
EasyChair Preprint

№ 1500

Forest-wise DSH: A Universal Hash Design for

Discrete Probability Distributions

Arash Gholamidavoodi, Sean Chang, Hyun Gon Yoo, Mihir Mongia
and Hosein Mohimani

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 12, 2019

Forest-wise DSH: A Universal Hash Design for Discrete Probability

Distributions

Abstract

In this paper, we consider the problem of classification of M high dimensional queries
y1, · · · , yM ∈ BS to N high dimensional classes x1, · · · , xN ∈ AS where A and B are discrete
alphabets and the probabilistic model that relates data to the classes P(x, y) is known. This
problem has applications in various fields including the database search problem in mass
spectrometry. The problem is analogous to the nearest neighbor search problem, where the goal
is to find the data point in a database that is the most similar to a query point. The state of
the art method for solving an approximate version of the nearest neighbor search problem in
high dimensions is locality sensitive hashing (LSH). LSH is based on designing hash functions
that map near points to the same buckets with a probability higher than random (far) points.
To solve our high dimensional classification problem, we introduce distribution sensitive hashes
that map jointly generated pairs (x, y) ∼ P to the same bucket with probability higher than
random pairs x ∼ Px and y ∼ Py, where Px and Py are the marginal probability distributions
of P. We design distribution sensitive hashes using a forest of decision trees and we show that
the complexity of search grows with O(Nλ∗(P)) where λ∗(P) is expressed in an analytical form.
We further show that the proposed hashes perform faster than LSH-hamming and Minhash for
various probability distributions, in both theory and simulations. Finally, we apply our method
to the spectral library search problem in mass spectrometry, and show that it is an order of
magnitude faster than the state of the art methods.

1 Introduction

Consider the problem of classifying a large number of high dimensional data Y = {y1, · · · , yM} ⊂ BS
into high dimensional classes X = {x1, · · · , xN} ⊂ AS , given a known joint probability distribution
P(x, y), where A and B are discrete alphabets. Given a point y ∈ Y , the goal is to find the class
x ∈ X that maximize P(y | x);

Argmax
x∈X

P(y | x) (1)

where P(y | x) is factorizable to i.i.d components, i.e.,

P(y | x) =
S∏
s=1

p(ys | xs) (2)

In this paper, we refer to X = {x1, · · · , xN} as data base points and Y = {y1, · · · , yM} as queries.
This problem has application in various fields, including the clustering of spectra generated by mass
spectrometry instruments [1]. Consider the problem where there are billions of data points (mass
spectra) and given a query spectrum y the goal is to find the spectrum x that maximize known

1

probability distribution P(y | x) [2, 3]. A naive approach to solve this problem is to compute P(y | x)
for each x ∈ X, and find the maximum. The run time for this algorithm is O(NS) which is very
slow when the number of classes, N , is large.

In order to address this problem where the number of classes is massive, muticlass classification
methods have been established [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, these methods
fail to function efficiently for high dimensional data due to the curse of dimensionality, i.e., in the
high dimensional setting, the number of P(y | x) computations required grows with the order of
classes, O(N), per query data point.

A similar problem has been investigated in the field of nearest neighbor search. In this problem,
given a set of points in a database, the goal is to find the point in the database that is closest
to a query point. A popular approach to this problem is locality sensitive hashing [17, 18]. This
approach solves ε-approximate nearest neighbor search problem by designing a family of hashes in a
way that near points are hashed to the same bucket with probability much higher than random
points. In ε-approximate nearest neighbor search problem, given a query point y, the goal is to find
x ∈ X for which d(x, y) ≤ (1 + ε)d(x′, y) for all x′ ∈ X and X is the set of all feasible points [17, 19].
Currently, the locality sensitive hashing approach does not generalize to the cases where the triangle
inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y) does not hold [20, 17, 18, 21, 22, 23, 24, 25]. Recently,
high dimensional approximate nearest neighbors in a known probabilistic distribution setting have
been investigated [19, 26]. However, currently it is not possible to design efficient algorithms based
on these methods, due to the large number of parameters involved.

The problem of finding high dimensional approximate nearest neighbors in a known probabilistic
setting using a bucketing tree algorithm has been studied previously in [26, 28]. Dubiner uses a
strategy to hash the data points from an arbitrary joint probability distribution into the leafs of the
tree in a way that the paired data collide with a probability higher than the random pairs. However,
the algorithm introduced in Dubiner requires solving computationally intractable optimizations,
making it impossible to implement (e.g. see equation (126) from [26]). However, in this paper, for

the specific case where P(p) =

[p
2

1−p
2

1−p
2

p
2

]
, 0.5 ≤ p ≤ 1, our theoretical and practical results are

compared to [26]).
In this paper, we propose to solve (1) by defining a family of distribution sensitive hashes

satisfying the following property. They hash the jointly-generated pairs of points to the same
buckets with probabilities much higher than random pairs. We further design an algorithm to solve
(1) in sub-linear time using these families of hashes, and present a method to find optimal family of
hashes to achieve minimum search complexity using multiple decision trees where these decision trees
have the same tree structure and defer from each other in that they apply to different permutations
{1, 2, · · · , S} → {1, 2, · · · , S} of the data. This way, we design forest of decision trees where each
decision tree captures a very small ratio α of true pairs for some α ∈ R+ and by recruiting b = O(1

α)
independently permuted decision trees we can reach near perfect recovery of all the true pairs. In
this paper, we refer to each decision tree as a band and b is referred to as the number of bands.

The main idea is that we construct the decision-tree hashes recursively, in a way that the odds of
reaching leaf nodes under the true joint probability distribution P(x, y) is higher than an independent
probability distribution Q(x, y) = Px(x)Py(y). The decision tree is built in a way that the ratio
P(x,y)
Q(x,y) is higher than a minimum threshold, while the ratios P(x,y)

Px(x) and P(x,y)
Py(y) and the number of

nodes in the graph are lower than a maximum thresholds, see Algorithm 3. We further determined
the optimal tree among many trees that can be constructed in this way. Two theorems are presented
here on the complexity of the decision tree built in Algorithm 3.

2

1. No decision tree exists with the overall search complexity below O(Nλ∗) where λ∗ is derived
analytically from the probability distribution P(X,Y).

2. The decision tree construction of Algorithm 3 described in (33) results in the overall search
with complexity O(Nλ∗).

Our results show that our approach, Forest-wise distribution sensitive hashing (DSH), provides
a universal hash design for arbitrary discrete joint probability distributions, outperforming the
existing approaches LSH-Hamming and Minhash in theory and practice. Moreover, we applied this
method to the problem of clustering spectra generated from mass spectrometry instruments.

An alternative strategy for solving (2) is to reformulate the problem as minimum inner product
search problem (MIPS) [27] by transferring the data points into a new space. However, as we show
in Section 6 the transferred data points are nearly orthogonal to each other making it very slow to
find maximum inner product using the existing method [27].

Note that, the algorithms presented in this paper are based on the assumption that the true
pairs are generated from a known distribution P. The distribution P can be learned from a training
dataset of true pairs. In practice, training data can be collected by running a brute force search on
smaller data sets or portion of the whole data. For example, in case of mass spectrometry search,
we collect training data by running brute-force search on small portion of our data [1].

Notation: The cardinality of a set A is denoted as |A|. The sets N and R stand for the sets of
natural and real numbers, respectively. We use P(·) and Q(·) to denote the probability function

Prob(·). Moreover, we use the notation f(x) = O(g(x)), if lim supx→∞
|f(x)|
g(x) <∞ and the notation

f(x) = Ω(g(x)), if lim supx→∞
|f(x)|
g(x) > 0. In this paper, log x is computed to the base e.

2 Definitions

Definition 1 Define the S-dimensional joint probability distribution P as follows.

P : AS × BS → [0, 1], P(x, y) =
S∏
s=1

p(xs, ys) (3)

where A = {a1, a2, · · · , ak}, B = {b1, b2, · · · , bl}, x = (x1, x2, · · · , xS) ∈ AS and y = (y1, y2, · · · , yS) ∈
BS where k, l <∞. On the other hand, we assume that the probability distribution function p(a, b)
is independent of s and satisfies

∑
a∈[k],b∈[l] pa,b = 11. Similarly, we define the marginal probability

distributions Px : AS → [0, 1], Py : BS → [0, 1] and Q : AS × BS → [0, 1] as Px(x) =
∏S
s=1 p

x(xs),

Py(y) =
∏S
s=1 p

y(ys) and Q(x, y) =
∏S
s=1 q(xs, ys), where

px(xs) =

l∑
j=1

p(xs, bj) (4)

py(ys) =
k∑
i=1

p(ai, ys) (5)

q(xs, ys) = px(xs)× py(ys) (6)

1We use pij instead of p(ai, bj) for simplicity. Moreover, pxi , pyj and qij are defined as
∑l
j=1 pij ,

∑k
i=1 pij and

q(ai, bj), respectively.

3

We define family of distribution sensitive hashes as follows.

Definition 2 (Family of Distribution Sensitive Hashes) Assume that the two parameters α
and β along with the probability distributions P, Px, Py and Q are given where Px and Py are
marginal distributions of P and Q = PxPy. A family of subsets (referred here as buckets) Uxj,v ⊂ AS

and Uyj,v ⊂ BS , 1 ≤ j ≤ #bands (#bands stands for the number of bands), v ∈ VBuckets is called
(P, α, β, γx, γy)-distribution sensitive, if the following hold.

α =
∑

v∈VBuckets

Prob((x, y) ∈ Uxj,v × U
y
j,v | (x, y) ∼ P) (7)

β =
∑

v∈VBuckets

Prob((x, y) ∈ Uxj,v × U
y
j,v | (x, y) ∼ Q) (8)

γx =
∑

v∈VBuckets

Prob(x ∈ Uxj,v | x ∼ Px) (9)

γy =
∑

v∈VBuckets

Prob(y ∈ Uyj,v | y ∼ Py) (10)

∀1 ≤ j ≤ #bands, v 6= v′ : Uxj,v × U
y
j,v ∩ U

x
j,v′ × U

y
j,v′ = ∅ (11)

Here #bands represents the number of bands, while VBuckets represent a set of indices for the
buckets. We show how to choose #bands in (52) in Appendix C and how to select Vbuckets in
Algorithm 3. Intuitively, α represents the chance of a true pair falling in the same bucket, while
β represents the chance of random pairs falling in the same bucket. We will show that γx and γy
represent the complexity of computing which buckets the data points fall into. In the next section,
we will describe how the families of distribution sensitive hashes can be used to design an efficient
solution for (1).

3 Distribution Sensitive Hashing Algorithm

In this section, we assume an oracle has given us a family of distribution sensitive hashes Uxj,v, U
y
j,v, ∀j :

1 ≤ j ≤ #bands, v ∈ VBuckets that satisfies ((7) − (11)). Inspired by LSH method, we present
Algorithm 1 for solving (1) using this family.

