In contrast to non-spatial 

data mining, spatial data mining was said to possess increased complexity [8]. Its main 

challenges are [7]: 

 

1) Spatial autocorrelation phenomena 

2) Spatial relationships between observations and their description 

3) The inherent complexity of spatial data  

Consequently, the increased complexity and a high computational costs of spatial 

data processing require the use of efficient spatial data structures and operations [7].  

There have been several methods developed that are able to explore and handle the 

above-mentioned complexities. These can be divided into Exploratory Spatial Data 

Mining and other advanced techniques. 
In [6], the authors merge the common spatial clustering tools such as Global 

Autocorrelation (Moran’s I), Hot Spot (Getis -Ord) Analysis, Local Autocorrelation 

(e.g. Anselins Local Moran I) and Density kernel estimation as Exploratory Spatial 

Data Mining analyses. On the other hand, interestingly, more advanced tasks of spatial 

data mining are the analysis of spatial association rules, spatial clustering analysis, 

spatial trend detection, and spatial outlier analysis [6].  

 

This work will proceed with a thorough Exploratory Spatial Data Mining of DER 

adopters in Portugal, followed by the establishment of an advanced tool that allows 

tracking the variation of spatial autocorrelation structures along a full DER adoption 

lifetime using a technology diffusion model. 

3    Input data    

In the scope of this work, two data-sets have been combined. A set of geo-referenced 

EV, PV and HVAC adopters (counting 2,632/ 474/ 2,111) as point information, 

obtained by the Portuguese e-mobility charging platform operator and the Portuguese 

energy agency as well as a highly granular census data-set for Continental Portugal.  



  
The EV data-set has been cleaned from commercial users beforehand and sums both 

Battery EV (BEV) and Plug-In Hybrid EV (PHEV). Likewise, residential PV 

installation records have been obtained by removing small-scale business. No 

technology or installation size differentiation have been considered. On the other hand, 

the HVAC data-set comprises mostly electrical systems of different technical 

peculiarities. The distribution of selected energy technologies across Portuguese 

continental municipalities is shown above (Figure 3.) 

While this study differentiates the adoption tendencies between this larger EV, PV 

and HVAC groups, in-group analysis (e.g. BEV versus PHEV) has been constrained by 

the shape of data-sets available and lies outside the scope of this work. 

4   Applying Spatial Data Mining to DER adopter patterns 

4.1   Global autocorrelation  

A widely-applied metric for spatial auto-correlation is Moran’s I [9]. Similar to 

Geary’s C or the global Getis-Ord G, it is an autocorrelation test like that is applied on 

a global scale Thus, it results in one index. Moran’s I provides insight in the 

observations’ tendency having similar (or, linear correlated) values when compared to 

their neighbors. Input data can be of spatial point or polygon type. 

It is an dimensionless, appealing metric, as it produces outputs within [-1,1], where 

a value of 0 spatial randomness equivalent to possessing no distinct pattern, 1 represents 

absolute spatial autocorrelation, and -1 complete dissimilarity similar to a checkerboard 

pattern [10]. A Moran’s I value of -1 implies that all spatial objects are neighbored by 

the most dissimilar values of the population. An important input represents the weight 

 
Figure 3. Spatial distribution of EV, PV and HVAC adopters in municipalities of 

Continental Portugal. Values are divided into quintiles, (for each technology separately). 

 



matrix 𝑤𝑖𝑗 that contains the neighboring structures of the spatial points or polygons 

under analysis. 

