
EasyChair Preprint

№ 1457

Revisiting Boustrophedon Coverage Path Planning

as a Generalized Traveling Salesman Problem

Rik Bähnemann, Nicholas Lawrance, Jen Jen Chung,
Michael Pantic, Roland Siegwart and Juan Nieto

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 4, 2019



Revisiting Boustrophedon Coverage
Path Planning as a Generalized
Traveling Salesman Problem

Rik Bähnemann, Nicholas Lawrance, Jen Jen Chung, Michael Pantic,
Roland Siegwart, and Juan Nieto

Abstract In this paper, we present a path planner for low-altitude terrain
coverage in known environments with unmanned rotary-wing micro aerial vehi-
cles (MAVs). Airborne systems can assist humanitarian demining by surveying
suspected hazardous areas (SHAs) with cameras, ground-penetrating synthetic
aperture radar (GPSAR), and metal detectors. Most available coverage plan-
ner implementations for MAVs do not consider obstacles and thus cannot be
deployed in obstructed environments. We describe an open source framework
to perform coverage planning in polygon flight corridors with obstacles. Our
planner extends boustrophedon coverage planning by optimizing over different
sweep combinations to find the optimal sweep path, and considers obstacles
during transition flights between cells. We evaluate the path planner on 320
synthetic maps and show that it is able to solve realistic planning instances
fast enough to run in the field. The planner achieves 14 % lower path costs than
a conventional coverage planner. We validate the planner on a real platform
where we show low-altitude coverage over a sloped terrain with trees.

1 Introduction

MAVs such as the DJI M600 shown in Figure 1 present ideal platforms for
supporting demining efforts and other critical remote sensing tasks. These
commercially available platforms are fast to deploy and can collect useful
data that are often inaccessible to other modes of sensing [19]. For demining
applications, this means that an MAV carrying a GPSAR system can be flown
over a minefield to collect in-situ, high precision measurements for locating
buried landmines [22].

Authors are with Autonomous Systems Lab, ETH Zurich, e-mail: {brik, lawrancn,

chungj, mpantic, rsiegwart, nietoj}@ethz.ch



Camera

Altimeter

GNSS

(a) The MAV platform. (b) Coverage path over sloped terrain (trees in red).

Fig. 1 Deployment of our landmine detecting MAV. The low-altitude coverage path was

generated in the field. The operator defined obstacle boundaries to avoid trees and the planner
found an optimal path. Video: https://youtu.be/u1UOqdJoK9s

At present, the target coverage area is 1 ha per battery charge. Furthermore,
since the MAV must fly at relatively low altitudes to emit enough energy into
the ground, structures in the environment such as trees or buildings can force
no-fly-zones (NFZs) across the space. These obstacles can be especially prob-
lematic since they are often omitted from maps and must be dealt with at
deployment time. This results in a need for an autonomous coverage planning
and execution solution that can rapidly replan trajectories in the field.

Many existing commercial mission planners, e.g., Ardupilot Mission Planner1,
Pix4DCapture2, Drone Harmony3, and DJIFlightPlanner4 provide implemen-
tations of 2D coverage planners which allow specifying polygon flight corridors
and generating lawnmower patterns. However, these mission planners aim
at high-altitude, open space, top-down photography and thus neither allow
specifying obstacles within the polygon nor consider the polygon edges as strict
boundaries. Furthermore, due to safety limitations of commercial platforms,
most commercial planners enforce a minimum altitude which is above the
required 3 m of our GPSAR system.

While solutions for generating coverage paths in general polygon environ-
ments exist, the implementations are either not publicly available, compu-
tationally unsuitable for complex large environments or lack the full system
integration that would allow a user to freely designate the flight zone.