Algorithm 1 Solving maximum likelihood classification (1) by DSH

Inputs: X = {x1, · · · , xN} ⊂ AS , y ∈ BS and threshold ∆.
Output: Classes x ∈ X satisfying P (y | x) > ∆.
For j ∈ {1, 2, · · · ,#bands}

For v ∈ VBuckets
For x ∈ X ∩ Uxj,v, y ∈ Y ∩ U

y
j,v

Call (x, y) a positive, compute P(y | x) and report x if P(y | x) > ∆.

Remark 1 Note that, the number of times P(y | x) is computed in the brute force method to solve
(1) is |X||Y |. The goal of Algorithm 1 is to solve (1) with a much smaller number of comparisons
than the brute force.

Remark 2 In Appendix C, we show that the number of positive calls in Algorithm 1 is proportional
to β, while the complexity of computing |X ∩ Uxj,v| and |Y ∩ Uyj,v| are proportional to γx and γy.

4

Moreover, the chance of true pairs being called positive grows with α. Therefore, in the next sections,
we attempt to design buckets such that α is maximized, while β, γx and γy are minimized.

Now, the question is how we can design these families in a way to minimize the complexity, and
efficiently map data points to these families. We investigate these questions in Sections 4 and 4.1.

4 Designing DSH Using a Decision Tree Structure

In the previous section, we assumed that an oracle has given us a family of distribution sensitive
hashes. In this section, we design buckets that satisfy ((7)− (11)) using a forest of decision tree
with the same structure. Here, we focus on the probability distributions that can be factorized as
the product of i.i.d components.

Each of our decision trees recovers ratio α of true pairs and by recruiting b = O(1
α) decision

trees we can recover nearly all true pairs. This can be more efficient than using a single decision
tree classifier as achieving near perfect true pair recovery by the single decision tree would require
near brute-force complexity. By allowing α < 1, we can select decision tree that avoid paths with
low P(x, y) resulting in complexities much lower than the brute-force search.

Assume that a decision tree G = (V,E, f) is given where V is the set of nodes, E is the set of
edges, Vl ⊂ V is the set of leaf nodes in the decision tree and f : V/Vl ×A× B → V is the decision
function. For the two nodes v1, v2 ∈ V , v1 is called an ancestor of v2 if v1 falls within the path from
v2 to root. In this case, v2 is called a descendant of v1. Furthermore, assume that a subset of leaf
nodes VBuckets ⊂ Vl is given and at depth s in the decision tree, the decisions depend only on xs
and ys where x = (x1, · · · , xS) and y = (y1, · · · , yS). We define functions Seqx : V → ∪Ss=0As and
Seqy : V → ∪Ss=0Bs recursively as:

Seqx(root)← ∅ & Seqy(root)← ∅ (12)

Seqx(f(v, a, b))← Seqx(v) & Seqy(f(v, a, b))← Seqy(v) (13)

Seqx(f(v, a, b)).append(a) & Seqy(f(v, a, b)).append(b) (14)

S.append(a) means that letter a is added to the end of the string S, i.e., for a string S = s1, · · · , sn
of length n, S.append(s) would be s1, · · · , sn, s which is a string of length n + 1. Then, given
permutations permj : {1, · · · , S} → {1, · · · , S}, 1 ≤ j ≤ #bands, the family of buckets Uxj,v and
Uyj,v are defined as

Uxj,v = {X ∈ AS | Seqx(v) is a prefix of permj(X)} (15)

Uyj,v = {Y ∈ BS | Seqy(v) is a prefix of permj(Y)} (16)

Now, we show that these buckets are distribution sensitive.

Definition 3 The functions A : V → R, Bx : V → R and By : V → R are defined as follows. At
root, A(root) = 1, Bx(root) = 1 and By(root) = 1, and for a ∈ A, b ∈ B and v ∈ V , A(v), Bx(v),
and By(v) are defined recursively as

A(f(v, ai, bj)) = A(v).pij ,∀v ∈ V (17)

Bx(f(v, ai, bj)) = Bx(v).pxi , ∀v ∈ V (18)

By(f(v, ai, bj)) = By(v).pyj ,∀v ∈ V (19)

5

Moreover, B : V → R is defined as

B(v) = Bx(v).By(v),∀v ∈ V (20)

In Figure 1, the decision tree is sketched for probability distribution P =

[
0.4 0.3
0.1 0.2

]
and is constructed

based on Definition 3. Bold edges and the details of construction of the decision tree are explained
in Section 6.

𝐴 𝑣 = 0.16
𝐵 𝑣 = 0.1225

𝐴 𝑣 = 0.12
𝐵 𝑣 = 0.1225

𝐴 𝑣 = 0.04

𝐵 𝑣 = 0.0525

𝐴 𝑣 = 0.08
𝐵 𝑣 = 0.0525

𝑥2 = 1
𝑦2 = 1

𝑥2 = 1
𝑦2 = 0

𝑥2 = 0
𝑦2 = 1

𝑥2 = 0
𝑦2 = 0

𝐴 𝑣 = 0.4
𝐵𝑥 𝑣 = 0.7
𝐵𝑦 𝑣 = 0.5

𝐵 𝑣 = 0.35

√√ × ×

𝐵𝑥 𝑣 = 0.49
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.49
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.21
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.21
𝐵𝑦 𝑣 = 0.25

𝐴 𝑣 = 0.12

𝐵 𝑣 = 0.1225

𝐴 𝑣 = 0.09

𝐵 𝑣 = 0.1225
𝐴 𝑣 = 0.03
𝐵 𝑣 = 0.0525

𝐴 𝑣 = 0.06
𝐵 𝑣 = 0.0525

𝑥2 = 1
𝑦2 = 1

𝑥2 = 1
𝑦2 = 0

𝑥2 = 0
𝑦2 = 1

𝑥2 = 0
𝑦2 = 0

𝐵𝑥 𝑣 = 0.49
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.49
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.21
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.21
𝐵𝑦 𝑣 = 0.25

× ×× ×

𝐴 𝑣 = 0.08

𝐵 𝑣 = 0.0525
𝐴 𝑣 = 0.06
𝐵 𝑣 = 0.0525

𝐴 𝑣 = 0.02
𝐵 𝑣 = 0.0225

𝐴 𝑣 = 0.04
𝐵 𝑣 = 0.0225

𝑥2 = 1
𝑦2 = 1

𝑥2 = 1
𝑦2 = 0

𝑥2 = 0
𝑦2 = 1

𝑥2 = 0
𝑦2 = 0

𝑣3

𝐵𝑥 𝑣 = 0.21
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.21
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.09
𝐵𝑦 𝑣 = 0.25

𝐵𝑥 𝑣 = 0.09
𝐵𝑦 𝑣 = 0.25

×× ×√
𝑣2𝑣1

𝐴 𝑣 = 0.2
𝐵𝑥 𝑣 = 0.3
𝐵𝑦 𝑣 = 0.5

𝐵 𝑣 = 0.15

×

𝐴 𝑣 = 0.1
𝐵𝑥 𝑣 = 0.3
𝐵𝑦 𝑣 = 0.5

𝐵 𝑣 = 0.15

𝐴 𝑣 = 0.3
𝐵𝑥 𝑣 = 0.7
𝐵𝑦 𝑣 = 0.5

𝐵 𝑣 = 0.35

𝐴 𝑟𝑜𝑜𝑡 = 1
𝐵 𝑟𝑜𝑜𝑡 = 1

𝑥1 = 1
𝑦1 = 1

𝑥1 = 1
𝑦1 = 0

𝑥1 = 0
𝑦1 = 1

𝑥1 = 0
𝑦1 = 0

𝐵𝑥 𝑟𝑜𝑜𝑡 = 1
𝐵𝑦 𝑟𝑜𝑜𝑡 = 1 ℙ =

0.4
0.1

0.3
0.2

Figure 1: The decision tree and functions A(v), Bx(v), By(v) and B(v) are illustrated for A =
{0, 1},B = {0, 1}.

Lemma 1 The following properties hold:

A(v) = Prob((x, y) ∈ Uxj,v × U
y
j,v | (x, y) ∼ P) (21)

B(v) = Prob((x, y) ∈ Uxj,v × U
y
j,v | (x, y) ∼ Q) (22)

Bx(v) = Prob(x ∈ Uxj,v | x ∼ Px) (23)

By(v) = Prob(y ∈ Uyj,v | y ∼ Py) (24)

Lemma 2 For any decision tree G, satisfying the condition that for any pair of buckets v1, v2 ∈
VBuckets, v1 is not an ancestor or descendant of v2, Uxj,v and Uyj,v defined in (15) and (16) are
(P, α(G), β(G), γx(G), γy(G))-sensitive where

α(G) =
∑

v∈VBuckets(G)

A(v) (25)

β(G) =
∑

v∈VBuckets(G)

B(v) (26)

γx(G) =
∑

v∈VBuckets(G)

Bx(v) (27)

γy(G) =
∑

v∈VBuckets(G)

By(v) (28)

6

Proofs of Lemmas 1 and 2 are relegated to Appendix A. So far, we showed how to design DSH
using a decision tree structure. However, it is not yet clear how to map data points to these buckets.
In Section 5, we investigate this and provide an algorithm to design optimal decision trees.

4.1 Mapping Data Points

In the previous sections, we presented Algorithm 1 for solving (1) where we need to compute X∩Uxj,v
and Y ∩ Uyj,v by mapping data points to the buckets. We did not clarify how this mapping can be
done efficiently. We present Algorithm 2 for mapping data points to the buckets using hash-table
search.

Algorithm 2 Mapping data points to the buckets using hash-table search

Inputs: List of buckets VBuckets, permutations permj , 1 ≤ j ≤ #bands, and a set of data points
X = {x1, · · · , xN}.

Outputs: X ∩ Uxj,v for each bucket v ∈ VBuckets and bands 1 ≤ j ≤ #bands.
Create an empty hash-table.
Initialize W x

v,j = ∅ for all v ∈ Vbuckets and 1 ≤ j ≤ #bands. # At the end, W x
v,j = X ∩ Uxj,v.

For v ∈ VBuckets
Insert Seqx(v) into the hash-table.

For j = 1 to #bands
For x ∈ X

Search permj(x) in the hash-table to find all v ∈ VBuckets for which Seqx(v) is a prefix of
permj(x), and insert x into W x

v,j .

