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Abstract—The smart grid incentivizes distributed agents with
local generation (e.g., smart homes, and microgrids) to establish
multi-agent systems for enhanced reliability and energy consump-
tion efficiency. Distributed energy trading has emerged as one
of the most important multi-agent systems on the power grid
by enabling agents to sell their excessive local energy to each
other or back to the grid. However, it requests all the agents to
disclose their sensitive data (e.g., each agent’s fine-grained local
generation and demand load). In this paper, to the best of our
knowledge, we propose the first privacy preserving distributed
energy trading framework, Private Energy Market (PEM), in
which all the agents privately compute an optimal price for their
trading (ensured by a Nash Equilibrium), and allocate pairwise
energy trading amounts without disclosing sensitive data (via
novel cryptographic protocols). Specifically, we model the trading
problem as a non-cooperative Stackelberg game for all the agents
(i.e., buyers and sellers) to determine the optimal price, and
then derive the pairwise trading amounts. Our PEM framework
can privately perform all the computations among all the agents
without a trusted third party. We prove the privacy, individual
rationality, and incentive compatibility for the PEM framework.
Finally, we conduct experiments on real datasets to validate the
effectiveness and efficiency of the PEM.

Index Terms—Privacy; Secure Multiparty Computation;
Stackelberg Game; Incentive Compatibility; Smart Grid

I. INTRODUCTION

Distributed energy resources (DERs) have been increas-
ingly deployed in the smart grid infrastructure to supplement
the power supply with renewable energy such as solar and
wind. Equipped with DERs, electricity consumers (e.g., small
homes with installed solar panels, hospitals and campuses
with deployed microgrids) can also be considered as suppliers
that have reduced their dependence on the electricity grid
[43]. Recently, multi-agent systems in the smart grid [30]
have attracted significant interests by considering the smart
homes or microgrids as distributed agents [11], [51]. In reality,
smart homes or microgrids may generate excessive energy that
cannot be consumed immediately during routine operations. A
current solution to deal with the excessive energy is to either
consume/waste it or sell it to the main grid [44], [2], even
if many of the smart homes/microgrids have been equipped
with local storage devices. Essentially, from the economic
perspective of such multi-agent systems and social welfare,
transmitting excessive energy back to the main grid or storing
the energy is not an ideal outcome, compared to involving
more consumers (which requests external energy) to receive
the excessive electricity and consume them immediately [1].

To this end, the smart grid begins to incentivize agents with
local energy to cooperate with each other, e.g., decentralized
power supply restoration [4], energy sharing [22] and three-
party energy trading [44]. Inspired by them, we study the
distributed energy trading problem which enables smart homes
or microgrids to sell their excessive energy to other consumers
besides selling back to the power market monopoly, the main
grid [45], [57]. It will greatly benefit all the agents: (1) sellers
can receive more rewards with a trading price generally higher
than the price requested by the main grid, (2) buyers can
reduce their costs (i.e., electricity bill) with the trading price
generally lower than the retail price of the main grid [31], and
(3) interactions/loads between the consumers and the main grid
can be reduced to provide better reliability via autonomy [13].
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Fig. 1. Distributed Energy Trading

However, as shown in Figure 1, distributed energy trading
requests significant amounts of local data from all the agents
(e.g., each seller/buyer’s local generation and demand load
at different times) to compute the optimal price and allocate
the energy trading amounts for all the sellers and buyers
[44]. Disclosing such local data for computation would explic-
itly compromise their privacy. For instance, local generation
reveals the generation capacities and time series generation
patterns [25], and the local demand load reveals consumption
patterns (e.g., which appliance is used at which time) [3], [23].

To address such privacy concerns, we propose a novel pri-
vacy preserving distributed energy trading framework, namely
“Private Energy Market (PEM)” in which all the agents
privately compute the optimal price (ensured by a Nash Equi-
librium of a designed Stackelberg game) and allocate pairwise
energy trading amounts without disclosing local data. To this
end, our PEM framework ensures that all the computations
are performed in novel cryptographic protocols under the
theory of secure multiparty computation (MPC) [55], [19]



which provides provable privacy guarantee. Thus, the major
contributions of this paper are summarized as follows:

1) To our best knowledge, the propose PEM is the first
privacy preserving distributed energy trading framework,
which enables all the agents on the electric grid to
privately compute their optimal trading price (ensured
by a Nash Equilibrium) and pairwise trading amounts,
as well as complete their pairwise transactions without
disclosing their private data (via cryptographic protocols).

2) We model a Stackelberg game [8] in the PEM framework,
which ensures privacy [55], individual rationality, and
incentive compatibility [33] for all the agents. Theoretical
analyses are given to prove all of the three properties.

3) We implement a prototype for the proposed PEM frame-
work with negligible latency in real time. We also conduct
substantial experimental evaluations on real datasets to
validate the system performance of the PEM.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem, discuss the threat model
and the PEM framework. Section III illustrates the energy
trading model under the Stackelberg game. Section IV presents
the cryptographic protocols for the PEM. Theoretical analyses
are given in Section V. Section VI gives some discussions.
In Section VII, we elaborate our system implementation and
demonstrate the experimental results. Section VIII reviews the
literature, and Section IX draws the conclusions.

II. PRELIMINARIES

In this section, we present some preliminaries for the
distributed energy trading and the PEM framework.

A. Distributed Energy Trading

We first introduce the background [44], [11], [21], [31] on
the power grid, where agents represent the consumers with
local generation, e.g., smart homes, and microgrids.
• Energy trading occurs over a fixed length of periods,

each of which is referred as a “trading window”. All
the agents complete their transactions (either selling or
buying energy) within each trading window.

• Agent can be a buyer in a trading window, and a seller in
another trading window, but cannot be both in any trading
window (otherwise, its payoff would not be optimal [21]).

• Each seller can decide how much energy it consumes
(including charging its battery if available [2]) and how
much energy is available in the current trading window.

• We assume that the main grid has unlimited power supply
with a higher price than distributed trading [31], and
energy is transmitted with a negligible loss.