In this work we develop a complete pipeline for rapidly generating 2D cov-
erage plans that can account for NFZs. Our proposed solution takes as input
a general polygon (potentially containing NFZs) and performs an exact cell
decomposition over the region. Initial sweep patterns are computed for each
cell from which feasible flight trajectories are computed. Finally, the Equality

1 http://ardupilot.org/planner/
2 https://www.pix4d.com/product/pix4dcapture
3 https://droneharmony.com
4 https://www.djiflightplanner.com/

https://youtu.be/u1UOqdJoK9s
http://ardupilot.org/planner/
https://www.pix4d.com/product/pix4dcapture
https://droneharmony.com
https://www.djiflightplanner.com/


Generalized Traveling Salesman Problem (E-GTSP) across the complete cell
adjacency graph is solved to minimize the total path time.

Results comparing our proposed coverage planner to exhaustively searching
a coverage adjacency graph demonstrate an order of magnitude speedup in the
computation time for each trajectory. Specifically, we show that our solution’s
computation time grows reasonably with increasing map complexity, while the
exact solution grows unbounded. Furthermore, the flight path computed by our
method is 14 % shorter than those found by solving a regular traveling salesman
problem (TSP) while providing the same level of coverage.

The contributions of this work are:

• An E-GTSP based fast 2D coverage planning algorithm that allows specifying
polygonal flight zones and obstacles.

• Benchmarks against existing solutions.
• An open source robot operating system (ROS) implementation.5

We organize the remainder of the paper as follows. Section 2 presents related
work. In section 3 we present the background in computational geometry to
generate the sweep permutations. In section 4 we present our coverage planner
formulation to solve for the optimal coverage pattern. Finally, we validate our
method in section 5 before we close with concluding remarks in section 6.

2 Related Work

Coverage planning in partially known environments is an omnipresent problem
in robotics and includes applications such as agriculture, photogrammetry and
search. It is closely related to the art gallery problem (AGP) and TSP, which
are NP-hard [18, 20], and for which heuristic solutions have been developed
to cope with high dimensional problems. The coverage planning problem can
be stated as: given a specified region and sensor model, generate a plan for
a mobile robot that provides complete coverage, respects motion and spatial
constraints, and minimizes some cost metric (often path length or time). The
underlying algorithms to solve sweep planning in a 2D polygon map are usually
either based on approximate or exact cellular decomposition. The state of the
art in robotic coverage planning is summarized in [3, 9].

Early work in robot coverage planning developed approximate cellular decom-
position methods. In [27], the target region is first decomposed into connected
uniform grid cells such that coverage is achieved by visiting all cells. The authors
presented a coverage wave front algorithm that obeyed the given starting and
goal cells. Unfortunately, grid based methods grow linearly in memory with the
area to be covered and exponentially in finding an optimal path, making them
unsuitable for large areas with small sensor footprints. Furthermore, guiding the

5 https://github.com/ethz-asl/polygon_coverage_planning

https://github.com/ethz-asl/polygon_coverage_planning


wave front algorithm to pick a route that meets all mission requirements involves
designing and tuning a specific cost function for each application. Spanning-
trees are an alternative method to solve this problem [7]. However, by default
those result in a rather large number of turns which is undesirable for MAVs.

A simple approach stems from the idea that a polygonal region can be covered
using sequential parallel back-and-forth motions, i.e. lawnmower or boustrophe-
don paths. This approach for 2D top-down lawnmower patterns in polygonal
maps dominates commercial aerial remote sensing. The user defines a polygonal
target region and a specified sweep direction, and the planner generates a path
consisting of a sequence of equally-spaced sweep lines connected by turns. The
generated coverage paths are time-efficient, complete, and intuitive to the user.
However, these planners cannot account for NFZs nor do they satisfy our targeted
flight altitude requirements. Furthermore, except for Ardupilot Mission Planner,
these commercial systems do not allow modification as they are closed source.

