
EasyChair Preprint

№ 1501

An abstract domain for objects in dynamic

programming languages

Vincenzo Arceri, Michele Pasqua and Isabella Mastroeni

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 14, 2019



An abstract domain for objects in dynamic
programming languages

Vincenzo Arceri, Michele Pasqua, and Isabella Mastroeni

University of Verona, Department of Computer Science, Italy
{vincenzo.arceri | michele.pasqua | isabella.mastroeni}@univr.it

Abstract. Dynamic languages, such as JavaScript, PHP, Python or
Ruby, provide a memory model for objects data structures allowing pro-
grammers to dynamically create, manipulate, and delete objects’ proper-
ties. Moreover, in dynamic languages it is possible to access and update
properties by using strings: this represents a hard challenge for static
analysis. In this paper, we exploit the finite state automata abstract
domain, approximating strings, in order to define a novel abstract do-
main for objects. We design an abstract interpreter useful to analyze
objects in a toy language, inspired by real-word dynamic programming
languages. We then show, by means of minimal yet expressive examples,
the precision of the proposed abstract domain.

1 Introduction

In the last years, dynamic languages such as JavaScript or PHP have gained a
huge success in a very wide range of applications. This mainly happened due
to the several features that such languages provide to developers, making the
writing of programs easier and faster. One of this features is the way strings
may be used to interact with programs’ objects. Indeed, it is popular, especially
in dynamic languages, to create, manipulate, and delete objects’ properties at
run-time, interacting with them using strings. If, on the one hand, this may help
developers to simplify coding and to build applications faster, on the other hand,
this may lead to misunderstandings and bugs in the produced code. Furthermore,
because of these dynamic features, reasoning about dynamic programs by means
of static analysis is quite hard, producing very often imprecise results.

For instance, let us consider the simple yet expressive example reported in
Fig. 1, supposing that the value of par is statically unknown. The value of idx
is indeterminate after line 2 and it is updated at each iteration of the while
loop (line 6). The loop guard is also statically unknown and at each iteration we
access obj with idx, incrementally saving the results in n. The goal is to statically
retrieve the value of idx and n at the end of the program. It is worth noting
that a crucial role here is played by the string abstraction used to approximate
the value of idx, that is used to access obj. Indeed, adopting finite abstract
domains, such as [13–15], will lead to infer that idx could be any possible string.
Consequently, when idx is used to access obj, in order to guarantee soundness,
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1 if (par == ?) { idx = "a"; }
2 else { idx = "b"; };
3 n = 0; obj = new {a:1, aa:2, ab:3, ac:" world "};
4 while (?) {
5 n = n + obj[idx];
6 idx = concat(idx , "a");
7 }
8 obj[idx] = n; // value of idx and n ?

Fig. 1

we need to access all properties of obj. For instance, we also have to consider
the property ac, which is never used to access obj during the execution of the
program. This ends up in an imprecise approximation of idx and, in turn, of n.

In this paper, we employ a more precise abstraction for string values. In par-
ticular, we abstract strings with the finite state automata abstract domain [2],
able to derive precise results also when strings are modified in iterative con-
structs. Then we define a novel abstract domain for objects, exploiting finite
state automata. The idea is to abstract the objects’ properties in the same do-
main used to abstract string values, namely the finite state automata abstract
domain. We show that exploiting finite automata to abstract string values and
objects properties produces precise result in abstract computations, in partic-
ular in objects’ properties lookup and in objects’ manipulation inside iterative
constructs. We will formally present the objects abstract domain in Sec. 3.1.

Moreover, we use strings and objects abstract domains together with integers
and booleans abstractions, presenting an abstract interpreter built upon the com-
bination of these domains for a toy language, expressive enough to handle string
operations, object declarations, objects’ properties lookup and assignments.

2 Background

Notation. Given a finite set of symbols Σ, we denote by Σ∗ the Kleene-closure
of Σ, i.e., the set of all finite sequences of symbols in Σ. We denote an element of
Σ∗, called string, by s ∈ Σ∗. If s = s0s1 . . . sn, then the length of s is |s| = n+ 1
and the element in the i-th position is si. Given two strings s and s′, ss′ is
their concatenation. We use the following notations: Σi , {s ∈ Σ∗ | |s| = i}
and Σ<i ,

⋃
0≤j<iΣ

j , for i ∈ N. We follow [12] for automata notation. A
finite state automaton is a tuple A = 〈Q, q0, Σ, δ, F 〉 where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ is the (finite) alphabet, δ ⊆ Q × Σ × Q
is the transition relation and F ⊆ Q is a set of final states. In particular, if
δ ∈ Q×Σ −→ Q is a function, then A is called deterministic finite state automata
(DFA). The class of languages recognized by finite state automata is the class
of regular languages. Given an automaton A, we denote the language accepted
by A as L (A). A language L is regular iff there exists a finite state automaton
A such that L = L (A). From the Myhill-Nerode theorem [9], we have that for
each regular language there exists a unique minimum automaton, i.e., with the
minimum number of states, recognizing the language. Given a regular language
L, we denote by Min(L) the minimum DFA A such that L = L (A). For space
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limitations, in the following we will refer to finite state automata by using the
corresponding regular expressions, which are isomorphic to regular languages
and, in turn, to finite state automata. Given two regular expressions r1 and r2,
we denote by r1 || r2 the disjunction between r1 and r2, by (r1)

∗ the Kleene-
closure of r1, and by (r1)

+ the Kleene-closure of r1 with at least one repetition.