Note that we slightly modify the hash-table to search for values that are prefix of a query, rather
than being exactly identical. In Appendix C, we show that the complexity of Algotithms 1 and 2
can be formulated as:

ct.|V (G)|+
(
ch.N

α(G)
+
ch.M

α(G)
+
ci.N.γx(G)

α(G)
+
ci.M.γy(G)

α(G)
+
cp.MN.β(G)

α(G)

)
.log

1

1− TP
(29)

where ct, ch, ci and cp are constants not depending on N . Note that, the first term ct|V (G)|
stands for the time required for calculating and storing the tree. The second and third terms, i.e.,(
ch.N
α(G) + ch.M

α(G)

)
.log 1

1−TP denote the time needed for inserting data points to the hash-table. The

fourth and fifth terms, i.e.,
(
ci.N.γx(G)

α(G) +
ci.M.γy(G)

α(G)

)
.log 1

1−TP stand for the time required for mapping

the data points from the hash-table to buckets. Finally, the last term, i.e.,
(
cp.MN.β(G)

α(G)

)
.log 1

1−TP
is the time of brute-force checking within each bucket.

5 Constructing optimal decision trees for DSH

In this section, we present an algorithm to design decision trees with complexity O(Nλ∗), where λ∗

is defined below, and we show that it is the optimal decision tree.

7

Definition 4 Given probability distributions p = [pij] and q = [qij], 1 ≤ i ≤ k, 1 ≤ j ≤ l, and

number of queries and classes M and N define δ = logM
logN and

I = {(µ, ν, η) ∈ R3|min(µ, ν) ≥ η ≥ 0,∑
1≤i≤k,1≤j≤l

p1+µ+ν−ηij (pxi)−µ(pyj)
−ν

= 1} (30)

(µ∗, ν∗, η∗) = Argmax
I

max(1, δ) + µ+ νδ

1 + µ+ ν − η
(31)

λ∗ =
max(1, δ) + µ∗ + ν∗δ

1 + µ∗ + ν∗ − η∗
(32)

Remark 3 For any probability distribution P, the parameters µ∗, ν∗, η∗ and λ∗ can be derived
numerically from Algorithm 4 in Appendix B. The intuition behind the definition of I and
(µ∗, ν∗, η∗) is that in Lemma 4 in Appendix D we show that for any decision tree G and the variables
A(v), Bx(v), By(v) and B(v) defined in (17)-(20), we have∑

v∈VBuckets(G)A(v)1+µ+ν−ηBx(v)−µ+ηBy(v)−ν+ηB(v)−η ≤ 1 if (µ, ν, η) ∈ I. Moreover, in proof
of Theorem 2 we show that (µ∗, ν∗, η∗) are Lagrangian multipliers in an optimization problem to
minimize the search complexity in Algorithm 1 while retaining a nearly perfect recovery.

In Algorithm 3, we provide an approach for designing decision trees with complexity O(Nλ∗). The
algorithm starts with the root, and at each step, it either accepts a node as a bucket, prunes a node,
or branches a node into kl children based on the following constraints:

A(v)
B(v) ≥ N

1+δ−λ∗p0q0 : Accept bucket
A(v)
Bx(v)

≤ N1−λ∗p0q0 : Prune
A(v)
By(v)

≤ N δ−λ∗p0q0 : Prune

A(v)1+µ
∗+ν∗−η∗Bx(v)−µ

∗
By(v)−ν

∗
≤ N−λ∗ p̄0 : Prune

otherwise : Branch into the kl children

(33)

where p0, q0 and p̄0 are defined as
∏
i,j,pij 6=0 pij , min

(∏
i,j,qij 6=0 qij ,

∏
i,pxi 6=0 (pxi)l,

∏
j,pjy 6=0 (pyj)

k
)

and

p0
1+µ∗+ν∗−η∗q0

µ∗+ν∗−η∗ . Note that p0, q0 and p̄0 are constants not depending on N . In Appendix
C, we prove that in order to bound the complexity in (29) with O(Nλ) for some λ ∈ R+, it is
necessary and sufficient to find a decision tree G that satisfies the constraints ((54)− (58)).

Theorem 1 No decision tree exists with overall complexity below O(Nλ∗).

Theorem 2 The decision tree construction of Algorithm 3 described in (33) results in a tree with
complexity O(Nλ∗).

In the other words, Theorem 2 proves that the tree G constructed by Algorithm 3 satisfies ((54)-(58)),
and Theorem 1 shows that this is the optimal decision tree. For proofs of Theorems 1 and 2, see
Appendices D and E. Note that, not only Theorem 2 guarantees that the number of the nodes in
our decision tree is bounded by O(Nλ∗) but also it guarantees that the run time for mapping the
data points to the decision tree and the number of comparisons that we need to do for the nodes
with the collision is bounded by O(Nλ∗), see complexity equation (29) is section 4.1.

8

Algorithm 3 Recursive construction of the decision tree

Inputs: δ, A, B, P, M and N . # We use Algorithm 4 to derive µ∗, ν∗, η∗, λ∗, p0, q0, p̄0, δ.
Outputs: G = (V,E, f) and a subset of leaf nodes of the decision tree VBuckets.
Initialization:

Seqx(root)← ∅, Seqy(root)← ∅.
A(root)← 1, Bx(root)← 1, By(root)← 1, B(root)← 1.
Recursive TreeConstruction(root).

Procedure TreeConstruction(v).
For ai ∈ A

For bj ∈ B
Create a new node w. # The node is created only if pij 6= 0.
A(w)← A(v).pij
Bx(w)← Bx(v).pxi
By(w)← By(v).pyj
B(w)← Bx(w)By(w)
f(v, a, b)← w
Seqx(w)← Seqx(v), Seqy(w)← Seqy(v)
Seqx(w).append(a), Seqy(w).append(b)

If A(w)
B(w) ≥ N

1+δ−λ∗p0q0 #Accept bucket

VBuckets.insert(w)

Else If A(w)
Bx(w)

≥ N1−λ∗p0q0 and A(w)
By(w)

≥ N δ−λ∗p0q0

and A(w)1+µ
∗+ν∗−η∗Bx(w)−µ

∗
By(w)−ν

∗
≥ N−λ∗ p̄0 #Branch

TreeConstruction(w)
Else #Prune

f(v, a, b)← null.

6 Examples and Experiments

Example 1 In this example, we compare the complexity of ForestDSH with the algorithm proposed
by Dubiner in [26]. Equation (126) in [26] is computationally intractable which makes it impossible
to compute the complexity for the algorithm presented there for general probability distributions.

However, in the specific case where P(p) =

[p
2

1−p
2

1−p
2

p
2

]
, 0.5 ≤ p ≤ 1, Dubiner shows that when

S →∞, the complexity of the algorithm proposed there grows asymptotically with O(N
1
p). On the

other hand, from (30) and (31) the complexity of ForestDSH is nearly O(N
1+log

(
1
p

)
) for these P(p)

matrices (see Appendix F). While asymptotically, Dubiner provides better bounds than ForestDSH
and LSH, from [26] it remains unclear how their algorithm performs for S <∞. We implemented
the algorithm from [26] (Note that no implementation is provided in [26]) and compared it to the
implementation of ForestDSH. Figure 2, shows that while asymptotically (when S →∞) Dubiner
algorithm provides better guarantees than ForestDSH, in practice, when S is not infinity (S = 1000
in Figure 2) Dubiner algorithm’s performance is worse than that of LSH and ForestDSH.

Example 2 In this example, we reformulate the problem of solving (2) to the minimum inner
product search problem (MIPS) [27] by transferring the data points from AS and BS to RklS in a

9

Figure 2: Comparing the theoretical and practical performances of Dubiner algorithm in [26] with
ForestDSH for S = 1000.

way that log
(P(x,y)
Q(x,y)

)
is equal to the dot product in this new space. We transformed x ∈ AS and

y ∈ BS to T (x) ∈ RklS and T (y) ∈ RklS as follows:

T (x) =
(
fs,i,j

)
, 1 ≤ s ≤ S, 1 ≤ i ≤ k, 1 ≤ j ≤ l (34)

fs,i,j =

 log
(
pij
qij

)
wij

if xs = ai

0 o.w.
(35)

T (y) =
(
gs,i,j

)
, 1 ≤ s ≤ S, 1 ≤ i ≤ k, 1 ≤ j ≤ l (36)

gs,i,j =

{
wij if ys = bj
0 o.w.

(37)

Then, we have log
(

P(x,y)
Q(x,y)

)
=< T (x), T (y) > where < ., . > stands for the inner product in RklS. In

the other words, given any x = (x1, · · · , xS), for each xs we transform it to a kl × 1 vector with l
non-zero elements. Similarly, given any y = (y1, · · · , yS), each ys is transformed to a kl × 1 vector

with k non-zero elements. Therefore, finding pairs of data points with large P(x,y)
Q(x,y) is equivalent to

finding transformed data points with large dot product. Using this transformation, in Appendix G
we show that the angle between both the true pairs and false pairs will be nearly π

2 for almost all

the probability distributions (S0
M2 ≈ 0, using the notation from [27]). It is well known that MIPS

performs poorly in detection of pairs that are nearly orthogonal [27]. Therefore, solving (2) by
transforming it to a MIPS problem and using existing approaches fails.

Example 3 Here, we focus on the case where A = {0, 1},B = {0, 1}, P =

[
0.4 0.3
0.1 0.2

]
, Q =[

0.35 0.35
0.15 0.15

]
, δ = 1, and M = N = 4. From Algorithm 4, we have µ∗ = 12.0791, ν∗ = 13.4206,

η∗ = 11.0959, λ∗ = 1.7203. The decision tree is constructed from Algorithm 3 and is depicted in
Figure 1. The nodes in the tree that are selected as bucket, i.e., satisfying A(v)

B(v) ≥ N1+δ−λ∗p0q0,

are shown with a green check mark, and the nodes pruned out, satisfying either A(v)
Bx(v)

≤ N1−λ∗p0q0

or A(v)
By(v)

≤ N δ−λ∗p0q0 or A(v)1+µ
∗+ν∗−η∗Bx(v)−µ

∗
By(v)−ν

∗
≤ N−λ∗ p̄0 are shown with a red cross.

10

For the non-leaf (intermediate) nodes, none of the above constraints holds. The bold edges show the
paths in the tree corresponding to the data point x = (0, 0). In this case, x falls into a single bucket
v1.