We denote the main grid as M and the set of agents as
Φ (with cardinality |Φ|). For each agent Hi, i ∈ [1, |Φ|], we
denote its generation (e.g., from solar panels) and demand load
in trading window t as gti and lti , respectively. Each agent Hi

optionally installs an energy storage device or battery [54] with
capacity Capi (the maximum energy storage after charging),
which can be specified as 0 (if “no battery”). Denoting the

energy amount charging into or discharging out of the battery
as bti (in trading window t), if charging, we have bti > 0; if
discharging, we have bti < 0. Then, we can define the net
energy of Hi as snti:

snti = gti − lti − bti (1)

In every trading window t, each agent Hi will be classified
as either buyer or seller according to their net energy: (1) if
snti > 0, Hi is a seller, (2) if snti < 0, Hi is a buyer, and
(3) if snti = 0, Hi will be off market. Then, we formally
define Φt

s = {∀Hi ∈ Φ, snti > 0} as the set of sellers and
Φt

b = {∀Hj ∈ Φ, sntj < 0} as the set of buyers, where the
market supply of sellers Et

s and the market demand of buyers
Et

b can be derived as:

Ets =
∑

Hi∈Φt
s

snti > 0 and Etb =
∑

Hj∈Φt
b

|sntj | (2)

Optimal Trading Price. At the end of every trading window,
a seller can store the unsold energy or sell the unsold energy
to the main grid [2]. However, the price offered by the main
grid (denoted as pbtg) is much lower than the regular retail
electricity price for purchasing from the grid (denoted as pstg)
[31]. In the energy trading market, while trading energy in
window t, all the buyers and sellers will jointly learn an
optimal price pt between pbtg and pstg [31] where all the
players achieve an equilibrium in a game (with individual
rationality and incentive compatibility [29]).

PEM also sets an acceptable market price range [pl, ph] to
incentivize the sellers or buyers to join the trading [31] such
that the price pt in the trading window t satisfies:

pbtg < pl ≤ pt ≤ ph < pstg (3)

which is set by the PEM rather than specific agents.1

Section III will illustrate how to derive the optimal price
and allocate energy trading amounts in every trading window.

B. Threat Model

More importantly, our PEM framework addresses the pri-
vacy concerns of all the participants (e.g.,. agents with local
energy) in the distributed energy trading. Specifically, to
realize the energy trading, all the agents ∀i ∈ [1, |Φ|], Hi

should share its local private information to a trusted third
party so as to compute their optimal price as well as allocating
pairwise energy trading amounts. However, such shared local
information are sensitive in general [40], [23], [42], e.g., Hi’s
local energy generation amount, energy consumption amount,
battery storage amount, and its utility parameter (which are
detailed in Section III).

To tackle the above concerns, we propose the PEM frame-
work (without a trusted third party) based on efficient cryp-
tographic protocols [55], [19] to privately function distributed

1If pt > pstg , all the rational buyers will purchase energy directly from the
main grid; if pt < pbtg , all the rational sellers will sell the energy directly to
the main grid. Thus, PEM specifies a reasonable price range.



energy trading without disclosing local information. We define
the threat model in the distributed energy trading as below:
• We assume semi-honest adversarial model for preserving

the privacy in our cryptographic protocols: all the agents
are curious to learn private information from each other
[55], [18] but do not maliciously corrupt the protocol.

• Besides the semi-honest model, all the agents have the
incentive to improve its payoff by cheating on its data.

• All the messages in the framework are assumed to be
transmitted in a secure channel.

C. PEM Framework
To sum up, PEM will provide the following three properties

against the adversaries:
• Privacy: each seller/buyer’s privacy is protected in the

PEM with provable privacy guarantee.
• Individual Rationality: each seller/buyer has a higher

payoff by participating in the PEM.
• Incentive Compatibility: each seller/buyer cannot im-

prove its payoff by untruthfully changing its strategy.
Section IV will illustrate the cryptographic protocols for our

PEM framework, and Section V will analyze the privacy/se-
curity and incentive compatibility to protect the trading under
the threat model defined earlier.

III. DISTRIBUTED ENERGY TRADING

In this section, we first present the distributed trading
scheme for PEM without privacy consideration.

A. Incentive Measurement
We first define two functions to measure the incentives for

both sellers and buyers in the trading [44]. The utility function
measures the payoff received by each seller while the cost
function measures how much each buyer pays.

Seller’s Utility Function [39], [54] is defined to quantify the
total utility of any seller Hi ∈ Φt

s in trading window t:

U ti = kti log(1 + lti + εti ∗ bti) + pt ∗ (gti − lti − bti) (4)

where kti > 0 is the load behavior preference parameter of
the seller Hi (either locally consuming more energy or selling
them), pt is the market price. lti and gti are defined as the
load and generation of Hi. For the battery, bti is defined as
the energy charging/discharging amount: charging if positive
(as additional load) and discharging if negative (as additional
supply); εti ∈ (0, 1) represents the loss coefficient for the
battery, which measure the ratio of battery’s contribution
amount as load (charging) utility.

Buyer’s Cost Function is defined to measure the cost of any
buyer Hj ∈ Φt

b from the energy market and main grid:

Ctj = pt ∗ xtj + pstg ∗ (ltj + btj − gtj − xtj) (5)

Similarly, ltj , gtj , and btj denote the buyer’s local load,
generation, and battery charging/discharging amounts, respec-
tively. Moreover, xtj is defined as the energy amount that Hj

purchased from the trading market, thus we have 0 < xtj ≤
ltj + btj − gtj .

B. Stackelberg Game for PEM

To further pursue the cooperation of agents, two coalitions
are formed based on each agent’s net energy in every trading
window (seller coalition and buyer coalition; the agents in
two coalitions change over time). In our PEM framework, the
seller coalition sells energy with the total supply while the
buyer coalition purchases energy with their total demand, and
their shares of energy to sell/buy are allocated proportional to
their input shares (as detailed in Section III-D). Such trading
mechanism could make the market more stable, and guarantee
the payoffs for conservative sellers/buyers who may not want
to fully compete with other sellers/buyers.