Given a partial function f ∈ X ⇀ Y , we can define an equivalent total
function g ∈ X −→ Y↑, where Y↑ , Y ∪ {↑} and ↑ /∈ Y denotes indefiniteness.
The function g is defined as: g(x) , f(x) when f(x) is defined, and g(x) ,
↑ otherwise. When we describe extensionally a function we omit the elements
mapped to ↑, namely g ∈ X −→ Y↑, described as [x1 7→y1 x1 7→y1 . . . xn 7→yn],
is such that g(xi) = yi for every i ∈ {1, 2, . . . n} and g(xi) = ↑ otherwise.

Abstract interpretation. The (concrete) semantic of a program is a represen-
tation of all its possible executions by means of a set of mathematical objects.
This set is, in general, not computable. It is well known, due to Rice’s theorem,
that all non trivial properties of the concrete semantics of a program are unde-
cidable. Abstract interpretation is born as a theory for soundly approximating
the semantics of discrete dynamic systems. The approximation consists in the
observation of the semantics at a specified level of abstraction, focusing only on
some important aspects of computations. In this setting, abstract interpretation
allows us to compute an abstract semantics of the program, depending on the
properties of interest. The approximation is correct by design, in the sense that
what holds in the abstract holds also in the concrete (no false negatives).

A theory of domains for abstract interpretation was defined in [7], based on
the notion of Galois insertion. A Galois insertion (C,α, γ,A) consists of two par-
tially ordered sets 〈C,≤C〉, 〈A,≤A〉 and two monotone functions α ∈ C −→ A,
γ ∈ A −→ C such that for all c in C and a in A it holds: α(c) ≤A a⇔ c ≤C γ(a)
and α ◦ γ = id (the identity function λx . x). C is the concrete domain, A is
the abstract domain, α is the abstraction function and γ is the concretization
function. Sometimes, abstract interpretations are given by means of Galois con-
nections (instead of Galois insertions), relaxing the constraints α ◦ γ = id. Let
f ∈ C −→ C be a function on the concrete domain and f ] ∈ A −→ A be a func-
tion on the abstract domain. f ] is a sound (or correct) approximation of f if
f ◦ γ ≤C γ ◦ f ] or, equivalently, if α ◦ f ≤A f ] ◦ α [7].

Nevertheless, Galois insertions/connections represent the optimal case: some-
times we have to settle for weaker forms of abstract interpretation, as in the case
of the Polyhedra abstract domain [8], where we have only the concretization
function γ. In this setting, the soundness is expressed just as: f ◦ γ ≤C γ ◦ f ].
Finite state automata abstract domain. We report here the finite state au-
tomata abstract domain presented in [2], that over-approximates strings as reg-
ular languages, represented by the minimum deterministic finite state automata
recognizing them [9]. The domain is 〈Dfa/≡,vDfa,tDfa,uDfa,Min(∅),Min(Σ∗)〉,
where Dfa/≡ is the quotient set of Dfa w.r.t. the equivalence relation induced
by language equality, vDfa is the partial order induced by language inclusion, tDfa

and uDfa are the least upper bound and the greatest lower bound, respectively.
The minimum is Min(∅), corresponding to the automaton recognizing the empty
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a ∈ ae ::= x | n | a + a | a - a | a * a | a / a
| length(s) | indexOf(s1,s2)

b ∈ be ::= x | true | false | b && b | b || b | ! b | a < a
| a == a | s == s

s ∈ se ::= x | "s" | substr(s,a1,a2) | charAt(s,a) | concat(s1,s2)

o ∈ oe ::= { } | { s0 : e0, s1 : e1, ..., sn : en }
e ∈ e ::= a | b | s | x[s]

st ∈ stmt ::= st ; st | ski | x = e | x = new o | x[s] = e
| if b { st } else { st } | while b { st }

where x ∈ Id (identifiers), n ∈ Z and s, s0, s1, . . . , sn ∈ Σ∗

Fig. 2: µJS syntax.

language and the maximum is Min(Σ∗), corresponding to the automaton recog-
nizing any possible string over Σ. We abuse notation by representing equivalence
classes in the domain Dfa/≡ by one of its automaton (usually the minimum),
i.e., when we write A ∈ Dfa/≡ we mean [A]≡. Since the domain Dfa/≡ is infinite,
and it is not ACC, i.e., it contains infinite ascending chains, it is equipped with
the parametric widening ∇n

Dfa. The latter is defined in terms of a state equiv-
alence relation merging states that recognize the same language, up to a fixed
length n ∈ N, a parameter used for tuning the widening precision [4, 10]. For
instance, let us consider the automata A, A′ ∈ Dfa/≡ recognizing the languages
L = {ε, a} and L′ = {ε, a, aa}, respectively. The result of the application of the
widening ∇n

Dfa, with n = 1, is A∇n
Dfa A

′ = A′′ such that L (A′′) = {an | n ∈ N}.

µJS language. In this paper, we adopt as core language µJS [2], whose syntax
is reported in Fig. 2. This simple toy language is able to express arithmetic (ae),
boolean (be) and string expressions (se). There is not implicit type conversion,
since the problem of analyzing programs with implicit conversions had been
already addressed in [1, 2]. Anyway, it is straightforward to merge our analysis
with the ones proposed in [1, 2]. In addition, we have augmented µJS with objects
(oe), where an object can be empty, denoted {}, or a set of comma-separated
property-expression associations, denoted {a:1, b:2, c:3}.