Considering spatial polygons, the neighborhood structure incorporates the degree of 

adjacency, taking values of 0 (is not neighbor) or 1 (is neighbor). As shown below 

(Eq.1), the formula sums up all differences between polygons (i) values yi and 

respective neighborhood polygons’ (j) values yj compared to the global mean �̂� (also 

lagged mean or spatial lag). The resulting value is divided by the variance of each value 

yi with respect to the global average �̂� and consecutively multiplied with the number of 

observations n by the spatial weights’ matrix 𝑤𝑖𝑗. Moran’s I it is typically computed as 

stated below: 

  

         𝐼 =
n

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1
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𝑛
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𝑖=1

                   (1) 

 
The output gives a first indication of the spatial autocorrelative structures. However, 

respective significance levels (p-values) can be either obtained through simulation 

approaches or by comparing the variances to predefined distributions. Former approach 

has been explained in [11].  

It is important to note that Moran’s I values can be computed on the base of spatial 

point data only. However, in our research question such analysis is limited given the 

adopter’s location dependency from population variables, that is, the spatial distribution 

of population groups that represent the overall adopter potential. Therefore, spatial 

point information previously introduced has been superimposed with municipality 

polygons. This approach allows for the retrieval of a DER adopters/1000 inhabitants 

ratio, which is better suited to compare the presence of EV, PV or HVAC adopters in 

differently populated areas to each other.  

Moran’s I values and p-values obtained for the polygon-based analysis are shown 

below (Table 1). As shown, results suggest that all three technologies exhibit spatial 

autocorrelation (Moran’s I between 0-1). That means that values are similar to 

neighboring values, or in other words, are spatially clustered. 

 
Table 1. Spatial autocorrelation for EV, PV and HVAC adopters in Continental Portugal 

Value/ Technology EV PV HVAC 

Moran’s I 0.42346 0.37526 0.39532 

p-value <0.01 <0.01 <0.01 

Polyg. with values 185 130 161 

 

The p-value has been computed to quantify the probability that the calculated 

Moran’s I values are different from pure chance. As mentioned above, the p-value is 

approximated using a simulation-based approach firstly presented in [12]. Here, the 

probability of obtaining Moran’s I values above the observed one is calculated using 

the following formula: 

 

    𝑝 =
𝑚 +1

𝑀+1
          (2) 



In this equation, m quantifies the number of simulated Moran’s I values above the 

retrieved value. Furthermore, M represents the total number of simulations. As shown 

in Figure 5, one-sided exceedance probability distributions for obtaining values larger 

than the retrieved Moran’s I have been generated. In other words, the approach 

simulates a predefined number of Moran’s I values relying on observed values in a 

permutated way. Thus, it can be observed if such value distributions follow a spatial 

randomization that is equivalent to accepting the Null hypothesis.  

The distribution of the exceedance probability was generated using during 600 

permutations with equal probability and no repetition. It should be noted that the 

number of permutations needs to be smaller than the possibilities of rearranging the 

polygon values to avoid double counting effects that could affect negatively results. 

This is true for this work. 

 
Figure 5. Spatial distribution 

 

 

As seen above, outcomes suggest strong evidence for the rejection of the Null 

hypothesis of spatial randomization with p-values smaller than 0.1% across all 

technologies. The red vertical bar in the figure (Fig.5) indicates the realized Moran’s 

value and the estimated Moran’s I value for each technology on Municipal aggregation 

level. It should be noted that Moran’s Is dependency on a predefined neighborhood 

structure as well as its boundary polygon configuration in an incomplete neighborhood 

matrix have been criticized in [9]. However, as authors likewise admitted, no optimal 

treatment of these cases has been found so far. 

4.2   Local autocorrelation  

While the previously introduced analysis of spatial autocorrelation (Moran’s I) 

provides insight in the global dispersion / concentration of spatial patterns, attempts 

have been made to break geographical variation down to study local situations. 

In this light, Anselin suggested a new type of model, namely the so called “local 

indicators of spatial association (LISAs)“ [13]. These should comply with two 

requirements: 

- The LISA value of each observation should provide insights to the spatial 

clustering around that value 

- The sum of all LISA observations should be proportional to a global metric of 

spatial autocorrelation (e.g. all LISA values should sum to a global 

autocorrelation value). 