1) Stackelberg Game: Per the two (utility and cost) func-
tions defined for sellers and buyers, the objectives of two coali-
tions consist of two aspects: (1) buyers incline to minimize
their costs (as a coalition); (2) sellers incline to maximize their
utility. To learn the optimal price, we propose a Stackelberg
game for seller and buyer coalitions [8].

Specifically, the market supply (from agents) is generally
less than market demand (since renewable energy cannot
feed all the load in current practice [44]). Therefore, in the
Stackelberg game, the buyer coalition is specified as the leader
while the seller coalition is defined as the follower (otherwise,
sellers will dominate the market). Then, the game G can be
formally defined as:

G = {Φt
b ∪ Φt

s, {lti}Hi∈Φt
s
, {U t

i }Hi∈Φt
s
, pt,Γt} (6)

with the following components in each trading window t:
• the buyer coalition Φt

b is the leader to set up the price
while the seller coalition Φt

s chooses their strategies as a
response to the proposed price.

• {lti}Hi∈Φt
s

is the set of load profiles of all the sellers
(strategies) to maximize their payoffs.

• U t
i is the utility function of seller Hi.

• pt is the price proposed by the buyer coalition.
• Γt is the total cost for the buyer coalition:

Γt =
∑

Hj∈Φt
b

Ctj = pt ∗ Ets + pstg ∗ (Etb − Ets) (7)

where Et
s and Et

b are the market supply/demand (Eq. 2).
Then, the objective of the model is to minimize the total

costs of the buyers/leader and to maximize the individual
utility function of each seller/follower (such that the seller
coalition’s total utility is also maximized) by choosing their
own strategies. We define the equilibrium as below:

Definition 1. The set of strategies ({lt∗i }Hi∈Φt
s
, pt∗) is an

equilibrium for the game G, if and only if it satisfies:

U t
i ({lt∗i }Hi∈Φt

s
, pt∗) ≥ U t

i ({ltk, {lt∗i }Hi∈Φt
s,i6=k}, pt∗)

Γt({lt∗i }Hi∈Φt
s
, pt∗) ≤ Γt({lt∗i }Hi∈Φt

s
, p)

where pl ≤ pt∗ ≤ ph.

Therefore, we seek for the equilibrium of this game in which
the follower (aka. sellers) derives the best response to the



optimal price proposed by the leader (aka. buyers). At this
equilibrium, neither the leader nor any follower can increase
its payoff via any unilateral strategic move. In other words,
when the game reaches the equilibrium, the buyers cannot
reduce the cost by decreasing the price pt while the sellers
cannot improve their utility by adjusting their strategies on
load profiles {lti}Hi∈Φt

s
.

2) Optimal Price: We prove the existence and uniqueness
of the equilibrium [8], [52], [44] for G:

Lemma 1. A unique equilibrium ({lti}Hi∈Φt
s
, pt∗) exists.

Proof. First, we get the second derivative of the utility func-
tion U t

i (Eq. 4):

∂2U ti

∂lti
2 =

−kti
(1 + lti + εtib

t
i)

2
(8)

which is always less than 0 since kti > 0. The utility function
is concave with lti . Then given any price pt, each seller Hi ∈
Φt

s can only find a unique lti to get its maximum utility. On
the contrary, the buyers can also find the optimal price while
the sellers specify their load profiles in the Nash Equilibrium.
Thus, the equilibrium ({lti}Hi∈Φt

s
, pt∗) exists.

Second, to prove the uniqueness of the equilibrium, we need
to prove that the optimal price is unique for the minimum cost
of the buyer coalition (leader of the game). We first find the
optimal load profile for each seller Hi ∈ Φt

s: lti . We then get
the first derivative of Hi’s utility function (whose value should
be 0 for the maximum utility):

∂U ti
∂lti

=
ktiε

t
i

(1 + lti + εtib
t
i)
− pt = 0 (9)

Thus, we get the optimal load profile for seller Hi:

lti =
ktiε

t
i

pt
− 1− εtibti (10)

Replacing lti in the total cost function Γt, then we get the
second derivative of Γt:

∂2Γt

∂pt2
=

∑
Hi∈Φt

s

2pstgk
t
i

(pt)3 > 0 (11)

Then, Γt is strictly convex with pt, which generates a unique
optimal price. Thus, equilibrium ({lti}Hi∈Φt

s
, pt∗) is unique.

This completes the proof.

To find the optimal price pt∗ in game G, we calculate the
first derivative of Γt:

∂Γt

∂pt
=

∑
Hi∈Φt

s

(gti + 1 + εtib
t
i − bti)−

pstg
∑
Hi∈Φt

s
kti

(pt)2
= 0 (12)

Solving Eq. 12, we have

p̂t =

√√√√ pstg
∑
Hi∈Φt

s
kti∑

Hi∈Φt
s
(gti + 1 + εtib

t
i − bti)

(13)

Therefore, we can get the optimal price pt∗ by integrating
Eq. 13 and 3.

pt∗ =


p̂t, p̂t ∈ [pl, ph]

pl, p̂t < pl

ph, p̂t > ph

(14)

Replacing pt in the load profile lti (Eq. 10) with pt∗, we can
get the optimal load profile (strategy) for each seller Hi:

lt∗i =
ktiε

t
i

pt∗
− 1− εtibti (15)

Note that if there is no battery installed for the seller, we
thus have bti = 0.

C. Trading Scheme in an Extreme Market

If the market supply in the PEM is greater than or equal to
the market demand (this rarely occurs in the current smart grid
infrastructure, “extreme market”), to maintain a robust market,
the market electricity price should be set to the lower bound
pl which is still greater than the price pbtg offered by the main
grid. Different from the general market case, the sellers also
maximize their utilities by selling the remaining energy to the
main grid and the buyer coalition will buy the electricity for
all its demand from the market (to minimize their costs).