Experiment 1 In this experiment, we compared the complexity for the three algorithms LSH-
hamming, Minhash and ForestDSH for a range of probability distributions. We benchmark the

three methods using matrices P(t) = P1(1 − t) + P2t where 0 ≤ t ≤ 1, P1 =

[
0.345 0
0.31 0.345

]
,

P2 =

[
0.019625 0
0.036875 0.9435

]
, and δ = 1, i.e., M = N . The selection of P1 was such that the complexity

of Minhash minus the complexity of LSH-hamming was maximized. P2 was selected such that the
complexity of LSH-hamming minus the complexity of Minhash was maximized. Fig. 3 (a) shows the
theoretical Complexities of Minhash, LSH-hamming and ForestDSH for each matrix. See Appendix
H, for the details on the derivation of complexities for Minhash, LSH-hamming and ForestDSH. For

instance, for P1 =

[
0.345 0
0.31 0.345

]
, the theoretical per query complexities of Minhash, LSH-hamming

and ForestDSH are equal to 0.5207, 0.4672 and 0.4384, respectively. We further consider N data
points of dimension S, {x1, · · · , xN} and {y1, · · · , yN} where each (xi, yi) is generated from P(t),
and xi is independent from yj for i 6= j (N = 2000, S = 6000). Then, we used ForestDSH, LSH-
hamming and Minhash to find the matched pairs. In each case, we tuned r and #bands to achieve
99% true positive (recall) rate. Total simulation time for each of the three methods is plotted for each
probability distribution in Figure 3 (b). The simulation times in Figure 3 (b) are consistent with the
theoretical guarantees in Figure 3 (a). Figure 3 (b) shows that for sparse matrices, (t ≈ 1), Minhash
and ForestDSH outperform LSH-hamming. In denser cases, (t ≈ 0), LSH-hamming and ForestDSH
outperform Minhash. For (t ≤ 0.4), ForestDSH outperforms both Minhash and LSH-hamming.

We further plotted V (G(N)), α(G(N))
β(G(N)) , α(G(N))

γx(G(N)) and α(G(N))
γy(G(N)) as a function of N for trees G(N)

constructed by Algorithm 3 for P(t = 0.25), where M = N . As predicted by Theorem 2, we observed
that these quantities grow/decay proportional to Nλ∗, N1+δ−λ∗, N1−λ∗ and N δ−λ∗, respectively.

(a) (b)

Figure 3: Per query complexities of LSH-hamming, Minhash, and ForestDSH are plotted for all the
probability distribution matrices P(t) = P1(1− t) +P2t where 0 ≤ t ≤ 1. (a) Theoretical guarantees,
(b) Simulation time for N = 2000 and S = 6000.

11

Figure 4: The bounds are sketched for c1, c2, c3 and c4 not depending on N confirming ((54)-(58)).

Experiment 2 In this experiment, we applied DSH approach to the problem of spectral library
search in mass spectrometry. In this problem, there are N spectra X = x1, · · · , xn, and given a query
spectrum y, our goal is to find the spectra xi that maximize a probabilistic model P(y|xi). P(y|x) is
learned assuming that it can be factorized to i.i.d. components. To learn p(y | x), each mass spectra
is sorted based on the peak intensities, and in order to reduce the number of parameters we need to
learn, logRank of a peak is defined as the log of its rank. For any natural number n, the peaks at
rank {2n, · · · , 2n+1−1} are associated with the rank n+1, e.g., logRank(m) = 3 for m ∈ {4, 5, 6, 7}.
Consider the training data from [1] shown in Figures 7 (a), (b) and (c) in Appendix I. Using these
data, we learn the joint probability distribution p(logRank(ys) = i | logRank(xs) = j). We applied
DSH method to mass spectra after logRank transformation, and we were able to speed up the search
of 20000 mass spectra 9 times, in compare to brute force search. A true positive rate of 90% is
obtained and DSH required 9 times less comparisons than the brute force. The pre-processing time is
equal to 22373ms, bringing the total time for ForestDSH under optimal parameters to 705197ms.
For the brute force, the total time would be 22373 + 20000 ∗ 20000 ∗ 0.015 (preprocessing time +
N ∗M∗ time to check for false positive). For both LSH and MinHash approaches, the overall
complexity was nearly the same as brute force. The amount of memory used peaks at 220MB. The
mass spectrometry data for experiment 2, is shown in Figures 7 (a), (b) and (c) in case of logRank
at base 4 (a 4× 4 matrix), logRank at base 2 (an 8× 8 matrix), and no logRank transformation (a
51× 51 matrix). For the mass spectrometry data shown in Figure 7 (a), the probability distribution
p(x, y) can be represented as

p4×4(x, y) =

0.000125 5.008081.10−5 9.689274.10−8 0.000404

5.008082.10−5 0.000209 6.205379.10−6 0.001921
9.689274.10−8 6.205379.10−6 2.688879.10−5 0.000355

0.000404 0.001921 0.000355 0.994165

 (38)

From (32), (µ∗, ν∗, η∗, λ∗) are derived as

µ∗ = 1.151016 (39)

ν∗ = 1.151016 (40)

η∗ = 0.813168 (41)

λ∗ = 1.326723 (42)

6.1 Codes

For the codes, see https://github.com/ForestDSH.

12

(a) (b) (c)

Figure 5: Mass spectrometry joint probability distribution in the case of (a) logRank at base 4, (b)
logRank at base 2, and (c) no logRank transformation.

7 Conclusion

DSH algorithm proposed in this paper is comprehensive and efficient in the sense that for a wide
range of probability distributions it enables us to capture the difference between pairs coming from
a joint probability distributions and independent pairs. This algorithm is built upon a family of
distribution sensitive hashes and is designed using a decision tree structure which is constructed
recursively. Moreover, we prove that the decision tree introduced here has a complexity of O(Nλ∗)
and there is no decision tree with overall complexity below it. Finally, we prove that this algorithm
outperforms LSH-hamming and Minhash for various range of probability distributions in both the
theory and simulations. Distribution sensitive hashing approach enabled speeding up the spectral
library search in mass spectrometry by a factor of 9.

References

[1] A. M. Frank, M. E. Monroe, A. R. Shah, J. J. Carver, N. Bandeira, R. J. Moore, G. A.
Anderson, R. D. Smith, and P. A. Pevzner, “Spectral archives: extending spectral libraries to
analyze both identified and unidentified spectra,” Nature methods, vol. 8, no. 7, p. 587, 2011.

[2] R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422, no. 6928,
p. 198, 2003.

[3] S. Kim and P. A. Pevzner, “Ms-gf+ makes progress towards a universal database search tool
for proteomics,” Nature communications, vol. 5, p. 5277, 2014.

[4] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communi-
cations of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[5] Y. Prabhu and M. Varma, “Fastxml: A fast, accurate and stable tree-classifier for extreme
multi-label learning,” pp. 263–272, 2014.

[6] J. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding best matches in logarithmic
time,” ACM Trans. Math. Software, 3(SLAC-PUB-1549-REV. 2, pp. 209–226, 1976.

13

[7] H. Jain, Y. Prabhu, and M. Varma, “Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp. 935–944.

[8] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse local embeddings for extreme
multi-label classification,” in Advances in neural information processing systems, 2015, pp.
730–738.

[9] I. E.-H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. Dhillon, “Pd-sparse: A primal and
dual sparse approach to extreme multiclass and multilabel classification,” in International
Conference on Machine Learning, 2016, pp. 3069–3077.

[10] A. E. Choromanska and J. Langford, “Logarithmic time online multiclass prediction,” in
Advances in Neural Information Processing Systems, 2015, pp. 55–63.

[11] W. Liu and I. W. Tsang, “Making decision trees feasible in ultrahigh feature and label
dimensions,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 2814–2849, 2017.

[12] J. Nam, E. L. Menćıa, H. J. Kim, and J. Fürnkranz, “Maximizing subset accuracy with recurrent
neural networks in multi-label classification,” in Advances in neural information processing
systems, 2017, pp. 5413–5423.

[13] P. Rai, C. Hu, R. Henao, and L. Carin, “Large-scale bayesian multi-label learning via topic-
based label embeddings,” in Advances in Neural Information Processing Systems, 2015, pp.
3222–3230.

[14] Y. Tagami, “Annexml: Approximate nearest neighbor search for extreme multi-label classi-
fication,” in Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 2017, pp. 455–464.

[15] A. Niculescu-Mizil and E. Abbasnejad, “Label filters for large scale multilabel classification,”
in Artificial Intelligence and Statistics, 2017, pp. 1448–1457.

[16] W.-J. Zhou, Y. Yu, and M.-L. Zhang, “Binary linear compression for multi-label classification.”
in IJCAI, 2017, pp. 3546–3552.

[17] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of
dimensionality,” pp. 604–613, 1998.

[18] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions via hashing,”
vol. 99, no. 6, pp. 518–529, 1999.

[19] M. Bawa, T. Condie, and P. Ganesan, “Lsh forest: self-tuning indexes for similarity search,”
pp. 651–660, 2005.

[20] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing. ACM, 2002, pp. 380–388.

[21] A. Andoni and I. Razenshteyn, “Optimal data-dependent hashing for approximate near neigh-
bors,” pp. 793–801, 2015.

14

[22] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt, “Practical and optimal
lsh for angular distance,” pp. 1225–1233, 2015.

[23] A. Chakrabarti and O. Regev, “An optimal randomised cell probe lower bounds for approximate
nearest neighbor searching,” In Proceedings of the Symposium on Foundations of Computer
Science, 2004.

[24] P. B. Miltersen, “Cell probe complexity-a survey,” p. 2, 1999.

[25] A. Andoni, A. Naor, A. Nikolov, I. Razenshteyn, and E. Waingarten, “Data-dependent hashing
via nonlinear spectral gaps,” pp. 787–800, 2018.

[26] M. Dubiner, “A heterogeneous high-dimensional approximate nearest neighbor algorithm,”
IEEE Transactions on Information Theory, vol. 58, no. 10, pp. 6646–6658, 2012.

[27] A. Shrivastava and P. Li, “Asymmetric lsh (alsh) for sublinear time maximum inner product
search (mips),” in Advances in Neural Information Processing Systems, 2014, pp. 2321–2329.

[28] M. Dubiner, “Bucketing coding and information theory for the statistical high-dimensional
nearest-neighbor problem,” IEEE Transactions on Information Theory, vol. 56, no. 8, pp. 4166
– 4179, Aug 2010.

A Proof of Lemmas 1 and 2

A.1 Proof of Lemma 1.

Lemma 1 is proved by induction on the depth of the node v. For example, consider v and its children
w = f(v, ai, bj). From (17), we have A(w) = A(v).pij . Therefore, (21) is concluded by induction.

A.2 Proof of Lemma 2.

Using ((21) − (24)), constraints ((7) − (10)) hold for α = α(G), β = β(G), γx = γx(G) and
γy = γy(G). Since no two buckets are ancestor/descendant of each other, we have

∀1 ≤ j ≤ #bands, v 6= v′ : Uxj,v × U
y
j,v ∩ U

x
j,v′ × U

y
j,v′ = ∅ (43)

Therefore, using (43), (11) holds. This completes the proof that Uxj,v and Uyj,v are
(α(G), β(G), γx(G), γy(G))-sensitive.

B Deriving µ∗, ν∗, η∗, λ∗, p0, q0, p̄0 and δ for P, M and N

In this section, an algorithm for deriving µ∗, ν∗, η∗, λ∗, p0, q0, p̄0 and δ for P, M and N for the
probability distribution P and δ is presented for a given probability distribution P.