Concerning the language’s semantics, the execution of a µJS program relies
on the notion of state, which is composed by environments and heaps, namely
states σ ∈ State are pairs 〈ξ, ρ〉 ∈ Env × Heap. An environment is a map

from identifiers to values, namely Env , Id −→ Val, while a heap is a map
from addresses to objects, namely Heap , Addr −→ Obj. Values v have domain
Val , Int∪Bool∪Str∪Addr∪{↑}, where Int , Z, Bool , {true, false},
Str , Σ∗, Addr , {n | n ∈ N} and ↑ denotes indefiniteness. An object

o ∈ Obj is represented as a map that associates strings to values, namely Obj ,
Str −→ Val. It is worth noting that there is no order relation between objects’
properties, as it happens in standard programming languages. Environments
update is defined as usual: ξ[x← v](y) , v when x = y, and ξ[x← v](y) , ξ(y)
otherwise. The update for heaps and objects is analogous. The big-step semantics
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of a µJS program (i.e., a statement) is standard, following [1, 2], and it is captured
by the function JstK ∈ State −→ State. After showing the concrete semantics
of object-related expressions, we will focus on the semantics of assignments,
that slightly changes w.r.t. the standard one. As far as expression semantics is
concerned, it is also standard [2]. We abuse notation denoting the semantics of
an expression as JeK ∈ State −→ Val. The evaluation of an object takes each
association string-expression and it recursively evaluates the expressions. The
result is a map containing the string-value associations.

J{s0 : e0, s1 : e1, . . . sn : en}Kσ , [sn 7→JenKσ] • . . . [s1 7→Je1Kσ] • [s0 7→Je0Kσ]

where f • g(s) , g(s) if g(s) 6= ↑ ∧ f(s) = ↑ and f • g(s) , f(s) otherwise

For example, the expression {a:1, b:length("foo"), c:5+3} evaluates to the
object [a 7→ 1 b 7→ 3 c 7→ 8]. Following the JavaScript semantics, it is worth
noting that, for instance, {a:1, a:2} evaluates to [a 7→ 2], saving only the last
association with the same property a. The semantics of objects’ properties lookup
checks whether the object contains a string-value association, where the string
corresponds to the property. Hence, its definition is the following, supposing that
JsK〈ξ, ρ〉 = s ∈ Str:

Jx[s]K〈ξ, ρ〉 , ρ(JxK〈ξ, ρ〉)(s) if JxK〈ξ, ρ〉 ∈ Addr and Jx[s]K〈ξ, ρ〉 , ↑ otherwise

In our core language, we allow only to access already stored objects (condition
JxK〈ξ, ρ〉 ∈ Addr). Moreover, it is worth noting that when we try to access a
property s not present in the object pointed by x, then ρ(JxK〈ξ, ρ〉)(s) returns ↑.

The semantics of generic statements is standard, here we explain only the
semantics for assignments, which is also used for objects allocation and update.
We have three cases: x = e, where e evaluates to a value; x = new o, where o
evaluates to an object; x[s] = e, where s evaluates to a string and e evaluates to
a value. In the first case, we only update the environment, following the typical
concrete semantics of assignments. In the second case, we need to allocate the
object into a new address which x will point to. Then, both environment and
heap are properly updated. In the third case, we update the object pointed by
x in the heap. Formally, let n ∈ Addr be a fresh, i.e., not-used, address:

Jx = eK〈ξ, ρ〉 , 〈ξ[x← JeK〈ξ, ρ〉], ρ〉 Jx = new oK〈ξ, ρ〉 , 〈ξ[x← n], ρ[n← JoK〈ξ, ρ〉]〉

Jx[s] = eK〈ξ, ρ〉 , 〈ξ, ρ[ξ(x)←[ ρ(ξ(x))[JsK〈ξ, ρ〉 ← JeK〈ξ, ρ〉]〉

As a final remark, we point out that in our extension of µJS we do not model
features such as pointer arithmetic, objects comparisons and implicit type con-
version (e.g., x = 1 ; y = true ; z = x == y leads to an error).

3 Static Analysis of µJS

In order to reason about a µJS program we need to take into account all its
possible executions, by means of the so called collecting semantics. Our concrete
collecting semantics is a classic post-condition semantics, computing states in-
variants at every statement. It is defined as the direct-image lift of the big-step
semantics of µJS, hence it is a function from sets of states to sets of states.
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We denote by LstM ∈ ℘(State) −→ ℘(State) the concrete collecting semantics.
For instance, the collecting semantics for assignments involving expressions, is
defined as Lx = eMX , {Jx = eKσ | σ ∈ X}. The semantics is similarly defined
for the other constructs and for assignments involving objects. In particular, the
collecting semantics for conditionals and loops is defined, as usual, as:

Lif b { st1 } else { st2 }MX , Lst1 Mfilterb(X) ∪ Lst2 Mfilter!b(X)

Lwhile b { st }MX , filter!b
(
lfp λT .X ∪ LstMfilterb(T )

)
Here filterb ∈ ℘(State) −→ ℘(State) is a filtering function, namely it filters out
the states that do not fulfill the boolean condition b. Unfortunately, we are not
able to compute the concrete collecting semantics since it is an infinite mathe-
matical object. Hence, in order to perform static analysis, we approximate the
collecting semantics, following the abstract interpretation framework. In order
to make the computation, and in turn the analysis, feasible we need an ab-
stract semantics LstM] computer-representable and ensuring termination of the
analysis. Ideally, the abstract semantics computes on abstract states in State],
approximations of the concrete ones. Precisely, State] is an approximation of
℘(State), with a concretization γ ∈ State] −→ ℘(State). The abstract seman-
tics must be sound, meaning that what we prove in the abstract also holds for
the concrete semantics. Put it in abstract interpretation terms, this means that
for every σ] ∈ State] we have that LstMγ(σ]) ⊆ γ(LstM]σ]). Before defining the
abstract semantics, we focus on the objects abstract domain, which is the core of
our paper and it is used to represent, possibly infinite, sets of concrete objects.