D. Energy Distribution and Payment

Considering Et
s < Et

b as the general market and Et
s ≥ Et

b

as the extreme market, our PEM framework allocates trading
amount for each pair of buyer and seller based on the demand
(general market) or supply ratio (extreme market) out of
the total market supply and demand to ensure fairness of
distribution. We now discuss the allocation strategies for the
two markets.

General Market: the optimal price pt∗ is proposed by the
buyer coalition in the Stackelberg Game and all the market
supply should be sold to the buyer coalition with price pt∗.
In the buyer coalition, the amount of electricity should be
allocated in terms of their demand ratio out of the total demand
Et

b. Then, each buyer Hj ∈ Φt
b requests energy with the

amount eij = snti ∗
|snt

j |
Et

b
from seller Hi ∈ Φt

s, and pays
mji = pt∗eij to seller Hi.

Extreme Market: the price is directly set as pl. Similarly,
each seller Hi ∈ Φt

s sells the amount of eij = |sntj | ∗
snt

i

Et
s

to
buyer Hj ∈ Φt

b and receives the payment of mji = pleij from
buyer Hj .

IV. CRYPTOGRAPHIC PROTOCOLS

In this section, we present the cryptographic protocols for
the distributed energy trading in PEM.

A. Cryptographic Building Blocks

We adopt homomorphic encryption [36] and garbled circuit
[55], [19] as the building blocks to construct our protocols.

Homomorphic Encryption (e.g., Paillier cryptosystem [36])
is a semantically-secure public key encryption to generate the
ciphertext of an arithmetic operation between two plaintexts by
other operations between their ciphertexts. It has the additional



property that given any two encrypted messages E(A) and
E(B), we have E(A+B) = E(A) ∗E(B), where ∗ denotes
the multiplication of ciphertexts (in some abelian groups).

Garbled Circuit was originally proposed by Yao [55]. It
enables two parties to jointly compute a function without
disclosing their private inputs where one party creates the
garbled circuit and the other party evaluates the circuit to
derive the result of the secure computation. Our protocols only
incorporate garbled circuit (e.g., the FAIRPLAY system [27])
for realizing some light-weight computations (e.g., secure
comparison) instead of the entire trading scheme.

B. Overview of the PEM
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Fig. 2. Overview of the PEM Framework

As shown in Figure 2 and Protocol 1, in the PEM frame-
work, all the agents firstly form the seller and buyer coalitions
(Initialization). Then, in Private Market Evaluation, the two
coalitions securely evaluate the market. If a general market
case is returned, Private Pricing is executed to securely com-
pute the optimal price. For both general and extreme market
cases, Private Distribution is executed to complete the trading.

1 for agent Hi ∈ Φ do
2 Hi generates key pair (pki, ski), and shares pki in Φ
3 for each trading window t do
4 Initialize seller and buyer coalitions: Φts, Φtb
5 Φts and Φtb execute Private Market Evaluation
6 if Ets < Etb (general market) then
7 Execute Private Pricing (Protocol 3): pt = pt∗

8 else
9 Set the current price pt = pl (extreme market)

10 Φts and Φtb execute Private Distribution (Protocol 4)
Protocol 1: Private Energy Market (PEM)

C. Initialization

Since secure computation in the PEM primarily utilizes the
Homomorphic encryption (e.g., Paillier Cryptosystem [36]),
each seller/buyer locally generates its own public-private key
pair and shares all their public keys. At the beginning of each
trading window, each agent claims its role as buyer or seller
or off the market to form the seller and buyer coalitions. If the
seller coalition is empty (Et

s = 0), all the buyers should buy
energy from the main grid with the retail electricity price.

1 Randomly choose Hr1 ∈ Φts with key pair (pkr1, skr1)
2 for each Hj ∈ Φtb do
3 Hj generates random nonce rj and initializes C = 1
4 Hj computes C ← C ∗ Encpkr1(|sntj |+ rj)
5 The last agent in Φtb sends C to Φts \Hr1
6 for each Hi ∈ Φts do
7 Hi generates random nonce ri
8 Hi computes C ← C ∗ Encpkr1(ri)
9 The last agent in Φts sends C to Hr1

10 Hr1 obtains Rb =
∑
Hj∈Φt

b
(|sntj |+ rj) +

∑
Hi∈Φt

s
ri by

decrypting the ciphertext with skr1
11 Randomly choose Hr2 ∈ Φtb with key pair (pkr2, skr2)
12 Repeat Lines 2-10 with Hr1 ← Hr2
13 Hr2 obtains Rs =

∑
Hi∈Φt

s
(snti + ri) +

∑
Hj∈Φt

b
rj by

decrypting the ciphertext with skr2
14 Hr1, Hr2 execute secure comparison with input Rb, Rs
15 if Rs < Rb then
16 return general market
17 else
18 return extreme market

Protocol 2: Private Market Evaluation

D. Private Market Evaluation

After the initialization, PEM determines the market to be a
general or extreme market, where the seller coalition Φt

s and
buyer coalition Φt

b jointly aggregate their private net energy,
and then compare the overall supply Et

s and demand Et
b.

Specifically, there are “two rounds” of aggregations. In the
first round, an arbitrary seller Hr1 will be chosen, then each
buyer Hj ∈ Φt

b encrypts the demand |sntj | plus a random
nonce rj using Hr1’s public key pkr1, i.e., Encpkr1

(|sntj |+rj)
for summing up

∑
Hj∈Φt

b
Encpkr1

(|sntj |+ rj). The ciphertext
will be sent to one random seller in the seller coalition except
Hr1. Similarly, each seller Hi of the seller coalition generates
a nonce ri and encrypts it for summing up the value in the
ciphertext. Finally, Hr1 decrypts the ciphertext to get the
aggregated value Rb =

∑
Hj∈Φt

b
(|snj | + rj) +

∑
Hi∈Φt

s
ri

with its private key (see Lines 2-10 in Protocol 2). The second
round is similar to the first: one random selected buyer Hr2’s
public key pkr2 is used to aggregate the sni + ri of each
seller Hi ∈ Φt

s and the nonce rj of each buyer to get
Rs =

∑
Hi∈Φt

s
(sni + ri) +

∑
Hj∈Φt

b
rj (see Lines 11-13).