Latter requirement can be met using index decomposition techniques. In the same 

work [13], Anselin suggested a LISA based on the decomposition of Moran’s I, to 

retrieve a Local Moran’s I. Here, the autocorrelation value associated to each 

observation is Ii, whereas qi are the mean-centered values and qj are the means for all 

neighbor values of polygon i. Thus, Ii can be retrieved following: 

 

𝐼𝑖 =  𝑞
𝑖
∑ 𝑤𝑖𝑗𝑞

𝑗𝑗           (3) 

 

Using a permutation Monte-Carlo sampling approach as in the test-statistic approach 

of Eq.2, a significance test may be conducted using [13]: 

 

    𝑧(𝐼
𝑖
) =  

𝐼𝑖−𝐸[𝐼𝑖]

√𝑉𝑎𝑟[𝐼𝑖]
           (4) 

 
Here, values of Ii > 0 indicate that a cluster of similar values (higher or lower than 

average) is present. Likewise, values of Ii < 0 indicate a combination of dissimilar 

values (e.g. high values surrounded by low values). In R programing language, this can 

be computed using the “localmoran” command of the spdep package. This command 

returns the local Moran’s I statistic for each polygon, the expected value E(Ii) and 

variance Var(Ii)  under the randomization hypothesis, the test statistic (Eq. 4) as well as 

the p-value of the above statistic assuming approximate normal distribution [11].  

 

 
 

Figure 6. Spatial distribution of Local Moran I (a, b, c) and respective p-values (d, e, f). 

Please note that a, b and c are shown in quintiles that are equidistant to 0. 



Outcomes show spatial hot-spots along the southern cost (PV, HVAC) and Western 

costs (EV) as well as in some isolated areas in northern-central Portugal (EV, PV, 

HVAC). Furthermore, all technologies adopter distributions suggest cold spots in the 

Northern or central areas of Continental Portugal (EV, PV, HVAC). Taking the test 

statistics analysis into account, the hotspots along the urban centers at Portugal’s 

western coastline (EV) and the southern costal hotspots (PV; HVAC) suggest being 

significant at levels <1%. 

Several techniques to extend the local autocorrelation analysis, taking into account 

common critiques on the necessary normality assumption (of Iis) and multiple 

hypothesis testing have been proposed. The interested reader might find an extensive 

overview of such extensions together with case study applications in [11]. 

5   Spatial autocorrelation describing technology diffusion  

An interesting further application of Moran’s I to study large-scale DER diffusion 

patterns geographically, lies in its potential to describe the stage of maturity of the 

innovation diffusion process based on analysis of spatial autocorrelation of the adoption 

patterns. In a thought experiment (Figure 7), we would expect to see isolated adoption 

clusters at early adoption. Such patterns would possess low spatial autocorrelation. 

However, autocorrelation would rise (towards higher spatial autocorrelation) during 

mid-time of the diffusion process, while a mature technology diffusion would likely 

see equally distributed DER per capita shares.   

 
Figure 7. Hypothetical technology diffusion process with spatial patterns of adoption stages. 

Here, white represents “No adoption”, light grey “Intermediate adoption” (33%), dark grey 

“Strong adoption” (66%), and black “Full adoption” (100%). 

 

Hence, spatial correlation, and, especially its change over time, can be used to study 

and compare technology diffusion processes across countries or case studies. 

Furthermore, the strength of autocorrelation (maximum value of Moran’s I) and its 

development over time are interesting inputs to benchmark energy policy designs, in 

case decision makers are concerned about adoption asymmetries across populations. 