15

Algorithm 4 Deriving µ∗, ν∗, η∗, λ∗, p0, q0, p̄0 and δ for P, M and N

Inputs: The probability distribution P, listµ, listν , listη, threshold T , M and N .
Outputs: µ∗, ν∗, η∗, λ∗, p0, q0, p̄0 and δ.
Procedure

δ ← logM
logN

λ∗ = 0
For µ ∈ listµ # For some set of listµ, e.g., {0, 0.1, 0.2, · · · , 10}.

For ν ∈ listν # For some set of listν , e.g., {0, 0.1, 0.2, · · · , 10}.
For η ∈ listη # For some set of listη, e.g., {0, 0.1, 0.2, · · · , 10}.

If |
∑

i,j p
1+µ+ν−η
ij (pxi)−µ(pyj)

−ν − 1| ≤ T and max(1,δ)+µ+δν
1+µ+ν−η > λ∗. # For some small

threshold T , e.g., 0.001
µ∗ ← µ, ν∗ ← ν, η∗ ← η, λ∗ ← max(1,δ)+µ+δν

1+µ+ν−η
#p0, q0 and p̄0 are computed as follows.
p0 ← 1, q0 ← 1, px0 ← 1, py0 ← 1, p̄0 ← 1
For ai ∈ A

For bj ∈ B
p0 ← p0.pij
q0 ← q0.qij
px0 ← px0 .p

x
i

py0 ← py0.p
y
j

q0 ← min(q0, p
x
0 , p

y
0)

p̄0 ← p0
1+µ∗+ν∗−η∗q0

µ∗+ν∗−η∗ .

Remark 4 In Algorithm 4, the parameters µ∗, ν∗, η∗ and λ∗ could be derived from newton method
too.

C Complexity Analysis

In this section, we bound the complexity of Algorithm 1. Note that, the complexity of Algorithm 1
is the summation of the following terms.

1. Tree Construction Complexity. ct.|V (G)| where ct is a constant representing per node com-
plexity of constructing a node and |V (G)| is the number of nodes in the tree.

2. Data Mapping Complexity. The complexity of this hash-table search grows with

Complexity1

= ch((#bands).|X|+ |VBuckets|) + ci

#bands∑
j=1

∑
v∈VBuckets

|X ∩ Uxj,v| (44)

+ch((#bands).|Y |+ |VBuckets|) + ci

#bands∑
j=1

∑
v∈VBuckets

|Y ∩ Uyj,v| (45)

Complexity1 + (#bands).(ch.N + ch.M + ci.N.γx(G) + ci.M.γy(G)) where ch, ci represent
complexity of insertion in the hash-table and insertion in the buckets, respectively. Note that,
ct, ch, ci and cp are constants not depending on N .

16

3. Complexity of Checking Positive Calls, i.e., (#bands).cp.
∑

v∈VBuckets(G) |X ∩ Uxj,v|.|Y ∩ U
y
j,v|
)

where cp represents the complexity of computing P(y | x) for a positive.

From ((7)− (11)), we have

E
(#bands∑

j=1

∑
v∈VBuckets(G)

|X ∩ Uxj,v|
)

= (#bands).N.
∑

v∈VBuckets(G)

By(v) = (#bands).N.γx(G) (46)

E
(#bands∑

j=1

∑
v∈VBuckets(G)

|Y ∩ Uyj,v|
)

= (#bands).M.
∑

v∈VBuckets(G)

Bx(v) = (#bands).M.γy(G) (47)

Similarly, we conclude that

E
(#bands∑

j=1

∑
v∈VBuckets(G)

|X ∩ Uxj,v||Y ∩ U
y
j,v|
)

= (#bands).M.N.
∑

v∈VBuckets(G)

B(v) = (#bands).M.N.β(G) (48)

Now, the question is how we can select #bands such that the true positive rate, defined as the ratio
of true pairs that are called positive is high. In each band, the chance of a pair (x, y) ∼ P being
called positive is computed as α(G) =

∑
v∈VBuckets(G)A(v). Therefore, the overall true positive rate

can be computed as:

TP = Prob((x, y) called positive in Algorithm 1 | (x, y) ∼ P) (49)

= 1−
#bands∏
j=1

1−
∑

v∈VBuckets

Prob(x ∈ Uxv,j&y ∈ U
y
v,j | (x, y) ∼ P)

 (50)

= 1− (1− α(G))#bands (51)

Using (51), and the inequality (1− x)
c
x < e−c, the minimum possible value of #bands to ensure

true positive rate TP can be computed as

#bands = d
log 1

1−TP
α(G)

e (52)

where dre stands for the smallest integer greater than or equal to r. Therefore, the total complexity
is computed as

ct.|V (G)|+
(
ch.N

α(G)
+
ch.M

α(G)
+
ci.N.γx(G)

α(G)
+
ci.M.γy(G)

α(G)
+
cp.MN.β(G)

α(G)

)
.log

1

1− TP
(53)

17

In order to bound (53) with O(Nλ) for some λ ∈ R+, it is necessary and sufficient to find a tree G
that satisfies the following constraints:

|V (G)| = O(Nλ) (54)

α(G)

β(G)
= Ω(N1+δ−λ) (55)

α(G)

γx(G)
= Ω(N1−λ) (56)

α(G)

γy(G)
= Ω(N δ−λ) (57)

α(G) = Ω(Nmax(1,δ)−λ) (58)

where δ = logM
logN .

D Proof of Theorem 1

In order to prove Theorem 1, we first state the following two lemmas.

Lemma 3 The function f(θ, θ1, θ2, θ3) = θ1+ρ1+ρ2+ρ3θ1
−ρ1θ2

−ρ2θ3
−ρ3 is a convex function on the

region (θ, θ1, θ2, θ3) ∈ R4+ where (ρ1, ρ2, ρ3) ∈ R3+. 2

Lemma 4
∑

v∈VBuckets(G)A(v)1+µ+ν−ηBx(v)−µ+ηBy(v)−ν+ηB(v)−η ≤ 1 for any (µ, ν, η) ∈ I.

Proof of Lemma 3 and Lemma 4, are relegated to Appendices D.1 and D.2, respectively. Consider
(µ∗, ν∗, η∗) that satisfy (31). For any decision tree satisfying ((54)− (58)), we have:

(

∑
v∈VBuckets(G)A(v)

|VBuckets(G)|
)

1+µ∗+ν∗−η∗

(

∑
v∈VBuckets(G)Bx(v)

|VBuckets(G)|
)

−µ∗+η∗

×(

∑
v∈VBuckets(G)By(v)

|VBuckets(G)|
)

−ν∗+η∗

(

∑
v∈VBuckets(G)B(v)

|VBuckets(G)|
)

−η∗

≤
∑

v∈VBuckets(G)A(v)1+µ
∗+ν∗−η∗Bx(v)−µ

∗+η∗By(v)−ν
∗+η∗B(v)−η

∗

|VBuckets(G)|
(59)

≤ 1

|VBuckets(G)|
(60)

where (59) holds to the convexity of f(θ, θ1, θ2, θ3) = θ1+ρ1+ρ2+ρ3θ1
−ρ1θ2

−ρ2θ3
−ρ3 in Lemma 3 and

(60) follows from Lemma 4. Therefore, we have(∑
v∈VBuckets(G)

A(v)
)1+µ∗+ν∗−η∗(∑

v∈VBuckets(G)

Bx(v)
)−µ∗+η∗

×
(∑
v∈VBuckets(G)

By(v)
)−ν∗+η∗(∑

v∈VBuckets(G)

B(v)
)−η∗

≤ 1 (61)

2For any natural number n, Rn+ denotes as the set of all n-tuples non-negative real numbers.

18

On the other hand, using (60) and the definitions of α(G), β(G), γx(G) and γy(G) in ((25)− (28)),
we have (

α(G)
)1+µ∗+ν∗−η∗(

γx(G)
)−µ∗+η∗(

γy(G)
)−ν∗+η∗(

β(G)
)−η∗ ≤ 1 (62)

Therefore, from ((54)− (58)) and (62) we have

1

≥
(
α(G)

)1+µ∗+ν∗−η∗(
γx(G)

)−µ∗+η∗(
γy(G)

)−ν∗+η∗(
β(G)

)−η∗
= α(G)

(
α(G)

γx(G)

)µ∗−η∗(α(G)

γy(G)

)ν∗−η∗(α(G)

β(G)

)η∗
(63)

≥
(
Nmax(1,δ)−λ

)(
N1−λ

)µ∗−η∗(
N δ−λ

)ν∗−η∗(
N1+δ−λ

)η∗
(64)

= Nmax(1,δ)+µ∗+δν∗−(1+µ∗+ν∗−η∗)λ (65)

Therefore, we have

λ ≥ λ∗ =
max(1, δ) + µ∗ + δν∗

1 + µ∗ + ν∗ − η∗
(66)

D.1 Proof of Lemma 3

The Hessian matrix for f(θ, θ1, θ2, θ3) is represented as

H(θ, θ1, θ2, θ3)

= f(θ, θ1, θ2, θ3)

×

(1+ρ1+ρ2+ρ3)(ρ1+ρ2+ρ3)

θ2
−ρ1(1+ρ1+ρ2+ρ3)

θθ1

−ρ2(1+ρ1+ρ2+ρ3)
θθ2

−ρ3(1+ρ1+ρ2+ρ3)
θθ3

−ρ1(1+ρ1+ρ2+ρ3)
θθ1

ρ1(ρ1+1)
θ21

ρ1ρ2
θ1θ2

ρ1ρ3
θ1θ3

−ρ2(1+ρ1+ρ2+ρ3)
θθ2

ρ1ρ2
θ1θ2

ρ2(ρ2+1)
θ22

ρ2ρ3
θ2θ3

−ρ3(1+ρ1+ρ2+ρ3)
θθ3

ρ1ρ3
θ1θ3

ρ2ρ3
θ2θ3

ρ3(ρ3+1)
θ23

= f(θ, θ1, θ2, θ3)

×

W 2 + ρ1+ρ2+ρ3

θ2
WW1 − ρ1

θθ1
WW2 − ρ2

θθ2
WW3 − ρ3

θθ3
W1W − ρ1

θθ1
W 2

1 + ρ1
θ21

W1W2 W1W3

W2W − ρ2
θθ2

W2W1 W 2
2 + ρ2

θ22
W2W3

W3W − ρ3
θθ3

W3W1 W3W2 W 2
3 + ρ3

θ23

(67)

where W = ρ1+ρ2+ρ3
θ , Wi = ρi

θi
for any i ∈ {1, 2, 3}. In order to show that the function f(θ, θ1, θ2, θ3)

is a convex function it is necessary and sufficient to prove that H(θ, θ1, θ2, θ3) is positive semidefinite
on R4+ On the other hand, for positive semidefinite matrices we have

1. For any non-negative scalar a and positive semidefinite matrix M , aM is positive semidefinite.

2. For positive semidefinite matrices M1 and M2, M1 +M2 is positive semidefinite.

19

As f(θ, θ1, θ2, θ3) > 0 for any θ, θ1, θ2, θ3, it is sufficient to prove that H(θ,θ1,θ2,θ3)
f(θ,θ1,θ2,θ3)

is positive semidef-

inite. Define, M1 =

W 2 WW1 WW2 WW3

W1W W 2
1 W1W2 W1W3

W2W W2W1 W 2
2 W2W3

W3W W3W1 W3W2 W 2
3

 and M2 =

ρ1+ρ2+ρ3

θ2
− ρ1
θθ1

− ρ2
θθ2

− ρ3
θθ3

− ρ1
θθ1

ρ1
θ21

0 0

− ρ2
θθ2

0 ρ2
θ22

0

− ρ3
θθ3

0 0 ρ3
θ23

.