Exact cellular decomposition is a geometric approach that can handle NFZs
by dividing a configuration space into simpler component cells, whose union is
the complete free space. A full coverage path can then be found by creating a bous-
trophedon path in each cell and connecting all cells. The individual cell coverage
plans are connected in an adjacency graph and solving the resulting TSP solves
the coverage problem. Compared to grid-based methods, exact decomposition
generally results in significantly fewer cells in simple large environments and thus
a smaller TSP. Choset and Pignon [4] present the standard solution in 2D envi-
ronments, which has been adapted by many planners for robot coverage [1,8]. Sev-
eral improvements have also been proposed to minimize the number of cell traver-
sals and the number of turns along the coverage path. Namely, methods for opti-
mizing over the sweep line direction rather than using a fixed direction for all cells
have been proposed [16, 25]. However, these come at the cost of increased com-
plexity when solving for the optimal path through the cell-connectivity graph.

In our work we revisit the exact cellular decomposition method and also
generate multiple possible sweep directions per cell, however we formulate the
resulting search as an E-GTSP, allowing us to use a state of the art genetic
solver that handles significantly larger problem sizes. The E-GTSP, also known
as TSP with neighborhoods, is a generalization of the classical TSP [17]. The
goal is to find a shortest tour that visits exactly one node in each of a set of
k neighborhoods. As first proposed by Waanders [26], we cluster all possible
sweep patterns of a cell in a neighborhood and search for the shortest path that
includes exactly one sweep pattern per cell.

Bochkarev and Lewis [2, 15] took this E-GTSP formulation even further.
Instead of using per-cell predefined sweep patterns, they precompute a set of
globally good sweeping directions for each monotone cell and build a graph over
all individual straight segments where a neighborhood is defined by traversing
a segment in either direction. Compared to our approach their approach can
give better solutions where the robot traverses from one cell to another cell
without covering it completely first at the expense of a more complex E-GTSP
and a predefined sweep direction.



To solve the E-GTSP, several options exist. Exact solvers like [6] only work
reliably for small problem sizes. Converting the problem into a directed graph us-
ing a product graph [21] and solving it with an optimal graph solver, e.g. Dijkstra,
basically falls back to solving it exhaustively as in [4] and [25], which remains in-
tractable for larger problem sizes. Thus a practical solution for our problem sizes
is to use heuristic solvers. Helsgaun [12] transforms the E-GTSP into a TSP and
uses an approximate TSP solver. The Gutin and Karapetyan solver (GK), on
the other hand, is a memetic algorithm that approximately solves the E-GTSP
directly and is faster but with reduced performance for large problems [10].

3 Geometric Path Generation

In order to solve the coverage path problem we follow the route of exact cellular
decomposition techniques outlined in Figure 2. We decompose a general polygon
with holes (PWH) into cells, in a way that guarantees that each cell can be fully
covered by simple boustrophedon paths. Our algorithm creates a permutation
of sweeping directions for each cell and finds a shortest route that connects and
covers every cell to define the coverage path.

(a) Input PWH (b) Cell decomposition (c) Optimal sweep pattern

Fig. 2 The coverage algorithm on a synthetic map with 15 obstacles and 52 hole vertices.

3.1 Sweep Pattern Permutation

A sweep pattern describes the combination of straight segments and transition
segments that covers a single polygon cell. A continuous parallel sweep pattern
can be generated perpendicular to any monotone direction of a simple poly-
gon. Without loss of generality we can consider the monotone direction the
y-direction of the polygon. A polygon P is considered y-monotone, if any line
in the x-direction intersects P at a single point, a segment or not at all. In other
words the line intersects P at most twice [5].



Figure 3 (a) shows the straight segment generation in a y-monotone polygon.
We initialize the first straight segment at the bottommost vertex parallel to the
x-axis, which we refer to as sweep direction. In general, we restrict the sweep
directions to be collinear to one of the edges of our polygon, as these directions
have been proven to lead to a minimum number of straight segments to cover
the polygon [13]. The individual straight segments are generated by alternating
between intersecting a line in the x-direction with the polygon and offsetting
the line from the bottommost towards the topmost vertex. The sensor footprint
hereby defines the offset distance.

y

x

S

G
(a) Straight segments in a y-monotone polygon. (b) Shortest path transition segments.