Therefore, we establish a temporalization of Moran’s I model, which compares 20 

annual snapshot DER distributions along the technology diffusion process. While the 

DER diffusion model has been presented in [5], we further analyze three policy designs 

that result in different spatial DER distributions. The modelling rationale behind all  

 



 
Table 2. Modeling of DER distribution under policy change  

 

DER adopter distributions High weights on the following census variables 

High-performance high income 

(HP) 
Census cells with above average higher education s

hare, large residencies, high shares of housing owners 

Low-medium income (LMI) Census cells with below average higher education s

hare, small and old residencies, high shares of renters 
Randomized distribution (RN) - 

 

three policy designs lies in the different ranking of census cells in the queue of DER 

adoption. While the model uses a global technology forecast for each year as well as 

spatially granular (neighborhood level) census data, it produces DER shares per 

municipality for each of the 20 analyzed years. The policy designs are: “high-

performance high income (HP)”, “Low-medium income (LMI)” and “randomized 

distribution (RN)”. They can be discriminated considering different rankings of census 

cells that are due next in the adoption process (Table 2). The census variables that have 

been used to construct the different census cell rankings (through attributing different 

weights to each household-count normalized census cell) are shown below. 

 

Results are shown below (Figure 7). One can observe spatial autocorrelation 

growing along the EV adoption process (left side). Interestingly, patterns on the left 

side (along adoption years) are not linear or follow the expected bell curve outcome 

(from low adoption – low autocorrelation to medium adoption – high autocorrelation 

to complete adoption – low autocorrelation). Instead, under a HP policy design, 

Moran’s I increase until year 10 and then fades out to a higher autocorrelation level 

(0.6). On the other hand, LMI and RN policies see different Moran’s I evolutions that 

stepwise proceed towards a 0.4 or 0.5 autocorrelation value respectively.  

 
Moran’s I variations on time are very different if compared to EV adoption shares; 

as DER adoption is not constant over time, such analysis shows remarkable differences. 

While under a HP policy design, Moran’s I would quickly increase after around 5-10% 

of adoption, it quickly reaches a plateau. Towards the end of the adoption process, 

autocorrelation reduces slightly again.  

 

On the other hand, for LMI and RN policies, spatial autocorrelation remains initially 

on lower levels (around 0.4) and only reach higher levels (such as the HP plateau) after 

90% of EV adoption. That is an interesting outcome as it suggests that LMI and HP 

trigger less autocorrelated (i.e. more dispersed) DER adoption behavior that might 

eventually reduce system integration costs. 



 
Figure 7. Global Moran’s I values for EV adoption patterns along the years (left side)  

and relative to EV adoption shares (right side). Results show temporal variations for  

HP, LMI and RN policy designs (a, b, c respectively).  

6   Conclusions and outlook  

This paper presented a thorough analysis of Portuguese DER adopters using spatial 

data mining techniques. While adoption patterns on municipal level have been 

characterized using Moran’s I and Local Moran’s I, the temporal evolution of spatial 

autocorrelation behavior using EV as a case study has been analyzed, too.  

Results show similar degree of autocorrelation for all three technologies under 

analysis (EV, PV, HVAC). Likewise, local clusters (<1% significance level) have been 

detected, with EV hotspots along the western, densely populated coastline and PV and 

HVAC mostly along the southern fringe along the Algarve coastline. 

On the other hand, this paper provided insights in the effects of policy choice on 

spatial autocorrelation structures. Using a technology diffusion model, outcomes 

suggested that the choice of energy policy measures has strong effects on spatial 

autocorrelation structures (and thus inequality and network impact) of DER adopters. 

For example, policy schemes LMI and RN achieve only higher autocorrelation levels 

after 10 years of adoption. Thus, such incentive schemes might allow deferring 

electricity network investments given adoption patterns with a higher degree of 

dispersion. In contrast, one would expect to associate HP adoption patterns with a more 



pronounced investment to integrate EV charging. This is, as such incentive scheme 

would produce highly concentrated adoption patterns from early adoption phases 

onwards. Concluding, this study serves as promising starting point to further investigate 

the dependency among spatial autocorrelation behavior of DER adoption patterns, 

network expansion costs and adoption inequality. 
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