The matrices M1 and M2 are positive semidefinite as for any non-zero vector z =
[
a b c d

]
, we

have zM1z
T ≥ 0 and zM2z

T ≥ 0, i.e.,

[
a b c d

]
W 2 WW1 WW2 WW3

W1W W 2
1 W1W2 W1W3

W2W W2W1 W 2
2 W2W3

W3W W3W1 W3W2 W 2
3

a
b
c
d

= (Wa+W1b+W2c+W3d)2 (68)

≥ 0 (69)

[
a b c d

]

ρ1+ρ2+ρ3

θ2
− ρ1
θθ1

− ρ2
θθ2

ρ3
θθ3

− ρ1
θθ1

ρ1
θ21

0 0

− ρ2
θθ2

0 ρ2
θ22

0

− ρ3
θθ3

0 0 ρ3
θ23

a
b
c
d

= ρ1

(a
θ
− b

θ1

)2
+ ρ2

(a
θ
− c

θ2

)2
+ρ3

(a
θ
− d

θ3

)2
(70)

≥ 0 (71)

where (71) is concluded as ρ1, ρ2, ρ3 ≥ 0.

D.2 Proof of Lemma 4

First of all, note that B(v) = Bx(v)By(v). Let us define

D(v) =
∑

v∈VBuckets(G)

A(v)1+µ+ν−ηBx(v)−µBy(v)−ν (72)

We show that ∑
v∈VBuckets(G)

D(v) ≤ 1 (73)

by induction on the number of nodes in the tree. If the tree has only one node, i.e., root, then (73) is
holds as A(root) = 1, Bx(root) = 1 and By(root) = 1 from the definition of A(v), Bx(v) and By(v)
in ((17)− (19)). Assume that (73) holds for any decision tree with |G| < Z. Our goal is to prove
that (73) holds for a decision tree with |G| = Z. Assume v11 is the node with maximum length in
G and consider a tree G′ constructed by removing v11 and all its siblings vij , 1 ≤ i ≤ k, 1 ≤ j ≤ l

20

belonging to the same parent v. In the other words, for the tree G′ we have3

V (G′) = V (G)− {w11, · · · , wkl} (74)

Vb(G
′) = Vb(G)− {w11, · · · , wkl}+ {v} (75)

Then, we have ∑
v∈VBuckets(G)

D(v)

≤
∑

v∈VBuckets(G′)

D(v)−A(v)1+µ+ν−ηBx(v)−µBy(v)−ν

+
∑
i,j

A(vij)
1+µ+ν−ηBx(vij)

−µBy(vij)
−ν (76)

=
∑

∈VBuckets(G′)

D(v)−A(v)1+µ+ν−ηBx(v)−µBy(v)−ν

+
∑
i,j

(
A(v)1+µ+ν−ηBx(v)−µ+ηBy(v)−ν

×pij1+µ+ν−η(pxi)−µ(pyi)
−ν
)

(77)

=
∑

v∈VBuckets(G′)

D(v)−A(v)1+µ+ν−ηBx(v)−µBy(v)−ν

×

1−
∑
i,j

pij
1+µ+ν−η(pxi)−µ(pyj)

−ν

 (78)

=
∑

v∈VBuckets(G′)

D(v) (79)

= 1 (80)

where (76) holds from the definition of tree G′, (77) follows from the recursive definition of A(v),
Bx(v) and By(v) in ((17)− (19)) and (79) holds, note that from the definition of µ, ν and η in (30),
i.e., ∑

i,j

pij
1+µ+ν−η(pxi)−µ(pyj)

−ν
= 1 (81)

Therefore, we conclude that ∑
v∈VBuckets(G)

D(v) ≤ 1 (82)

Note that, the inequality (76) becomes an equality only in cases where the tree is homogeneous and
none of the children are pruned.

3Note that, Vb(G
′) satisfies bucket-list property, e.g., there is no bucket in the tree that is ancestor of another

bucket.

21

E Proof of Theorem 2

In order to prove Theorem 2, we first present the following lemma.

Lemma 5 Given a fixed N ∈ N and probability distribution P, consider the following region Rλ

R(λ, rij , n) =

λ, rij , n s.t. λ ≥ 0,
∑
i,j

rij = 1, rij ≥ 0, rij ∈ R+, n ∈ R+, (83)

∑
i,j

rij log pij −
∑
i,j

rij log rij ≥
(max(1, δ)− λ) logN

n
, (84)

∑
i,j

rij log pij ≥
(max(1, δ)− 2λ) logN

n
, (85)

∑
i,j

rij log pij −
∑
i,j

rij log pxi ≥ (1− λ) logN

n
, (86)

∑
i,j

rij log pij −
∑
i,j

rij log pyj ≥
(δ − λ) logN

n
, (87)

∑
i,j

rij log pij −
∑
i,j

rij log qij ≥
(1 + δ − λ) logN

n

}
(88)

4 Then, (λ∗, r∗ij , n
∗) defined in Definition 4 is a member of R(λ, rij , n).

The proof of Lemma 5 is relegated to Appendix E.2. From Lemma 5, (λ∗, r∗ij , n
∗) has the following

properties:

−r∗ij ≤ 0 (89)∑
i,j

r∗ij − 1 = 0 (90)

∑
i,j

r∗ij log pij −
∑
i,j

r∗ij log r∗ij ≥
(max(1, δ)− λ∗) logN

n∗
(91)

∑
i,j

r∗ij log pij ≥
(max(1, δ)− 2λ∗) logN

n∗
(92)

∑
i,j

r∗ij log pij −
∑
i,j

r∗ij log pxi ≥ (1− λ∗) logN

n∗
(93)

∑
i,j

r∗ij log pij −
∑
i,j

r∗ij log pyj ≥
(δ − λ∗) logN

n∗
(94)

∑
i,j

r∗ij log pij −
∑
i,j

r∗ij log qij ≥
(1 + δ − λ∗) logN

n∗
(95)

(96)

4Recall that, for simplicity we use the notation
∑
i,j and

∏
i,j instead of

∑
1≤i≤k,1≤j≤l and

∏
1≤i≤k,1≤j≤l, respec-

tively.

22

Let us prove that the following tree construction steps in Algorithm 3 result in a tree that
satisfies ((54)− (58)).

A(v)
B(v) ≥ N

1+δ−λ∗p0q0 : accept bucket
A(v)
Bx(v)

≤ N1−λ∗p0q0 : prune
A(v)
By(v)

≤ N δ−λ∗p0q0 : prune

A(v)1+µ
∗+ν∗−η∗Bx(v)−µ

∗
By(v)−ν

∗
≤ N−λ∗ p̄0 : prune

otherwise : branch into the kl children

(97)

E.1 Proof of Theorem 2

Consider the set of r∗ij = p1+µ
∗+ν∗−η∗

ij (pxi)−µ
∗
(pyj)

−ν∗
and n∗ = (max(1,δ)−λ∗) logN∑

r∗ij log
pij
r∗
ij

. Note that we

assume pij and qij are non-zero5. Consider nij = dn∗r∗ije if r∗ij >
1
2 and nij = bn∗r∗ijc if r∗ij ≤ 1

2 .
Therefore, we have n∗ − kl <

∑
ij nij ≤ n∗. For any v ∈ V (G), define the set Sij(v) as follows

Sij(v)
4
= {s | 1 ≤ s ≤ depth(v), seqxs (v) = ai&seq

y
s (v) = bj} (98)

where depth(v) is the depth of node v in the tree, seqxs (v) and seqyx(v) stand for position s in the
strings seqx(v) and seqy(v), respectively. Now, consider a node v in the graph that satisfies the
following constraints:

|Sij(v)| = nij ,∀1 ≤ i ≤ k, 1 ≤ j ≤ l (99)

The number of nodes v that satisfy this constraint
(

n∗

n11,··· ,nkl

)
. Moreover, define

|Vn11,··· ,nkl |
4
= {v ∈ V (G) | |Sij(v)| = nij ,∀1 ≤ i ≤ k, 1 ≤ j ≤ l} (100)

First, we prove that the node v, or one of its ancestors, yet designated as a bucket by Algorithm 3.
In order to show this, we need to prove that:

A(v) ≥ e
∑
i,j n

∗r∗ij log pijp0 ≥ Nmax(1,δ)−2λ∗p0 (101)

A(v)

B(v)
≥ e

∑
n∗r∗ij log pije−

∑
n∗r∗ij log qijp0q0 ≥ N1+δ−λ∗p0q0 (102)

A(v)

Bx(v)
≥ e

∑
n∗r∗ij log pije−

∑
n∗r∗ij log p

x
i p0q0 ≥ N1−λ∗p0q0 (103)

A(v)

By(v)
≥ e

∑
n∗r∗ij log pije−

∑
n∗r∗ij log p

y
j p0q0 ≥ N δ−λ∗p0q0 (104)

5Note that in the cases where qij is zero, then from the definition of qij , pij would also be equal to zero. Therefore,
we will ignore those branches during the tree construction.