Fig. 3 A sweep pattern consists of a set of parallel offsetted straight segments sequentially

connected via transition segments. The straight segments are generated along edges that are
perpendicular to a monotone direction (left). The transition segments are Euclidean shortest

paths along the reduced visibility graph (right).

Based on this construction criterion, the straight segments can start clock-
wise or counter-clockwise at the bottom vertex and go from the bottom to the
top or from top to bottom. Thus we generate four possible sweep patterns per
sweepable direction as shown in Figure 4.

Fig. 4 Each sweepable direction (rows) has four sweep permutations (columns) based on
the start vertex and start direction (red arrow).

To connect two straight segments (and later to connect two sweep patterns)
we calculate the Euclidean shortest path that avoids collision with the NFZ.
The Euclidean shortest path in a PWH is computed along the reduced visibility
graph [14]. Figure 3 (b) shows an example solution (red) using A∗ to search the
graph [11]. The graph node set (circles) consists of all non-convex hull vertices
and convex hole vertices.



3.2 Polygon Decomposition

To cover a general PWH, we partition it into monotone non-intercepting cells
whose union is again the original PWH. In general any monotone decomposition
would be feasible but we only consider the trapezoidal cell decomposition (TCD)
and the boustrophedon cell decompositon (BCD) [4,5]. Both decompositions
have different advantages as shown in Figure 5. The TCD provides a partitioning
that adjusts well in rectangular scenes with multiple directions of extension.
The BCD also adjusts well to rectangular scenes and usually leads to fewer cells
and thus fewer redundant sweeps and traversal segments [4]. On the downside
it can lead to degenerate sweeping behaviour in cells with narrow protrusions.

(a) TCD (b) BCD

Fig. 5 Qualitative comparison of TCD and BCD. While both adjust well to rectangular

environments, the BCD leads to fewer cells and redundant sweeps but can have degenerate

sweeping behaviour in narrow regions.

Since both decompositions result from scan line algorithms, the scan line di-
rection determines the set of cells. To find a good decomposition direction we cal-
culate the decomposition for every individual edge direction. A potentially good
decomposition is the decomposition with the smallest altitude sum w, where alti-
tude refers to the monotone extension of a cell. The minimum altitude sum corre-
sponds to a minimum number of sweeps in the case of a fixed sweep direction [13].

w=

m∑
i=1

ymax,i−ymin,i, (1)

where m is the number of monotone cells, ymax,i is the y-coordinate of the
uppermost vertex and ymin,i is the y-coordinate of the lowermost vertex in a
y-monotone polygon cell.

4 Coverage Path Planning

After decomposing the input PWH into simple cells and generating a set of sweep
patterns for each cell the planner has to find a shortest sequence of sweep patterns
such that every cell, and thus the whole PWH, is covered. To solve this problem ef-
ficiently we formulate it as an Equality Generalized Traveling Salesman Problem.



Figure 6 sketches the adjacency graph G= (N,A), where N = {n1...nn} is the
node set and A= {(ni,nj) : ni,nj ∈ N,i , j} is the set of directed arcs. The node
set N is divided into m mutually exclusive and exhaustive clusters N1...Nm, i.e.,
N =N1∪...∪Nm with Ni∩Nj =∅ ∀i, j ∈ {1...m},i, j.

ns

N5
N2

N1

N3

N6

N4

N7

N8ng

Fig. 6 Visualization of the coverage planning E-GTSP. The goal is to find the shortest path
that visits exactly one sweep pattern (grey dot) in each polygon cell (dotted ellipsoid) while

traveling from the start node ns to the goal node ng .

A node ni represents an individual sweep pattern that covers a single mono-
tone polygon cell as shown in Figure 4 or the start or goal point. Every monotone
cell (and the start and goal point) represents an individual cluster Ni. The arcs
are the shortest path connecting the end of one sweep pattern with the start
of the next sweep pattern in another cluster. The start node has outgoing arcs
to all nodes, and the goal node has incoming arcs from all nodes.