As shown in Protocol 2, neither the chosen seller Hr1

nor buyer Hr2 knows the value of Et
b or Et

s and they only
obtain the aggregated random value (Rb or Rs). Furthermore,
Private Market Evaluation securely compares Rb and Rs by
Hr1 and Hr2 to determine the market case using the garbled
circuits (e.g., the FAIRPLAY system [9], see Lines 14-18). Note
that the comparison result of Rb and Rs is equivalent to the
comparison result of Et

b or Et
s since the same sum of random

nonces are added to Et
b and Et

s to obtain Rb and Rs.

E. Private Pricing

If general market is returned in Protocol 2, Private Pricing
will be executed to find the optimal price pt∗ of the Stackelberg
Equilibrium. Specifically, a seller Hb will be chosen at random
to securely aggregate two local values of each seller Hi ∈ Φt

s:



(1) kti , and (2) gti + 1 + εtib
t
i − bti (locally computed). Then

Hb derives the optimal price pt∗ per the Eq. 14 in Section
III-B once getting p̂t, and broadcasts the optimal price pt∗

(see Lines 8-9 in Protocol 3).

1 Choose randomly Hb ∈ Φtb with key pair (pkb, skb)
2 for each Hi ∈ Φts do
3

∏i
s=1 Encpkb(kts)←

∏i−1
s=1 Encpkb(kti)∗Encpkb(kti)

4 The last agent sends
∏|Φt

s|
i=1 Encpkb(kti) to Hb

5 Hb decrypts
∏|Φt

s|
i=1 Encpkb(kti) using skb for

∑
Hi∈Φt

s
kti

6 Repeat Lines 2-5 with kti ← gti + 1 + εtib
t
i − bti

7 Hb decrypts the ciphertext to obtain∑
Hi∈Φt

s
(gti + 1 + εtib

t
i − bti)

8 Hb calculates: p̂t =

√
pstg

∑
Hi∈Φt

s
kti∑

Hi∈Φt
s

(gti+1+εtib
t
i−b

t
i)

9 Hb derives pt∗ per the Eq. 14 and broadcasts it
Protocol 3: Private Pricing

F. Private Distribution

As discussed in Section III-D, the trading amount of
electricity between each pair of seller and buyer should be
allocated in proportion to its demand/supply ratio out of the
market demand/supply in both general and extreme market
case. W.l.o.g., we discuss the protocol for the general market
(which can be simply extended for the extreme market). For
buyer Hj , the allocated amount of electricity from seller Hi

should be eij =
|snt

j |
Et

b
∗ snti. Since any buyer may intend to

cheat by using a larger demand snti to increase its share in
the allocation (reduce costs with a lower price to buy energy),
the market demand cannot be directly disclosed to the buyers.
The seller coalition cannot get the market demand considering
the privacy and fairness. Since the homomorphic encryption
schemes (e.g., Paillier Cryptosystem [36]) only obtain additive
and/or multiplicative property (not fully homomorphic [17]
to securely compute “division”), we cannot directly adopt
homomorphic encryption for privately computing the pairwise
allocated amounts using their input ratios.

To address such issue, we transform the ciphertext compu-
tation for the “division/ratio”

|snt
j |

Et
b

in eij . Specifically, each

buyer Hj locally computes Encpks
(

Et
b

|snt
j |

) with 1
|snt

j |
. Note

that 1
|snt

j |
should be multiplied by an integer k to be converted

to an integer. Then Encpks
(

Et
b

|snt
j |

) and k will be sent to the
seller Hs, and Hs decrypts it to get the allocation ratio via
(

Et
b

|snt
j |

)−1 =
|snt

j |
Et

b
. The only information that the seller Hs

knows is the allocation ratio for buyer coalition (while Et
b

and |sntj | are unknown). Thus, the seller Hs can broadcast
the allocation ratio in the seller coalition. Finally, each seller
Hi calculates the allocated amount of energy eij and routes
the energy to each buyer Hj ; Hj pays mji to Hi (see Lines
10-12 in Protocol 4). Similarly, in an extreme market, the
protocol can be implemented by swapping their roles. Figure
3 illustrates the major procedures of Private Distribution (note
that the random seller Hs is chosen as H+

1 ).

H1
+

…

…

…

H1
- H2

- Hj
-

H2
+ Hi

+

(pk1, sk1)

Seller Coalition

1. aggregate the market demand among the buyers with a random 

seller’s public key (w.l.o.g., pk1)

2. each buyer locally computes its demand ratio

Buyer Coalition

4. each seller Hi  calculates 

eij (for each buyer Hj) and 

routes energy eij to Hj

5. each buyer Hj pays mji

to seller Hi 

3. w.l.o.g., H1
+ decrypts and broadcasts 

the demand ratio to other sellers 

Fig. 3. Private Distribution for General Market (which can be adapted for
extreme market by swapping the roles of two coalitions: each buyer Hj
calculates eij and pays mji)

1 if general market then
2 Randomly choose Hs ∈ Φts with key pair (pks, sks)
3 for each Hj ∈ Φtb do
4 Hj computes

∏j
s=1 Encpks(|snts|)←∏j−1

s=1 Encpks(|sntj |) ∗ Encpks(|sntj |)
5 The last agent broadcasts

∏|Φt
b|

j=1 Encpks(|sntj |) in Φtb
6 for each Hj ∈ Φtb do
7 Hj computes and sends∏|Φt

b|
j=1 Encpks(|sntj |)

1
|snt

j
| to Hs

8 Hs decrypts the ciphertexts and broadcasts the
allocation ratio within the seller coalition Φts

9 repeat
10 Hi computes eij =

|snt
j |

Et
b
∗ snti

11 Hi routes eij to Hj
12 Hj pays mji = eij ∗ pt to Hi
13 until each Hi ∈ Φts finishes transaction;
14 else
15 Repeat Lines 2-13 by replacing Φts with Φtb

16 return eij =
snt

i
Et

s
∗ |sntj | and mji = eij ∗ pt

Protocol 4: Private Distribution

V. ANALYSIS

In this section, we give theoretical analysis for privacy,
incentives, and the complexity in our PEM framework.