23

where p0 and q0 are defined as
∏
i,j pij and min(

∏
i,j qij ,

∏
i (pxi)l,

∏
j (pyj)

k
) . However, A(v), B(v),

Bx(v) and By(v) can be computed from

A(v) =
∏
i,j

p
nij
ij = e

∑
i,j nij log pij ≥ e

∑
i,j(n

∗r∗ij+1) log pij

≥ e
∑
i,j n

∗r∗ij log pij (
∏
i,j

pij) = e
∑
i,j n

∗r∗ij log pijp0 (105)

B(v) =
∏
i,j

q
nij
ij = e

∑
i,j nij log qij

≤ e
∑
i,j(n

∗r∗ij−1) log qij ≤ e
∑
i,j n

∗r∗ij log qij∏
i,j qij

=
e
∑
i,j n

∗r∗ij log qij

q0
(106)

Bx(v) =
∏
i,j

(pxi)nij = e
∑
i,j nij log p

x
i

≤ e
∑
i,j(n

∗r∗ij−1) log (pxi) ≤ e
∑
i,j n

∗r∗ij log p
x
i∏

i,j p
x
i

=
e
∑
i,j n

∗r∗ij log p
x
i

q0
(107)

By(v) =
∏
i,j

(pyj)
nij = e

∑
i,j nij log p

y
j

≤ e
∑
i,j(n

∗r∗ij−1) log p
y
j ≤ e

∑
i,j n

∗r∗ij log p
y
j∏

i,j p
y
j

=
e
∑
i,j n

∗r∗ij log p
y
j

q0
(108)

Then, from ((91)− (95)) and ((105)− (108)) we have

A(v) ≥ Nmax(1,δ)−2λ∗p0 (109)

A(v)

B(v)
≥ N1+δ−λ∗p0q0 (110)

A(v)

Bx(v)
≥ N1−λ∗p0q0 (111)

A(v)

By(v)
≥ N δ−λ∗p0q0 (112)

Moreover, we have

A(v)1+µ
∗+ν∗−η∗Bx(v)−µ

∗
By(v)−ν

∗

= A(v)

(
A(v)

Bx(v)

)µ∗−η∗(A(v)

By(v)

)ν∗−η∗(A(v)

B(v)

)η∗
(113)

≥
(
Nmax(1,δ)−2λ∗

)(
N1−λ∗

)µ∗−η∗(
N δ−λ∗

)ν∗−η∗(
N1+δ−λ∗

)η∗
p̄0 (114)

= Nmax(1,δ)−λ∗+µ∗+δν∗−(1+µ∗+ν∗−η∗)λ∗ = N−λ
∗
p̄0 (115)

where p̄0 is defined as p0
1+µ∗+ν∗−η∗q0

µ∗+ν∗−η∗ . Therefore, every node v satisfying (99) is an accepted
bucket (or one of its ancestors is an accepted bucket). Now, we derive a lower bound on α(G) as

24

follows.

α(G) =
∑

v∈VBuckets(G)

A(v)

≥
∑

v∈Vn11,··· ,nkl

A(v) (116)

≥ |Vn11,··· ,nkl |A(v) (117)

≥ |Vn11,··· ,nkl |e
∑
i,j n

∗r∗ij log pijp0 (118)

where Vn11,··· ,nkl is the set of nodes that satisfies (99). |Vn11,··· ,nkl | is lower bounded as

|Vn11,··· ,nkl | =

(
n

n11, · · · , nkl

)
≥ n!

(kl)!
∏
i,j nij !

≥
(ne)n
√

2πn

(kl)!
∏
i,j(

nij
e)nij

√
2πnije

(119)

≥
∏
i,j

(
nij
n

)−nijn
1−kl

2
(2π)

1−kl
2 e−kl

(kl)!
(120)

= ce−
∑
i,j nij log(

nij
n

)n
1−kl

2 (121)

≥ ce−n
∑
i,j r
∗
ij log r

∗
ij (122)

for some constant c = (2π)
1−kl

2 e−kl

(kl)! n
1−kl

2 depending on n, k and l. (119) is true as for any natural

number n we have
√

2πn(ne)n ≤ n! <
√

2πn(ne)ne. (122) follows as a log 1
a is an increasing function

for 0 ≤ x ≤ 0.5, and a decreasing function for 0.5 ≤ x ≤ 1. Therefore, from (118) and (122),
α(G) ≥ Nmax(1,δ)−λ∗ is concluded. Similarly, ((54)− (58)) are proved as follows.

α(G)

β(G)
=

∑
v∈VBuckets(G)A(v)∑
v∈VBuckets(G)B(v)

≥ N1+δ−λ∗p0q0 (123)

α(G)

γx(G)
=

∑
v∈VBuckets(G)A(v)∑
v∈VBuckets(G)Bx(v)

≥ N1−λ∗p0q0 (124)

α(G)

γy(G)
=

∑
v∈VBuckets(G)A(v)∑
v∈VBuckets(G)By(v)

≥ N δ−λ∗p0q0 (125)

where (123) and (125) is concluded from ((109)− (112)) and the fact that
∑
i ai∑
i bi
≥ c if ai

bi
≥ c and

bi > 0 for any i.
Now, we need to provide an outer bound on the number of nodes |V (G)| to show (54).

1

≥
∑

v∈V (G)

A(v)1+µ
∗+ν∗−η∗Bx(v)−µ

∗+η∗By(v)−ν
∗+η∗B(v)−η

∗
(126)

≥
∑

v∈V (G)

N−λ
∗
p̄0 (127)

= |V (G)|N−λ∗ p̄0 (128)

where (126) follows from Lemma 4 and (127) is true from (115). Therefore, we conclude that
|V (G)| = O(Nλ∗).

25

E.2 Proof of Lemma 5

Consider the optimization problem of finding the member of (λ, rij , n) ∈ R(λ, rij , n) with minimum
λ. This optimization problem is a convex optimization problem6. Therefore, writing the KKT
conditions, we have

F (rij , n, λ)

= λ+
∑
i,j

µ1ij(−rij) + µ2
((max(1, δ)− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log rij
)

+µ′2
((max(1, δ)− 2λ) logN

n
−
∑
i,j

rij log pij
)

+µ3
((1− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pxi
)

+µ4
((δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pyj
)

+µ5
((1 + δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log qij
)

+ µ6
(∑
i,j

rij − 1
)

(132)

6Note that f1(n) = 1
n

, f2(r) = r log r and f3(r) = ar are convex functions. Therefore, as the sum of the convex
functions is a convex function, the optimization problem ((83)− (88)) is in the form of convex optimization problem

Minimize
λ

f(x) (129)

subject to gi(x) ≤ 0, i ∈ {1, · · · ,m} (130)

hj(x) = 0, j ∈ {1, · · · , p} (131)

where x ∈ Rn, f(x) and gi(x) are convex functions and hj(x) is affine functions.

26

where

−rij ≤ 0, µ1ijrij = 0 (133)

(max(1, δ)− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log rij ≤ 0 (134)

µ2

(max(1, δ)− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log rij

 = 0 (135)

(1− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pxi ≤ 0 (136)

µ′2

(max(1, δ)− 2λ) logN

n
−
∑
i,j

rij log pij

 = 0 (137)

(max(1, δ)− 2λ) logN

n
−
∑
i,j

rij log pij ≤ 0 (138)

µ3

(1− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pxi

 = 0 (139)

(δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pyj ≤ 0 (140)

µ4

(δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pyj

 = 0 (141)

(1 + δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log qij ≤ 0 (142)

µ5

(1 + δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log qij

 = 0 (143)

∑
i,j

rij − 1 = 0 (144)

µ2, µ3, µ4, µ5 ≥ 0 (145)

From (133), µ1ij is zero if rij is a non-zero number. Therefore, we only keep i and j where rij 6= 0
and µ1ij = 0.

dF (rij , n, λ)

drij
= 0→ µ2 + µ2 log rij + µ3 log pxi + µ4 log pyj + µ5 log qij + µ6

−(µ2 + µ′2 + µ3 + µ4 + µ5) log pij = 0 (146)

→ rµ2ij = p
µ2+µ′2+µ3+µ4+µ5
ij (pxi)−µ3(pyj)

−µ4q−µ5ij e−µ2−µ6 (147)

Consider the following two cases.

1. µ2 = 0. In this case, all the constraints are affine functions and therefore we have a linear
programming problem and the feasible set of this linear programming problem is a polyhedron.

27

From (83), the polyhedron is bounded, i.e., 0 ≤ rij ≤M for some constant M . Assume that
the polyhedron is nonempty, otherwise the solution is ∞. Moreover, a nonempty bounded
polyhedron cannot contain a line, thus it must have a basic feasible solution and the optimal
solutions are restricted to the corner points.

2. µ2 6= 0. From (133), µ1ij is zero if rij is a non-zero number. Therefore, we only keep i and j
where rij 6= 0 and µ1ij = 0.

dF (rij , n, λ)

drij
= 0→ µ2 + µ2 log rij + µ3 log pxi + µ4 log pyj + µ5 log qij + µ6

−(µ2 + µ′2 + µ3 + µ4 + µ5) log pij = 0 (148)

→ rµ2ij = p
µ2+µ′2+µ3+µ4+µ5
ij (pxi)−µ3(pyj)

−µ4q−µ5ij e−µ2−µ6 (149)

→ rij = cp

µ2+µ
′
2+µ3+µ4+µ5
µ2

ij (pxi)
−µ3
µ2 (pyj)

−µ4
µ2 q
−µ5
µ2

ij (150)

dF (rij , n, λ)

dn
= 0

→ −
(
µ2(max(1, δ)− λ) + µ′2(max(1, δ)− 2λ) + µ3(1− λ) + µ4(δ − λ)

+µ5(1 + δ − λ))
logN

n2
= 0 (151)

→ (µ2 + µ′2)(max(1, δ)− λ)− µ′2λ+ µ3(1− λ)

+µ4(δ − λ) + µ5(1 + δ − λ) = 0 (152)

→ λ =
(µ2 + µ′2) max(1, δ) + µ3 + µ4δ + µ5(1 + δ)

µ2 + 2µ′2 + µ3 + µ4 + µ5
(153)

Summing (135), (139), (141) and (143), we have

µ2(
(max(1, δ)− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log rij)

+µ3(
(1− λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pxi)

+µ4(
(δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log pyj)

+µ5(
(1 + δ − λ) logN

n
−
∑
i,j

rij log pij +
∑
i,j

rij log qij) = 0 (154)

Using qij = pxi p
y
j we have rij = cp

µ2+µ
′
2+µ3+µ4+µ5
µ2

ij (pxi)
−µ3+µ5

µ2 (pyj)
−µ4+µ5

µ2 in (154), we have(
(µ2 + µ′2)(max(1, δ)− λ)− µ′2λ+ µ3(1− λ)

+µ4(δ − λ) + µ5(1 + δ − λ))
logN

n
= µ2 log c (155)

28

On the other hand, as µ2 6= 0, we conclude that c = 1. Moreover, we have λ = (1+ε)max(1,δ)+µ+νδ
1+ε+µ+ν+η ,

where µ, ν and η are defined as:

µ =
µ3 + µ5
µ2

(156)

ν =
µ4 + µ5
µ2

(157)

η =
µ′2 − µ5
µ2

(158)

ε =
µ′2
µ2

(159)

From (135), as µ2 6= 0 we conclude that n = (max(1,δ)−λ) logN∑
rij log

pij
rij

. Since qij = qiqj , we have

rij = p1+µ+ν+ηij (pxi)−µ(pyj)
−ν

(160)

s.t. ν, ε ≥ 0, η ≥ −min(µ, ν),
∑
i,j

rij = 1 (161)