Every arc (ni,nj) has a non-negative cost ci j which is the sum of the shortest
path cost ti j from ni to nj and the cost tj to execute sweep pattern nj .

ci j = ti j+tj (2)

Because the start and the end of a sweep pattern do not coincide, the cost
matrix C= (ci j) is asymmetric, i.e., ci j ,cji.

Since MAVs can hover and turn on the spot, we can plan rest-to-rest segments
between waypoints which obey the straight-line assumption of our coverage
planner. The trajectories are modeled with velocity ramp profiles with instan-
taneous acceleration and deceleration and a maximum velocity. The cost of a
trajectory is the sum of all segment times. The segment time t between two
waypoints is a function of the distance d, the maximum velocity vmax , and the
maximum acceleration amax ,

t=

{√
4d

amax
, for d<2da

2ta+
d−2da

vmax
, for d ≥2da

, where ta=
vmax

amax
, da=

1

2
vmaxta . (3)

ta is the time to accelerate to maximum velocity and da is the distance travelled
while accelerating. Figure 7 shows that by tuning vmax and amax with respect to
our platform and sensor constraints the optimization finds a good compromise
between minimizing distance and minimizing the number of turns.



(a) Time (b) Waypoints (c) Distance

Fig. 7 Qualitative comparison of different optimization criteria. Minimizing time results in

elongated trajectories with short transition segments. Minimizing the number of segments
also leads to long trajectories, but does not necessarily lead to good transitions. Minimizing

only the Euclidean distance can lead to undesired sweeps since turns are not penalized.

Algorithm 1 summarizes the process of setting up the E-GTSP problem.
First we decompose the polygon into monotone cells. For each cell we compute
the sweep permutations and make each sweep pattern a node in the graph
where the neighborhood is defined by the cell id. Finally, we create the edges
between all sweeps patterns of different cells using the precomputed reduced
visibility graph. Once the cost matrix is fully defined, we solve the E-GTSP
using GK6 as an off-the-shelf open source solver [10].

Algorithm 1 Generating the E-GTSP adjacency graph
Require: pwh,sweep distance,wall distance,cost func,decomposition type

Ensure: adj graph

1: . Decompose polygon into monotone cells.
2: pwh=pwh.offsetPolygon(wall distance)

3: cells=pwh.computeDecomposition(decomposition type)

4: . Compute all sweep patterns per cell and create E-GTSP nodes.
5: vis graph=pwh.computeVisiblityGraph()

6: for all cell ∈cells do

7: sweep patterns=cell.computeSweepPatterns(sweep distance,vis graph)
8: for all sweep pattern ∈ sweep patterns do

9: n.sweep pattern=sweep pattern

10: n.cell id=cell.id
11: n.start vis=pwh.computeVisibility(sweep pattern.start)

12: n.goal vis=pwh.computeVisibility(sweep pattern.goal)
13: adj graph.addNode(n)

14: . Densely connect all nodes via Euclidean shortest paths.

15: adj graph.prune(vis graph)
16: for all from ∈adj graph.nodes do

17: for all to ∈adj graph.nodes∧from.cell id,to.cell id do

18: e.path=vis graph.solve(m.sweep.goal,m.goal vis,n.sweep.goal,n.start vis)
19: e.cost=cost func.compute(n.sweep pattern)+cost func.compute(e.path)

20: adj graph.addEdge(e)

6 https://csee.essex.ac.uk/staff/dkarap/?page=publications&key=Gutin2009a

https://csee.essex.ac.uk/staff/dkarap/?page=publications&key=Gutin2009a


4.1 Pruning

While our problem size (tens of clusters, hundreds of nodes, hundreds of thou-
sands of edges) is no problem for the GK, generating the edges is the bottleneck
of the algorithm because every sweep pattern needs to be connected to almost
any other sweep pattern through a Euclidean shortest path. The total number
of arcs grows quadratically with the number of nodes.