3.1 Abstract Objects

As previously introduced, in order to make the analysis feasible, we need to
finitely represent an infinite set of states. We start here with our representation
of infinite sets of objects, namely we define an abstract domain approximating
℘(Obj). First, we have a non-relational abstraction between objects-properties
and values, i.e., we abstract ℘(Obj) in ℘(Str) −→ ℘(Val).

Then we abstract ℘(Str) with the automata domain, while for ℘(Val) we
abstract separately each type of values in its abstract domain, obtaining the
product domain Val] , Int] × Bool] × Str] × ℘(Addr])× {def, ?}. For nu-
meric values we can use any non-relational domain, such as integer intervals.
Bool] , {⊥, tt, ff,>} is isomorphic to ℘(Bool) and for sets of strings we
use the automata domain, namely Str] , Dfa/≡. As we will see in the next
subsection, we approximate heaps with an allocation-site abstraction of Addr.
So, possibly infinite sets of addresses are abstracted into finite sets of allocation
sites, namely Addr] , Lines, where Lines is the finite set of lines of code of a
given program. Here we abstract ℘(Addr) in ℘(Addr]), since an abstract object
could have more than one allocation site. The domain {def, ?} is isomorphic to
℘({↑}) and def represents the absence of indefiniteness while ? represents po-
tential indefiniteness. An abstract value v] = 〈i], b], s], A, u]〉 ∈ Val] represents
the union of the elements taken from every single-type abstraction:

γV(v]) = γI(i
]) ∪ γB(b]) ∪ γS(s]) ∪

⋃
l∈A γA(l) ∪ γU(u])
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1 o = new {x:1, y:2, z:3};
2 idx = "x";
3 while (?) {
4 if (?) { idx = concat(idx , "x") }
5 else { idx = concat(idx , "y") }
6 };
7 o[idx] = 7;

Fig. 3: µJS program example.

where γI is the concretization defined in the numerical non-relational domain,
γB(⊥) , ∅, γB(tt) , {true}, γB(ff) , {false}, γB(>) , {true, false}, γS
is the concretization for the automata domain (i.e., the language recognized by
the given automaton) and γU(def) = ∅, γU(?) = {↑}. The concretization for
addresses γA will be introduced in Sec. 3.2, when we deal with abstract heaps.
Briefly, the concretization of a given allocation site is the set of all possible
addresses that can be allocated at that line of code. The abstract join t]V and
the partial order v]V for Val] are defined pointwise.

The partial order v]O for Obj] is the pointwise ordering between functions,
i.e., o]1 v]O o]2 , (∀A ∈ Dfa/≡ . o

]

1(A) v]V o]2(A)). This order is not optimal
but it does not harm the analysis since, as we can see in Sect. 3.1, the order
can be strengthen. Analogously, the join for Obj] is defined as

⊔]

O
X , λA .

⊔]
V

{o](A) | o] ∈ X}. It is straightforward to see that 〈Obj],v]O〉 is a complete lattice,
with minimum mapping every automaton to the tuple composed by the minimum
of each value-type domain, and maximum mapping every automaton to the
tuple composed by the maximum of each value-type domain. The concretization
γO ∈ Obj] −→ ℘(Obj) is defined as:

γO(o]) ,
{
o ∈ Obj

∣∣ ∀s ∈ Str ∃A ∈ Dfa/≡ . (s ∈ γS(A) ∧ o(s) ∈ γV(o](A)))
}

In order to optimize the implementation of the abstract domain, we represent
singleton sets of strings as they are, instead of converting them into automata.
Indeed, it is worth noting that we can partition the finite state automata abstract
domain as Dfa/≡ = Dfa1

/≡∪Dfaω
/≡, where Dfa1

/≡ , {A ∈ Dfa/≡ | |L (A)| = 1},
namely the set of finite state automata that recognize singleton languages, and
Dfaω

/≡ , Dfa/≡rDfa1
/≡, namely the set of finite state automata that recognizes

languages of size 0 or size greater than 1 (possibly infinite). Clearly Dfa1
/≡ is

isomorphic to Str, hence we can equivalently define abstract objects as maps
in Obj] , (Str ∪Dfaω

/≡) −→ Val].
In order to show how our objects abstract domain works, we consider a simple

yet expressive µJS example (Fig. 3, where we suppose that the boolean guards
of while and if statements are statically unknown). The fragment declares the
object o at line 1, and its abstract value at lines 1-7 is reported in Fig. 4a.
Then, it indefinitely iterates over the string variable idx at lines 3-6 appending
either the strings "x" or "y". Finally, idx is used to access the object o at line
7. Let us suppose to statically analyze the above program with the abstract
domain previously presented. Since the number of iterations of the while-loop
is statically unknown, the computation of the value of idx, abstracted as a finite
state automaton, may diverge. In order to enforce termination, the automata
widening ∇n

Dfa is applied. Tuning ∇n
Dfa with n = 3, the abstract value of idx at
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line 7, after the while computation, corresponds to the automaton expressed by
the regular expression x(x || y)∗. Since idx does not represent just a single string,
when we analyze o[idx] we may have to overwrite an object property (e.g., x)
and add new properties to o (e.g., xyy). Since the abstract value of idx expresses
an infinite number of object properties, we call this property summary property.
The abstract value after line 6 is depicted in Fig. 4b, where the summary property
x(x || y)∗ is added to the object reported in Fig. 4a. Note that in the abstract
object updated at line 7, the abstract properties x and x(x || y)∗ share the
common concrete property x. In particular, the value of o["x"] may be either 1
or 7. We aim at an objects’ representation where every property does not share
any property with the others, namely when objects are in normal form.