A. Security/Privacy Analysis

We now prove the security/privacy for the protocols in
our PEM framework under the theory of secure multiparty
computation [55], [19], which requires each party to simulate
all its received messages with only its input and output in
polynomial time (“Computational Indistinguishability”) [18].
The PEM framework executes Private Market Evaluation, Pri-
vate Distribution and possibly Private Pricing in each trading
window. Then, we first examine the security of the three
protocols and then discuss the composition [18].

Lemma 2. The Private Market Evaluation (Protocol 2) does
not reveal any private information.



Proof. Three different types of parties are involved in Protocol
2: a randomly selected seller Hr1, a randomly selected buyer
Hr2, and the remaining sellers/buyers.

We first examine the received messages of the remaining
sellers/buyers. Each of them only receives a ciphertext of a
random number (which cannot be decrypted without the pri-
vate key), which can be polynomially simulated by repeating
the encryption with the public key. Thus, the protocol does
not reveal private information to them.
Hr1 and Hr2 can decrypt the ciphertexts to obtain two

different random numbers Rb and Rs (which are decrypted
with the private keys), respectively. Each random number can
be polynomially simulated by generating a random number
from the uniform probability distribution over range F . Notice
that the random numbers are scaled to fixed precision over a
closed field (after decryption), enabling such a selection. Thus,
Pr[

∑n
i=1Rb is simulated] = Pr[

∑n
i=1Rs is simulated] =

1
F . Finally, Hr1 and Hr2 also securely execute Fairplay to
compare two random numbers for market evaluation, which
does not reveal any private information (as proven in [27]).

Lemma 3. The Private Pricing (Protocol 3) only reveals non-
private information

∑
Hi∈Φt

s
kti and

∑
Hi∈Φt

s
(gti+1+εtib

t
i−bti)

to a randomly selected buyer Hb.

Proof. This Protocol involves two different types of parties: a
randomly selected buyer Hb and all the sellers.

We first analyze Hb’s received messages. Hb can decrypt the
received ciphertexts with its private key to obtain

∑
Hi∈Φt

s
kti

and
∑

Hi∈Φt
s
(gti +1+εtib

t
i−bti). Although such two aggregated

values are revealed to Hb, Hb cannot learn any seller’s private
data, e.g., kti , g

t
i , b

t
i, ε

t
i from the aggregated results.

On the other hand, all the sellers receive only two ci-
phertexts and cannot decrypt them without the private key.
Since each seller can polynomially simulate its received two
ciphertexts using the public key (by repeating the encryption),
we can claim that the protocol does not reveal any information
to the sellers.

Lemma 4. The Private Distribution (Protocol 4) only reveals
the non-private market demand ratios Et

b

|snt
j |
, Hj ∈ Φt

b to the
seller coalition (in the general market), or the non-private
market supply ratios Et

s

|snt
i|
, Hi ∈ Φt

s to the buyer coalition (in
the extreme market).

Proof. Similar to the proof in Lemma 3, we can prove that the
seller coalition can only receive the demand ratios Et

b

|snt
j |
, Hj ∈

Φt
b (from the buyer coalition) in general market. Moreover,

buyer coalition can only receive the supply ratios Et
s

|snt
i|
, Hi ∈

Φt
s (from the seller coalition) in extreme market. However,

they cannot learn any supply or demand from the ratios in
these two cases.

Theorem 1. The PEM framework only reveals the aggregated
information articulated in Lemma 3 and 4.

Proof. Since Private Market Evaluation does not reveal any
privacy where the secure comparison result (either 0 or 1)

can be polynomially simulated, PEM only reveals some trivial
information articulated in Lemma 3 and 4 per the composition
theory of secure multiparty computation [18].

B. Incentive Analysis

Theorem 2. The PEM framework ensures individual rational-
ity and incentive compatibility.

Proof. We first evaluate the individual rationality. In the
general market, if each buyer Hj directly purchases energy
from the main grid at the price pstg , which is greater than
pt∗ ∈ [pl, ph], the cost will increase; if each seller Hi directly
sells the energy to the grid at the price pbtg , which is less
than the pt∗: the payoff will decrease. In the extreme market,
the buyer can buy the energy from the PEM with a lower
price (pl < pstg) and the seller can still sell the energy with a
higher price (pl > pbtg), both of which receive more payoffs.
This proves the individual rationality.

Second, we discuss the incentive compatibility for two
different markets: for the general market, we assume that there
exists one seller Hi ∈ Φt

s which untruthfully utilizes its net
energy snti

′ by adjusting its load profile to lti
′. Per Lemma 1,

there exists only one load profile lt∗i to reach the equilibrium
and return the optimal price pt∗. Then, it is impossible to find
another lti

′ 6= lt∗i since pt∗ is derived only if all the sellers hold
the lt∗i , Hi ∈ Φt

s profile. On the contrary, as all the sellers hold
the optimal load profile, the buyers cannot reduce the total
costs by decreasing market price.

In addition, for the extreme market, the buyers purchase
all the energy from the PEM with a lower price pl < pstg ,
then rational buyers cannot gain more payoff with untruthful
participation (since the payment cannot be lower). For any
rational seller Hi, if Hi untruthfully utilizes a higher supply
to increase its allocated amount of sold energy, the market
price would be reduced (no additional payoff, either). This
proves the incentive compatibility.

C. Complexity Analysis

Lemma 5. The complexity of protocols in the PEM is O(n2).