Fortunately, the optimization problem is modular, i.e., any sweep pattern
combination that visits every cell will achieve full coverage and the path cost
is the only optimization criterion. We can safely prune a node ni ∈ Nk if it
is cheaper to first traverse from ni’s start point to the start point of nj ∈ Nk ,
perform coverage nj and return to ni’s goal point.

5 Results

The algorithm has been implemented in C++ using the Computational Geom-
etry Algorithms Library (CGAL) [24]. CGAL provides efficient, reliable, and
exact geometric algorithms which we extended to generate the sweep lines and
the BCD. In order to find an exact solution we implement [21] to convert the
E-GTSP into a directed graph for an exhaustive exact solution using Dijkstra.

5.1 Simulation Benchmark

We setup a simulation benchmark to evaluate the performance of our algorithm
(our) against the classical sweep planner with one sweep direction (one dir) [4],
to compare BCD and TCD, and to demonstrate the superiority of a designated
E-GTSP solver over exact brute-force search. Our test instances, e.g. Figure 2,
are automatically generated from the EPFL aerial rooftop dataset [23] to provide
polygon maps with realistic obstacles and dimensions. Our synthetic dataset con-
sists of 320 rectangular worlds with an area of 1 ha and 0 to 15 rooftop obstacles.
The benchmark was executed on an Intel R©CoreTMi7-7820HQ CPU @ 2.9 GHz.

To relate our solution to the complexity of the maps, we plot coverage path
cost and algorithm runtime against the number of hole vertices, as these are
the events of the decomposition scan line algorithms. Figure 8 (a) shows the
trajectory cost of the different planner configurations. Because our planner takes
advantage of different sweep directions and start points, it gives better results
than the classic solution with only one fixed sweep pattern per cell. Furthermore,
BCD leads to shorter trajectories than TCD because it generates fewer cells
and thus fewer redundant sweeps at the adjacent edges and transition segments
between the cells. On a side note, whenever the exact solution is available it
coincides with the approximate solution from GK.



0 20 40 60 80
Number of Hole Vertices [1]

1500

2000

2500

3000

C
o
st

 [
s]

our_bcd

our_tcd

one_dir_gk

gtsp_exact

one_dir_exact

(a) The absolute path cost.

0 20 40 60 80
Number of Hole Vertices [1]

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

¢
c=
c 

[1
]

(b) The relative improvement of our planner.

0 20 40 60 80
Number of Hole Vertices [1]

0

50

100

150

R
u
n
ti

m
e
 [

s]

(c) The computation times.

Fig. 8 Benchmark results for increasing map complexity. Our E-GTSP with BCD generally

has the lowest path cost and reasonable computation times even for complex maps. Exact
solutions only work for maps with few holes. The TCD is generally worse than BCD.

The relative differences in path cost between our planner and the other
configurations is shown in Figure 8 (b). We observe up to 14 % improvement over
the optimal fixed direction and 29 % improvement of BCD over TCD. Figure 8 (c)
shows the computation time of the planners. Exact solutions fail to solve within
200 s for any of our scenarios with more than twenty hole vertices. Generating
the product graph from the adjacency graph G and Boolean lattice of possible
cluster sequences grows exponentially in the number of clusters [21]. The reduced
problem one dir gk achieves the best computation time. At most it takes 12 s for



the most complex map. The full E-GTSP with BCD solves it within 65 s which
is still reasonable for employing the planner in field experiments. Table 1 reveals
that generating the dense E-GTSP graph is the greatest computational burden.

Graph elements Computation time (s) Path cost (s)

Cells Nodes Edges Cells Sweeps Nodes Pruning Edges Solve

our bcd 52 254 63056 5.7 1.1 3.0 2.4 22.2 1.2 2391.2
our tcd 87 512 258704 6.9 1.1 4.9 3.7 84.7 6.6 2879.2
one dir gk 52 52 2652 5.5 0.1 0.2 0.0 0.8 0.5 2665.0

Table 1 Detailed computation times for the instance in Figure 2 with 15 holes (52 hole

vertices). Creating all edges is the greatest computational effort. The reduced problem thus
has the smallest computation time. Our planner results in the lowest path cost.