Normalization. We now formally define the notion of abstract object normal
form. Given an abstract object o] ∈ Obj], we denote by props(o]) ⊆ Str] the
set of its abstract properties, namely the properties which are not undefined. We
remind that Str] is the optimized version of the automata domain, i.e., Str] =
Str ∪Dfaω

/≡. Formally, props(o]) , {p ∈ Str] | o](p) = 〈i], b], s], A, u]〉 ∧ u] =
def}. Abstract properties represent sets of concrete properties. Hence, given
p ∈ props(o]), we abuse notation denoting by L (p) the language of the concrete
properties captured by p. L (p) is the language recognized by the corresponding
automaton, when p ∈ Dfaω

/≡ and it is the language {p} when p ∈ Str.

Definition 1 (Abstract object normal form). An abstract object o] ∈ Obj]

is in normal form when:

∀p ∈ props(o]) . |L (p)| ∈ {1, ω} ∧ ∀p1, p2 ∈ props(o]) .L (p1) ∩L (p2) = ∅

Informally, we say that an abstract object is in normal form when each property
p represents only a single string (i.e., |L (p)| = 1) or an infinite language (i.e.,
|L (p)| = ω) and it does not share any concrete property with other abstract
properties. Hence, a normal form abstract object has two kind of properties:
p is a non-summary property, if |L (p)| = 1, and p is a summary property, if
|L (p)| = ω. For instance, the abstract object in Fig. 4a is in normal form, since
any abstract property expresses concrete properties that are not expressed by
other abstract properties and it only contains non-summary properties. Instead,
the abstract object in Fig. 4b is not in formal form, despite it has only summary
and non-summary properties, since the string x is expressed by the non-summary
property x and by the summary property x(x || y)∗. During abstract computa-

(a)


x 7→ [1,1]
y 7→ [2,2]
z 7→ [3,3]

−

 (b)


x 7→ [1,1]
y 7→ [2,2]
z 7→ [3,3]

x(x || y)∗ 7→ [7,7]

 (c)


x 7→ [1,7]
y 7→ [2,2]
z 7→ [3,3]

x(x || y)+ 7→ [7,7]


Fig. 4: (a) Abstract value of o after line 1 of the fragment reported in Fig. 3 (b)
Abstract value of o after line 6. (c) Normal form of o after line 6.
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Algorithm 1: Norm ∈ Obj] −→ Obj] algorithm

Data: o] ∈ Obj]

Result: Norm(o])
1 foreach p ∈ props(o]) do
2 v] ← o](p);
3 if |L (p)| /∈ {1, ω} then
4 remove p from o];
5 foreach s ∈ L (p) do
6 o] ← o] •] [s 7→ v]];

7 foreach p1 ∈ props(o]) do
8 v]1 ← o](p1); remove p1 from o]; normalized← false;
9 foreach p2 ∈ props(o]) do

10 v]2 ← o](p2);
11 if p1 u]S p2 6= Min(∅) ∧ p1 6= p2 then
12 normalized← true;
13 o] ← o] •] [p1 u]S p2 7→ o](p1 u]S p2) t]V v]1 t

]
V v

]

2];
14 o] ← o] •] [p1 r]

S p2 7→ o](p1 r]
S p2) t]V v]1];

15 o] ← o] •] [p2 r]
S p1 7→ o](p2 r]

S p1) t]V v]2];
16 remove p2 from o];

17 if !normalized then o] ← o] •] [p1 7→ v]1] ;

18 return o];

tions, it may happen that abstract objects are not in normal form, so we need to
normalize them. We rely on the function Norm ∈ Obj] −→ Obj] that normalizes
an abstract object and its behaviour is captured by the algorithm reported by
Alg. 1, where the o]1 •] o

]

2 is defined as:

let 〈i]1, b
]

1, s
]
1, A1, u

]

1〉 = o]1(p), 〈i]2, b
]

2, s
]

2, A2, u
]

2〉 = o]2(p) in

o]1 •] o
]

2(p) , o]2(p) if u]2 6= ? ∧ u]1 = ? and o]1 •] o
]

2(p) , o]1(p) otherwise

In the algorithm, the operators u]S and r]
S are the operators uDfa and rDfa,

respectively, of the automata domain adapted to its optimized versions Str ∪
Dfaω

/≡. The first part of Alg. 1, namely lines 1-6, checks if any property of o] is
summary or non-summary. If it finds a property p such that L (p) /∈ {1, ω} then
the algorithm first remove that property from the object, and then looks at its
language (that is finite) and adds any single property captured by p with its old
corresponding value. All the automata operations reported above and the check
|L (p)| /∈ {1, ω} can be performed with linear complexity w.r.t. the number of
state of the automata. For example, let consider the object [x || y 7→ [5, 5]], the
algorithm returns as result the normal form abstract object [x 7→ [5, 5], y 7→
[5, 5]]. The idea of the second part of Alg. 1 (lines 7-17) is to check, for any p1 ∈
props(o]), if it shares at least a concrete property with any other p2 ∈ props(o])
(lines 11-16). This boils down to check whether the intersection between p1 and
p2 is not empty. If so, three new abstract properties are created in o] (note that
p1 is removed at line 8 and p2 will be removed at line 16). In particular:

– the property p1 u]S p2 points to the join of the previous values of p1 and p2
and the previous value (if present) of p1 u]S p2 in o] (line 13);
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– the property p1 r]
S p2 points to the previous value of p1 and the previous

value (if present) of p1 r]
S p2 in o] (line 14);

– the property p2 r]
S p1 points to the previous value of p2 and the previous

value (if present) of p2 r]
S p1 in o] (line 15);

Otherwise, if p1 does not share any property with other abstract properties of
o], the association 〈p1, o](p1)〉 is simply added to o] (line 17). For example, let
us consider again the abstract object reported in Fig. 4b. The result obtained
by applying Alg. 1 is the abstract object reported in Fig. 4c.