Proof. It is straightforward to analyze the complexity of
algorithms in our PEM framework. First, Private Market Eval-
uation algorithm has complexity O(n) – securely aggregating
random values is O(n) while secure comparison is O(1).
Similarly, Private Pricing algorithm has complexity O(n), and
Private Distribution algorithm has complexity O(n2). There-
fore, the complexity of the PEM framework is O(n2).

VI. DISCUSSION

Generalization of PEM. PEM can be extended to Vehicle-to-
Grid (V2G) applications [5] by considering electrical vehicles
as agents with local energy. Last but not least, the proposed
PEM is a general framework for privacy preserving energy
trading (focusing on privacy and incentive compatibility),
which can be readily extended for ensuring privacy and
incentive compatibility for other applications on the power
grid (e.g., energy trading w.r.t. future prices, energy trading by



possibly storing energy for the future, and demand response
[49]). Finally, PEM can also be adapted for trading other
products, such as the allocation of spectrum in the cognitive
radio networks [53], and the Wifi & LTE sharing [56].
Seller/Buyer Coalitions. We forms coalitions for sellers and
buyers in our PEM. First, the formation of coalition can enable
the agents to cooperate to achieve more benefits/social welfare
compared with trading directly with the monopoly, the main
grid. Recall that coalitions make the market more stable for
such emerging applications, e.g., ensuring the fairness among
the seller/buyer coalition by allocating the amounts based
on sellers/buyers’ shares in the market supply/demand. Such
setting would be more applicable for conservative agents.
Nevertheless, it is also worth exploring the privacy preserving
schemes for non-cooperative energy trading or fully competi-
tive energy market [48], which left for future work.
Malicious Model. PEM is based on the semi-honest model,
and each agent (rational) is also assumed to have incen-
tives to cheat for payoffs. Our model can also be extended
to defend against malicious agents, which may deviate the
protocol (regardless of their payoffs) by faking the trading
data, colluding with other agents, and/or performing advanced
attacks. For instance, we can design verifiable and collusion-
resistant schemes (e.g., detect the violation of data integrity,
and prevent collusion by randomly picking agents [50]).
Scalability. With the advancement of distributed computation
[50], [26], secure computation [55], [19] can be applied
to perform complex computation on the smart grid. Each
distributed agent (e.g., a smart home) can also locally compute
the data, such that the computational load of whole system can
be greatly reduced. As shown in the experimental settings in
Section VII-A, we take advantage of the container technology,
e.g., Docker, to emulate local computing agents for different
smart homes in the PEM. High efficiency and scalability of
PEM have been demonstrated.
Blockchain Deployment. PEM can also be integrated with the
emerging blockchain technology [32]. Specifically, the final
distribution and transaction between the sellers and buyers can
be realized by the smart contract of the blockchain to ensure
the integrity and truthfulness (extra anonymity and privacy
should be ensured on the blockchain) [24]. Moreover, the on-
line blockchain can also facilitate the communication of the
MPC protocols in the PEM.
Secure Computation. The recent protocols/systems on secure
computation (e.g., MPC-as-a-service [6], against both semi-
honest and malicious adversaries [14], MPC for small number
parties [10]) cannot be adapted to solve our problem for
the following two major reasons: (1) whether the system
can function real time transactions has not been validated in
most of such systems (we have validated the feasibility and
scalability of deploying PEM in real time in Section VII), and
(2) incentive problems are not studied in most of such systems.
Thus, the proposed cryptographic protocols in PEM can also
complement the literature of secure computation for privacy
preserving trading (which is limited to our best knowledge).

VII. EVALUATION

In this section, we illustrate our system implementation for
the PEM framework and demonstrate the experimental results.

A. Experimental Setup

Our PEM framework is deployed on the NSF CloudLab
platform (https://docs.cloudlab.com), of which the server has
eight 64-bit ARMv8 cores with 2.4 GHZ, 64GB memory
and 120GB of flash storage with Ubuntu:16.04 OS. Docker
(https://docs.docker.com/) is utilized to start a container for
each buyer/seller. We created the image for container based on
the raw image of Ubuntu 16.04 by integrating all the system
environments (e.g., JRE and JDK), and source codes.

We conducted the experiments on 300 smart homes’ real
power generation data (solar panels) and load data over one
day (available at UMASS Trace Repository [7]). We tune the
following parameters in evaluations:
• the number of smart homes n ∈ [100, 300];
• the number of trading windows m ∈ [1, 720]: from

7:00AM to 7:00PM (a trading window per minute);
• the key size: 512/1024/2048-bit.

Benchmark. There is no existing schemes which can be
directly applicable to our problem setting. Then, we use the
traditional energy trading (without PEM) as the benchmark:
all the agents directly purchase energy from the main grid.
Specifically, if a seller (with excessive energy) will sell them
back to the main grid with the offered price pbtg , and the
buyer (short of energy) will buy energy from the main grid
with the retail electricity price pstg . We set the retail price as
pstg=120 cents/kWh and offered price from the main grid pbtg=
80 cents/kWh. We also set the price range of PEM as [90, 110]
cents/kWh. Note the interaction between agents and the main
grid will increase greatly for trading without PEM.
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Fig. 4. Coalition Sizes vs. Trading Windows

Figure 4 illustrates the sizes of seller and buyer coalitions
(the number of smart homes) in all 720 trading windows. The
roles of smart homes change over time.

B. Computational Performance Evaluation

We evaluate the computational cost of PEM among 100 to
300 agents, using three different key sizes (512/1024/2048-
bit). Fig. 5(a) shows the average runtime for a single trading
window (including securely evaluating the market, computing
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Fig. 5. Computational Performance Evaluation for the PEM Framework (negligible latency for minute-level inputs).

the optimal price as well as the energy trading distribution
amounts) as the number of trading windows varies from 1 to
720. The average runtime for each trading window is around
1 sec. This indicates that our PEM framework can efficiently
function real-time trading in practice (with negligible latency).