5.2 Experiment

We validate our planner in a real flight on a DJI M600 Pro. Our drone covers a
non-convex open area with sparse trees, depicted in Figure 1, in a low altitude
mapping scenario. The flight corridor is selected in a georeferenced map, an
optimal sweep path is calculated with our planner and executed under GNSS
control. The drone follows a velocity ramp profile as described in section 4 and
additionally turns at every waypoint in the flight direction. The slope of the
terrain is not considered during planning. To regulate the height above ground
level (AGL), we fuse Lidar and Radar altimeter data into a consistent altitude
estimate. Table 2 shows the general experiment setup. The sweep distance is
chosen based on image overlap. The velocity and acceleration are chosen to
meet controller constraints and avoid motion blur. To validate coverage with a
nadir configuration sensor we record QXGA top-down imagery and generate the
digital terrain model (DTM) shown in Figure 9 using the Pix4D mapping tool.
The DTM shows good coverage of the designated area but imperfect reconstruc-
tion due to instantaneous acceleration movements. Collision-free trajectory
smoothing may improve the turning maneuvers both in speed and smoothness
and consequentially increase overall performance of the coverage planner.

Area Flight Time AGL Sweep Offset vmax amax

1950 m2 1050s 4 m 1.5 m 3.0 ms−1 0.5 ms−2

Table 2 Flight experiments parameters.

6 Conclusion

In this work we presented a boustrophedon coverage path planner based on an
E-GTSP formulation. We showed in comprehensive benchmarks on realistic syn-



(a) Terrain following using altimeter data. (b) A Pix4D DTM reconstruction.

Fig. 9 The platform is capable of covering sloped terrain using the proposed planner.

thetic polygon maps that our planner reliably solves complex coverage tasks in
reasonable computation time, making it suitable for field deployment. Further-
more, we showed that our planner outperforms the classic boustrophedon cover-
age planner in terms of path cost. We validated in a field experiment the usability
of our coverage algorithm on a real MAV and show that we can cover a 1950 m2

area with obstacles at low altitude. Future work includes optimizing coverage
for a side looking GPSAR configuration, collision-free trajectory smoothing to
improve turning times, and integration into an airborne mine detection system.

Acknowledgment

This work is part of the FindMine project and was supported by the Urs Endress
Foundation. The authors would like to thank their student Lucia Liu for her
initial work on the BCD, Florian Braun and Michael Riner-Kuhn for their
hardware support, and the reviewers for their constructive advice.

References

1. Bähnemann, R., Schindler, D., Kamel, M., Siegwart, R., Nieto, J.: A decentralized multi-

agent unmanned aerial system to search, pick up, and relocate objects. In: IEEE Interna-
tional Symposium on Safety, Security and Rescue Robotics, pp. 123–128. IEEE (2017)

2. Bochkarev, S., Smith, S.L.: On minimizing turns in robot coverage path planning. In:

IEEE International Conference on Automation Science and Engineering, pp. 1237–1242.
IEEE (2016)

3. Cabreira, T., Brisolara, L., R Ferreira, P.: Survey on coverage path planning with
unmanned aerial vehicles. Drones 3(1), 1–38 (2019)

4. Choset, H., Pignon, P.: Coverage path planning: The boustrophedon cellular decompo-

sition. In: Field and Service Robotics, pp. 203–209. Springer (1998)
5. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational

geometry. In: Computational Geometry, pp. 1–17. Springer (1997)



6. Fischetti, M., Salazar González, J.J., Toth, P.: A branch-and-cut algorithm for the

symmetric generalized traveling salesman problem. Operations Research 45(3),
378–394 (1997)

7. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile

robot. Annals of Mathematics and Artificial Intelligence 31(1-4), 77–98 (2001)
8. Galceran, E., Campos, R., Palomeras, N., Ribas, D., Carreras, M., Ridao, P.: Coverage

path planning with real-time replanning and surface reconstruction for inspection
of three-dimensional underwater structures using autonomous underwater vehicles.