Proposition 1. Given o] ∈ Obj], the abstract object Norm(o]), computed by
Alg. 1, is in normal form (Def. 1). Moreover, we have that γO(o]) = γO(Norm(o])).

As we have mentioned in Sect. 3, normalization strengthens the abstract order
between objects. For example, the objects [a 7→ [1, 1], b 7→ [1, 1]] and [a || b 7→
[1, 2]] are not comparable, but, if we normalize the second object (i.e., in [a 7→
[1, 2], b 7→ [1, 2]]), then we have [a 7→ [1, 1], b 7→ [1, 1]] v]O Norm([a || b 7→ [1, 2]]).

3.2 Abstract Semantics

Abstract states in State] are composed by abstract environments and abstract
heaps, so we have an abstraction from ℘(Env×Heap) to ℘(Env)×℘(Heap). As
an abstract representation of the heap, we use a classic allocation-site abstraction
of Addr [16]. Possibly infinite sets of addresses are abstracted into finite sets

of allocation sites, namely Addr] , Lines, where Lines is the finite set of
lines of code of a given program. Given a µJS program, we suppose to have a
labeling assigning to each statement of the program a unique line of code (a
natural number). Then, we define two functions, line ∈ stmt −→ Lines and
code ∈ Lines −→ stmt, returning the line of code of a given statement and the
statement assigned to a given line of code, respectively. The concretization is

γA(l) ,

{
n ∈ Addr

∣∣∣∣ ∃〈ξ, ρ〉 ∈ State .
Jcode(l)K〈ξ, ρ〉 = 〈ξ′, ρ′〉 ∧
ρ(n) = λs . ↑ ∧ ρ′(n) 6= λs . ↑

}
meaning that the concretization of a given allocation site l is the set of all possible
addresses that can be allocated at that line of code. An abstract heap is a map
associating abstract addresses, i.e., lines of code, to abstract objects, namely
Heap] , Addr] −→ Obj]. As we have already seen, an abstract object is a map
associating an automaton with an abstract value.

For what concerns environments, we consider a non-relational abstraction,
approximating every identifier separately. This means that we abstract from
℘(Id −→ Val) to Id −→ ℘(Val). Abstract environments are maps from identifiers
to abstract values, namely Env] , Id −→ Val], exploiting the abstraction be-
tween ℘(Val) and Val] we have introduced in the previous subsection. Finally,
abstract states are, as in the concrete, pairs of abstract environments and ab-
stract heaps, namely State] , Env] × Heap]. The definition of the abstract
join t] and the partial order v] for State] is straightforward.

The abstract semantics is then a function LstM] ∈ State] −→ State], comput-
ing on abstract states. It relies on the abstract semantics for expressions LeM]

E
∈
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LnM]
A
, αI({n}) LxM]

A
〈ξ], ρ]〉 , ξ](x) La1 + a2 M]

A
σ] , La1 M]

A
σ] +I La2 M]

A
σ]

LtrueM]
B
σ] , tt LxM]

B
〈ξ], ρ]〉 , ξ](x) Lb1 || b2 M]

B
σ] , Lb1 M]

B
σ] t]B Lb2 M]

B
σ]

L{}M]
O
σ] , λp . 〈⊥,⊥,Min(∅),∅, ?〉

L{s0 : e0, s1 : e1, . . . sn : en}M]Oσ
] ,

[sn 7→Len M]
E
σ]] •] . . . [s1 7→Le1 M]

E
σ]] •] [s0 7→Le0 M]

E
σ]]

Lx[s]M]
E
〈ξ], ρ]〉 ,{⊔]
V
{ρ](l)(p) | l ∈ ξ](x) ∧L (p) ∩L (LsM]

S
〈ξ], ρ]〉) 6= ∅} if ξ](x) ∈ Addr]

〈⊥,⊥,Min(∅),∅, ?〉

filter]true(σ
]) , σ] filter]x(〈ξ], ρ]〉) ,

{
〈ξ], ρ]〉 if ξ](x) ∈ {tt,>}
σ]⊥ otherwise

filter]b1||b2(σ]) , filter]b1(σ]) t] filter]b2(σ]) filter]false(σ
]) , σ]⊥

Fig. 5: Abstract semantics for expressions and objects and the abstract filter

State] −→ Val], on the abstract semantics for objects LoM]
O
∈ State] −→ Obj]

and on the abstract filtering function filter]b ∈ State] −→ State]1. All of them
must be sound w.r.t. their concrete counterparts, namely LeMγ(σ]) ⊆ γV(LeM]

E
σ]),

LoMγ(σ]) ⊆ γO(LoM]
O
σ]) and filterb(γ(σ])) ⊆ γ(filter]b(σ

])), for every σ] ∈ State].
In Fig. 5 we have a part of the definition of the abstract semantics for expres-
sions and objects and the abstract filter, where σ]⊥ is the minimum of the lattice
〈State],v]〉. The abstract semantics for statements is quite standard:

Lst1 ; st2 M]σ] , Lst2 M]Lst1 M]σ] LskipM]σ] , σ]