Fig. 5(b) demonstrates the total runtime on different number
of trading windows among 200 agents (with three different
key sizes 512/1024/2048-bit). Given the same number of
trading windows, we observe that the key size for encryption
and decryption executed in our protocols does not affect the
runtime (since the encryption and decryption are indepen-
dently executed in parallel during idle time). Finally, Fig. 5(c)
validates that the total runtime increases as the number of
agents increases.

C. Energy Trading Performance Evaluation

We have also evaluated the trading performance of our PEM
framework from the following perspectives:
• the optimal price in all the trading windows;
• utility received by some representative sellers;
• total cost Γt for the buyer coalition;
• interactions with the main grid.
1) Optimal Trading Price: Fig. 6(a) shows the optimal

prices in all the 720 trading windows. We can observe that
the price changes over time: in the first few trading windows,
the price equals pstg (purchasing all the energy from the grid).
This shows that at the beginning of the day, the generation is
close to 0, all the agents have to buy energy from the main
grid. Similarly, at the end of day (around 7:00pm), the price
is still pstg for the same reason. Furthermore, in many trading
windows in the middle of the day, the trading price would be
lower bounded: either the optimal price in the general market
is out of range (this also applies to the upper bound), or the
extreme market occurs.

2) Utility and Total Cost: We fix the preference parameter
k = 20, 40 for all the sellers in different trading windows. Fig.
6(b) presents the utility of two agents (which are sellers in all
720 trading windows). We have the following observations:
• The utility of the agents with our PEM framework is

higher than their utility without PEM (buyers only pur-
chase energy from the main grid).

• The utility improvement (with the PEM) in case of
k = 40 is higher than k = 20. since lower preference
parameter would make the sellers to sell more local
energy (which results in more payoff).

In addition, Fig. 6(c) shows the total cost of buyer coalition
in the PEM (for 100 and 200 agents), which can be greatly
reduced in all trading windows (e.g., 25.3% in the current
setting on average).

3) Interaction with the Main Grid: Our PEM framework
can also benefit the main grid by reducing the interactions
between the agents and the grid, which is measured by the
amount of electricity all the agents request from or feed
into the grid. As shown in Fig. 6(d), since more energy
can be traded in the PEM framework among agents, the
interactions with the PEM are much lower than the original
energy consumption (without the PEM).

D. Communication Overheads

We have also evaluated the bandwidth consumption of all
the smart homes while executing the secure computation and
communication among the 200 smart homes with different
key sizes (512-bit, 1024-bit and 2048-bit). Table I shows
the average bandwidth over different numbers of trading
windows (of all the smart homes). With such minor bandwidth
consumption, our PEM framework can be deployed in most
of the networking environments.

TABLE I
AVERAGE BANDWIDTH (MB) OVER m TRADING WINDOWS

m 300 360 420 480 540 600 660 720
512-bit 0.45 0.54 0.48 0.52 0.47 0.48 0.55 0.46

1024-bit 0.84 0.88 1.02 0.93 0.98 1.06 0.97 0.96
2048-bit 1.87 2.12 2.05 2.11 2.20 2.16 2.05 2.01

VIII. RELATED WORK

Smart Grid Privacy. Most smart grid privacy research fo-
cuses on protecting data collected from smart meters integrated
in the power grid [28]. Different privacy preserving techniques
have been proposed to tackle such privacy concerns [3], [38].
For instance, He et al. [20] presented a distortion based
privacy preserving metering scheme by introducing tolerable
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Fig. 6. Energy Trading Performance Evaluation for the PEM Framework

noise to obfuscate the consumption data. Rottondi et al. [38]
leveraged secure communication protocols to implement a
privacy preserving infrastructure which allows utilities and
data consumers to collect measurement data by securely
aggregating smart metering data. [54] studied how to utilize
the renewable energy sources (i.e., batteries) to hide the load-
/metering information of individual households.[12] proposed
a privacy-preserving way to aggregate smart metering data
for the billing of utility provider. Recently, [51] researches
on privately balancing the power load between the main grid
and agents (microgrids). However, none of such techniques
can be applied to multiagent energy trading.

Secure Computation. The theory of Secure multiparty com-
putation (MPC) [55], [19] has significantly advanced the devel-
opment of collaborative computation among multiple parties,
which guarantees that functions can be securely computed
with limited disclosure. Recently, secure computation has
been intensively applied for privacy preserving system design
in different contexts such as location-based services [37],
and medical data analysis [47]. Moreover, Furukawa et al.
[14] have recently proposed a three-party secure computation
against both semi-honest and malicious adversaries, which
achieves low communication complexity and simple compu-
tation. Barak et al. [6] have proposed the MPC-as-a-service
concept and implemented an end-to-end system for large scale
P2P secure computation with low bandwidth.

Energy Trading. Energy trading has been widely discussed
with the development of smart grid. The integration of renew-
able energy sources has greatly motivated studies of energy
market, e.g., incentive mechanisms for trading [46] and auction

[34], and multi-agent energy management [35], which could
improve the stability and utility of the grid. Furthermore,
distributed energy trading has been identified as a promising
scheme for the energy market in [45], [57]. There are also
many ongoing projects, e.g., LO3 Energy [1] which focuses on
the commercial energy trading to encourage residential units
to trade with the neighborhoods. [15] focuses on the energy
trading by blockchain. However, the scalability of the proposed
scheme is not very clear. To the best of our knowledge, we
design and implement the first privacy preserving distributed
energy trading framework.

IX. CONCLUSION

We have proposed a novel privacy preserving distributed en-
ergy trading framework (PEM) which ensures privacy, individ-
ual rationality, and incentive compatibility. The optimal price
for both sellers and buyers can reach a unique equilibrium in
the modeled Stackelberg game. Moreover, we have designed
novel cryptographic protocols for the entire PEM framework.
Theoretical analyses are given to prove all the properties of the
PEM framework. Finally, we have implemented a prototype
for PEM, and conducted experiments to evaluate the system
performance using real smart grid datasets. The experimental
results (high computational efficiency, low bandwidth con-
sumption and negligible latency) demonstrate that PEM can
be readily integrated into the smart grid infrastructure.
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