Journal of Field Robotics 32(7), 952–983 (2015)
9. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robotics

and Autonomous Systems 61(12), 1258–1276 (2013)
10. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling salesman

problem. Natural Computing 9(1), 47–60 (2010)
11. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2),

100–107 (1968)
12. Helsgaun, K.: Solving the equality generalized traveling salesman problem using the

Lin–Kernighan–Helsgaun algorithm. Mathematical Programming Computation 7(3),

269–287 (2015)
13. Huang, W.H.: Optimal line-sweep-based decompositions for coverage algorithms. In:

IEEE International Conference on Robotics and Automation, vol. 1, pp. 27–32. IEEE
(2001)

14. Latombe, J.C.: Robot Motion Planning. Springer Science & Business Media (1991)
15. Lewis, J.S., Edwards, W., Benson, K., Rekleitis, I., O’Kane, J.M.: Semi-boustrophedon

coverage with a Dubins vehicle. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 5630–5637. IEEE (2017)
16. Li, Y., Chen, H., Er, M.J., Wang, X.: Coverage path planning for UAVs based on

enhanced exact cellular decomposition method. Mechatronics 21(5), 876–885 (2011)
17. Mitchell, J.S.: Geometric shortest paths and network optimization. Handbook of

Computational Geometry 334, 633–702 (2000)
18. O’Rourke, J., Supowit, K.: Some NP-hard polygon decomposition problems. IEEE

Transactions on Information Theory 29(2), 181–190 (1983)
19. Pajares, G.: Overview and current status of remote sensing applications based on

unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing

81(4), 281–329 (2015)
20. Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete.

Theoretical Computer Science 4(3), 237–244 (1977)
21. Rice, M.N., Tsotras, V.J.: Exact graph search algorithms for generalized traveling

salesman path problems. In: International Symposium on Experimental Algorithms,

pp. 344–355. Springer (2012)
22. Schartel, M., Burr, R., Mayer, W., Docci, N., Waldschmidt, C.: UAV-based ground

penetrating synthetic aperture radar. In: IEEE MTT-S International Conference on
Microwaves for Intelligent Mobility, pp. 1–4. IEEE (2018)

23. Sun, X., Christoudias, C.M., Fua, P.: Free-shape polygonal object localization. In:

European Conference on Computer Vision, pp. 317–332. Springer (2014)
24. The CGAL Project: CGAL User and Reference Manual, 4.13 edn. CGAL Editorial

Board (2018). URL https://doc.cgal.org/4.13/Manual/packages.html

25. Torres, M., Pelta, D.A., Verdegay, J.L., Torres, J.C.: Coverage path planning with un-
manned aerial vehicles for 3D terrain reconstruction. Expert Systems with Applications

55, 441–451 (2016)
26. Waanders, M.: Coverage path planning for mobile cleaning robots. In: 15th Twente

Student Conference on IT, pp. 1–10 (2011)
27. Zelinsky, A., Jarvis, R.A., Byrne, J., Yuta, S.: Planning paths of complete coverage

of an unstructured environment by a mobile robot. In: International Conference on

Advanced Robotics, vol. 13, pp. 533–538 (1993)

https://doc.cgal.org/4.13/Manual/packages.html

	Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling Salesman Problem
	 Rik Bähnemann, Nicholas Lawrance, Jen Jen Chung, Michael Pantic, Roland Siegwart, and Juan Nieto
	Introduction
	Related Work
	Geometric Path Generation
	Sweep Pattern Permutation
	Polygon Decomposition

	Coverage Path Planning
	Pruning

	Results
	Simulation Benchmark
	Experiment

	Conclusion
	References