Lif b { st } else { st }M]σ] , Lst1 M]filter]b(σ
]) t] Lst2 M]filter]!b(σ

])

Lwhile b { st }M]σ] , filter]!b
(
lfp λσ]w . σ

] t] LstM]filter]b(σ
]
w)
)

Concerning generic assignments, the abstract semantics follows the definition of
the concrete one, so we have three cases: x = e, where e evaluates to a value;
x = o, where o evaluates to an object; x[s] = e, where s evaluates to a string and
e evaluates to a value. In the first, we have to modify the abstract environment,
setting x to the (abstract) evaluation of e. In the second, we need to update
the abstract address pointed by the identifier x, with the line of code of the
assignment. Then we have to update the abstract object pointed, in the abstract
heap, by the new line of code with the (abstract) evaluation of o. Formally:

Lx = eM]〈ξ], ρ]〉 , 〈ξ][x← LeM]
E
〈ξ], ρ]〉], ρ]]〉

Lx =new oM]〈ξ], ρ]〉 , 〈ξ][x← {line(x =new o)}], ρ][line(x =new o)← LoM]
O
〈ξ], ρ]〉]〉

As a third case, the so called materialization, we have the abstract semantics
of object-property update, namely x[s] = e. As we have already mentioned before,
we allow to update only the objects that have been already stored into the heap.
Suppose that v] = LeM]

E
〈ξ], ρ]〉, p = LsM]

S
〈ξ], ρ]〉 and {l1, . . . ln} = ξ](x):

let o]i = Norm(ρ](li)[p← v] tVal] ρ
](li)(p)]), with i ∈ {1, . . . n} in

Lx[s] = eM]〈ξ], ρ]〉 , 〈ξ], ρ][l1 ← o]1, . . . ln ← o]n]〉
1 We assume that all negations ! have been removed using DeMorgan’s laws and usual

arithmetic laws: ! (b1 || b2) ≡ ! b1 && !b2, ! (a1 < a2) ≡ (a2 < a1 || a2 == a1), etc.
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(a)

 b 7→ [2,2]
c 7→ [3,3]

a(a)∗ 7→ [4,4]

 (b)


a 7→ [1,1]
b 7→ [2,2]
c 7→ [3,3]

a∗ 7→ [4,4]


Fig. 6: Example of materialization.

The abstract semantics of x[s] = e does not update the environment, since it only
needs to update properties of abstract objects stored into the heap. For each
location l ∈ Addr], associated to the identifier x (i.e., the ones contained in
ξ](x)), the abstract semantics updates ρ](l), at the property p, with the lub
between v] (i.e., the abstract evaluation of the expression e) and the previous
value of ρ](l)(p). This corresponds to a weak update of the object contained in
x [3]. Before storing the updated abstract object in ρ](l), the latter is normalized.
In this paper, we only perform weak updates. We could improve the precision
of the analysis performing a must-may analysis in order to differentiate between
properties that certainly point to some value and properties that may point
to others. This can be done improving the proposed analysis using standard
techniques, such as the ones reported in [3, 16, 17].

For example, let us suppose that ρ](l) is the object reported in Fig. 6(a)
and we want to update the property a, with the interval [1, 1]. Applying these
values to the previously defined abstract semantics, we obtain, at the allocation
site l, the abstract object reported in Fig. 6(b). We say that the property a has
been materialized, since, before the update, it was part of a summary property,
and after the update it is a non-summary property. We say that a (concrete)
property is materialized when a string of an abstract object passes, during the
update, from a summary property to a non-summary property. It is worth noting
that normalization take care of materialization. The abstract semantics is sound
w.r.t. the concrete collecting semantics, i.e., it computes an over-approximation
of state invariants at every statement.

Theorem 1 (Soundness). For every µJS program st ∈ stmt we have that:

∀σ] ∈ State] . LstMγ(σ]) ⊆ γ(LstM]σ])

3.3 Widening

The domain 〈State],v]〉 is not ACC, i.e., it contains infinite ascending chains,
because of the intervals abstract domain, the automata abstract domain and the
novel objects abstract domain. Hence, fix-point computations in our abstract
interpreter may diverge, if we do not introduce an extrapolation operator. In
order to enforce termination, the abstract domain Val] is equipped with the
widening operator ∇V ∈ Val]×Val] −→ Val] defined point-wisely. In particular,
the intervals domain is equipped with its well-known widening defined in [7], the
automata abstract domain is equipped with the widening∇n

Dfa, reported in Sec. 2,
while for addresses and booleans we can just use their least upper bound (they
are finite). We can define the widening operator ∇ξ ∈ Env] × Env] −→ Env]

between environments upon ∇V, applied point-wisely. For instance, suppose to
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(a)

1 o = new {a:1};
2 key = "a";
3 while (?) {
4 key = concat(key , "a");
5 o[key] = 1;
6 };

(b)

 a 7→ [1,1]
aa 7→ [1,1]

aaa(a)∗ 7→ [1,1]


Fig. 7: (a) µJS fragment, (b) Value of o after while-loop.

(a)

1 o = new {a:1};
2 while (?) {
3 o["a"] = o["a"] + 1;
4 };

(b)

[
a 7→ [1,+∞]

-

]

Fig. 8: (a) µJS fragment, (b) Value of o after while-loop.

use the widening ∇n
Dfa, with n = 3, for the finite state automata. We have

that [x 7→ 〈[1, 1],⊥,Min(aaa),∅, def〉] ∇ξ [x 7→ 〈[2, 2],⊥,Min(aaaa),∅, def〉] is
equal to the abstract environment [x 7→〈[1,+∞],⊥,Min(a∗),∅, def〉]. Fix-point
computations may also diverge on heaps, since also Heap] is not ACC, due
to the objects abstract domain. In particular, this happens because we model
objects’ properties with the finite state automata domain, which is not ACC.
Anyway, a slight extension of the join t]O is enough to guarantee termination of
heap computations, exploiting the widening of the finite state automata domain.
Informally speaking, abstract string values, in while-loop computations, always
converge since finite state automata domain is equipped by a widening.