Assume that η > 0, therefore rij < pij as pij ≤ min(qi, qj). On the other hand,
∑

i,j rij =∑
pij = 1 which contradicts our assumption that η > 0. Thus, η ≤ 0. Therefore, in order to

derive λ we should derive

max
ε,µ,ν≥0,0≥η≥−min(µ,ν),

∑
i,j p

1+µ+ν+η
ij (pxi)

−µ(pyj)
−ν

=1
min
λ
F (rij , n, λ)

= max
ε,µ,ν≥0,0≥η≥−min(µ,ν),

∑
i,j p

1+µ+ν+η
ij (pxi)

−µ(pyj)
−ν

=1

(1 + ε) max(1, δ) + µ+ νδ

1 + ε+ µ+ ν + η
(162)

= max
µ,ν≥0,0≥η≥−min(µ,ν),

∑
i,j p

1+µ+ν+η
ij (pxi)

−µ(pyj)
−ν

=1

max
ε≥0

(1 + ε) max(1, δ) + µ+ νδ

1 + ε+ µ+ ν + η
(163)

= max
µ,ν≥0,0≥η≥−min(µ,ν),

∑
i,j p

1+µ+ν+η
ij (pxi)

−µ(pyj)
−ν

=1

max

(
max(1, δ) + µ+ νδ

1 + µ+ ν + η
,max(1, δ)

)
(164)

= max
min(µ,ν)≥η≥0,

∑
i,j p

1+µ+ν−η
ij (pxi)

−µ(pyj)
−ν

=1
max

(
max(1, δ) + µ+ νδ

1 + µ+ ν − η
, 1, δ

)
(165)

(164) is true as maxε≥0
a+cε
b+ε = max(c, ab) for b > 0. (165) follows from replacing η with −η.

On the other hand, (µ, ν, η) = (0, 0, 0) satisfies the conditions of maximization, resulting in
max(1,δ)+µ+νδ

1+µ+ν−η = max(1, δ). Therefore, we have

max
min(µ,ν)≥η≥0,

∑
i,j p

1+µ+ν−η
ij (pxi)

−µ(pyj)
−ν

=1

max(1, δ) + µ+ νδ

1 + µ+ ν − η
≥ max(1, δ) (166)

29

which ensures that the term max
(
max(1,δ)+µ+νδ

1+µ+ν−η , 1, δ
)

can be replaced with max(1,δ)+µ+νδ
1+µ+ν−η .

Define (µ∗, ν∗, η∗) as follows

(µ∗, ν∗, η∗) = Arg max
min(µ,ν)≥η≥0,

∑
i,j p

1+µ+ν−η
ij (pxi)

−µ(pyj)
−ν

=1

max(1, δ) + µ+ νδ

1 + µ+ ν − η
(167)

Therefore, we set:

r∗ij = p1+µ
∗+ν∗−η∗

ij (pxi)−µ
∗
(pyj)

−ν∗
(168)

λ∗ =
max(1, δ) + µ∗ + ν∗δ

1 + µ∗ + ν∗ − η∗
(169)

n∗ =
(max(1, δ)− λ∗) logN∑

r∗ij log
pij
r∗ij

(170)

((167)− (170)) result in a local minimum for the optimization problem of finding the minimum
the member of (λ, rij , n) ∈ R(λ, rij , n) with minimum λ. It is easy to check that this optimum
point satisfies ((83)− (88)).

F Approximation of the theoretical complexity of ForestDSH

In this section, for the probability matrices P(p) =

[p
2

1−p
2

1−p
2

p
2

]
, 0.5 ≤ p ≤ 1, ForestDSH theoretical

complexity and LSH theoretical complexity, i.e., 1 + log
(
1
p

)
are compared.

Figure 6: ForestDSH theoretical complexity almost overlaps with the LSH theoretical complexity,
i.e., 1 + log

(
1
p

)
for the probability matrices P(p) where 0.5 ≤ p ≤ 1.

G Further Discussion on MIPS

In order to use MIPS to solve this problem, i.e., (2), we need to derive optimal weights wij
to minimize the norm M2 in [27]. The term M stands for the radius of the space which is

computed as follows: M2 = E
(
||x||

)2
+ E

(
||y||

)2
. Therefore, from (34)-(37) we conclude that

30

M2 =
∑

ij

(
pyjw

2
ij +

pxi log
2(
pij
qij

)

w2
ij

)
which results in optimal wij =

(pxi
pyj

)0.25(
| log

pij
qij
|
)0.5

. On the

other hand, for (x, y) ∼ Q(x, y) we have

E
(
||x||||y||

)
≥ E(< T (x), T (y) >) = S

∑
ij

qij | log(
pij
qij

) | (171)

In order to have nearly one true positive rate and sub-quadratic complexity we need S0 ≤
SdKL(pij ||qij) and cS0 ≥ −SdKL(qij ||pij) where dKL stands for kullback leibler divergence. More-
over, we should have M2 ≥ S

∑
ij
√
qij | log(

pij
qij

)|. Setting c = 0, S0 and M as above, the complexity

will be more than 1.9 for any 2×2 probability distribution matrix. The reason is that the transferred
data points are nearly orthogonal to each other and this makes it very slow to find maximum inner
product using the existing method [27].

H Complexities of Minhash, LSH-hamming and ForestDSH

In this section, we derive the complexities of Minhash, LSH-hamming and ForestDSH for P1 =[
0.345 0
0.31 0.345

]
for instance. Complexities are computed for the other probability distributions

similarly.

H.1 Complexity of Minhash

For Minhash the query complexity is

Nmin(mh1,mh2,mh3,mh4) (172)

where mh1 =
log

p00
1−p11

log
q00

1−q11
, mh2 =

log
p01

1−p10
log

q01
1−q10

, mh3 =
log

p10
1−p01

log
q10

1−q01
and mh4 =

log
p11

1−p00
log

q11
1−q00

. Similarly for P1, the

per query complexity is derived and is equal to 0.5207.

H.2 Complexity of LSH-hamming

In the case of LSH-hamming, the query complexity is

O(N
min(

log(p00+p11)
log(q00+q11)

,
log(p01+p10)
log(q01+q10)

)
) (173)

and the storage required for the algorithm is O(N
1+min(

log(p00+p11)
log(q00+q11)

,
log(p01+p10)
log(q01+q10)

)
). Similarly for P1, the

per query complexity is derived and is equal to 0.4672.

H.3 Complexity of ForestDSH

From Definition 4, we derive λ∗ as follows

(µ∗, ν∗, η∗) = Arg max
min(µ,ν)≥η>0,

∑
i,j p

1+µ+ν−η
ij (pxi)

−µ(pyj)
−ν

=1

1 + µ+ ν

1 + µ+ ν − η
(174)

= (4.6611, 4.6611, 3.1462) (175)

λ∗ =
1 + µ∗ + ν∗

1 + µ∗ + ν∗ − η∗
(176)

= 1.4384 (177)

31

Note that δ = 1 and the per query complexity is equal to 0.4384.

I Joint Probability Distributions Learned on Mass Spectrometry
Data

The mass spectrometry data for experiment 2, is shown in Figures 7 (a), (b) and (c) in case of
logRank at base 4 (a 4 × 4 matrix), logRank at base 2 (an 8 × 8 matrix), and no logRank
transformation (a 51 × 51 matrix). For the mass spectrometry data shown in Figure 7 (a), the
probability distribution p(x, y) can be represented as

p4×4(x, y) =

0.000125 5.008081.10−5 9.689274.10−8 0.000404

5.008082.10−5 0.000209 6.205379.10−6 0.001921
9.689274.10−8 6.205379.10−6 2.688879.10−5 0.000355

0.000404 0.001921 0.000355 0.994165

 (178)

From (32), (µ∗, ν∗, η∗, λ∗) are derived as

µ∗ = 1.151016 (179)

ν∗ = 1.151016 (180)

η∗ = 0.813168 (181)

λ∗ = 1.326723 (182)

For the mass spectrometry data shown in Figure 7 (b), the probability distribution p(x, y) is
represented as

p8×8(x, y) =

3.458.10−5 1.442.10−5 5.434.10−6 1.723.10−6

1.442.10−5 3.708.10−5 2.550.10−5 8.706.10−6

5.434.10−6 2.550.10−5 3.907.10−5 2.948.10−5

1.723.10−6 8.706.10−6 2.948.10−5 4.867.10−5

2.921.10−7 1.561.10−6 6.442.10−6 1.813.10−5

7.496.10−8 4.809.10−7 2.008.10−6 6.098.10−6

6.718.10−8 2.680.10−7 1.251.10−6 4.531.10−6

5.023.10−5 1.574.10−4 3.671.10−4 5.539.10−4

(183)

2.920.10−7 7.496.10−8 6.718.10−8 5.023.10−5

1.561.10−6 4.809.10−7 2.680.10−7 1.575.10−4

6.442.10−6 2.008.10−6 1.251.10−6 3.672.10−4

1.813.10−5 6.098.10−6 4.532.10−6 5.539.10−4

2.887.10−5 6.892.10−6 5.309.10−6 4.138.10−4

6.892.10−6 2.123.10−5 5.826.10−6 3.246.10−4

5.309.10−6 5.826.10−6 6.411.10−5 8.364.10−4

4.138.10−4 3.246.10−4 8.364.10−4 0.994

(184)

From (32), (µ∗, ν∗, η∗, λ∗) are derived as

µ∗ = 0.871147 (185)

ν∗ = 0.871147 (186)

η∗ = 0.624426 (187)

λ∗ = 1.294837 (188)

32

For the mass spectrometry data shown in Figure 7 (c), (µ∗, ν∗, η∗, λ∗) are derived as

(a) (b) (c)

Figure 7: Mass spectrometry joint probability distribution in the case of (a) logRank at base 4, (b)
logRank at base 2, and (c) no logRank transformation.

µ∗ = 0.901208 (189)

ν∗ = 0.901208 (190)

η∗ = 0.615797 (191)

λ∗ = 1.281621 (192)

33

	Introduction
	Definitions
	Distribution Sensitive Hashing Algorithm
	Designing DSH Using a Decision Tree Structure
	Mapping Data Points

	Constructing optimal decision trees for DSH
	Examples and Experiments
	Codes

	Conclusion
	Proof of Lemmas 1 and 2
	 Proof of Lemma 1.
	Proof of Lemma 2.

	Deriving *, *, *, *, p0, q0, 0 and for P, M and N
	Complexity Analysis
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Theorem 2
	Proof of Theorem 2
	Proof of Lemma 5

	Approximation of the theoretical complexity of ForestDSH
	Further Discussion on MIPS
	Complexities of Minhash, LSH-hamming and ForestDSH
	 Complexity of Minhash
	 Complexity of LSH-hamming
	 Complexity of ForestDSH

	Joint Probability Distributions Learned on Mass Spectrometry Data