Let us consider the µJS fragment reported in Fig. 7a and suppose that the
boolean guard value is statically unknown. At each iteration on the while-loop,
the string "a" is concatenated to the string value of key and then it is used
to add a new property of the object o. If the Dfa/≡ were not equipped with a
widening, the computation of the value of key would diverge. Since convergence
of string computations is enforced by the widening ∇n

Dfa (with n = 3), also the
computations of objects’ properties of o converge. Indeed, the while-loop con-
verges and the abstract interpreter produces, for the variable o, the (normalized)
object reported in Fig. 7b. Clearly, the simple object join is enough for objects’
properties convergence but it is not for the associated value. For example, let
consider the µJS fragment reported in Fig. 8a. In this case, the number of prop-
erties of the object o does not increase in the while-loop but it only increase
the value of the property a. The idea behind the widening for objects is to apply
the widening of values point-wisely between the properties of the two objects.
Hence, we define the widening on Obj] as: o]1∇Oo

]

2 , λp . o]1(p)∇V o
]

2(p). Coming
back to the example, applying the widening defined above, the abstract value of
o after the while-loop is reported in Fig. 8b. We then use this widening in order
to define the widening for abstract heaps and, in turn, for abstract states.

Motivating example. We now illustrate the so far defined analysis on the
example reported in the introduction (Fig. 1). It is worth noting that, in this
example, object widening does not occur. We have already commented it with
the fragments reported in Fig. 7 and Fig. 8. The goal is to reason about the
value of n at the end of the execution. At the beginning of the first iteration of
the while loop, the value of idx is 〈⊥,⊥, (a ‖ b),∅, def〉. The latter is used to
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access obj and then the result is stored in n (line 5). Since the property b is
not present in obj, only the property a is accessed by idx, and the value of n
is 〈[1, 1],⊥,Min(∅),∅, def〉. Before starting the next iteration, idx is updated
at line 6 and its value becomes 〈⊥,⊥, (aa ‖ ba),∅, def〉. Moreover, widening is
applied before starting a new iteration. Supposing to apply the widening ∇n

Dfa,
n = 1, the values of the variables before the second (and last) iteration are: n =
〈[0,+∞],⊥,Min(∅),∅, def〉, idx = 〈⊥,⊥, (a ‖ b) a+,∅, def〉 (other variables do
not change). At the second iteration, obj is accessed by the new abstract value
of idx, hence it will access the properties a, aa and ab, updating the variable
n at line 5 with 〈[1,+∞],⊥,Min(∅),∅, def〉. The previous value of n (before
starting the second iteration) is widened with the abstract value of n at the end
of the second iteration, producing the value 〈[0,+∞],⊥,Min(∅),∅, def〉, that it
is also the value holding after the while loop, at line 7, since with this value,
the fix-point is reached. Finally, at line 8, the abstract value of n is assigned to
obj[idx], updating the abstract object obj as follows (we omit bottom values):
[a 7→ [1, 1], aa 7→ [0,+∞], ab 7→ [3, 3], ac 7→ Min({"world"}), (a || b) a+ r aa 7→
[0,+∞]]. The summary property (a || b) a+raa is added and only the properties
aa and ab are modified. Properties already present in obj remain unaltered (e.g.
a and ac).

4 Discussion and conclusion

We have proposed an abstract domain suitable for the analysis of objects’ prop-
erties in dynamic programming languages. The novelty consists in exploiting
finite state automata, in order to approximate objects’ properties. This leads
to a better precision (less false positives), compared to state-of-the-art domains
approximating strings (for instance, [5, 6]). A key aspect of our abstract domain
is the normal form for objects and, in the paper, we have presented a normal-
ization algorithm: it transforms objects in their normal form. An object is in
normal form if and only if it has only two kind of properties: summary and
non-summary. The idea behind summarization, and hence materialization, is
not new in static analysis, and comes from the well-known shape analysis [16].
For example, this idea has been adopted in [11], where the authors present a
static analyzer for PHP that also involve heap analysis, where the heap, in their
abstraction, is made of summary heap identifiers and non-summary heap identi-
fiers. In particular, in [11], a summary heap identifier summarizes all the elements
of the heap that could be updated by statically unknown assignments. We have
adopted the same idea with the difference that we may have more summary
properties, expressed by automata recognizing infinite languages, rather than a
single summary property that merges together heap elements updated by stati-
cally unknown assignments. The idea of summarization has been also taken into
account in [3], where the authors propose the recency abstraction, which consists
in representing each abstract allocation site with two memory regions, namely
the most recently allocated block and the not most recently allocated blocks. The
latter is basically a summary memory region, since more than one block may
be allocated. Recency abstraction has been implemented also in TAJS [13], an
abstract interpretation-based static analyzer for JavaScript, showing that such
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abstraction outperforms other abstract allocation-based techniques. As future
work, we aim to implement our objects’ abstract domain upon TAJS. We be-
lieve that combining our abstract domain and recency abstraction can produce
good results and it would be interesting to make a comparison with TAJS and
other JavaScript static analyzers, such as SAFE [15] and JSAI [14].
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