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Abstract. We consider an integrated planning problem that combines
purchasing, inventory, and inbound transportation decisions in an agri-
food supply chains where several suppliers (farmers) offer a subset of
products with different selling prices and available quantities. We pro-
vide a mixed-integer programming formulation of the problem and a
matheuristic decomposition that divides the problem into two stages.
First, the purchasing and inventory problem is solved; second, the ca-
pacitated vehicle routing problem is solved using a split CVRP proce-
dure. Computational experiments on a set of generated test instances
show that the matheuristic can solve instances of large size within rea-
sonably short computational times, providing better solutions than its
MIP counterpart (in the absence of other approaches in the literature
with which to make direct comparisons).

Keywords: Agri-food supply chain · inbound transportation · inventory
routing problem · perishable products.

1 Introduction

The spread of online shopping through e-commerce platforms has disrupted not
only traditional business models but also the supply chains that support them,
with a growth of 7 to 10% in European countries in recent years [24]. Consumers
now can access a global offer of products that can be delivered to any location
within short times. In turn, producers (even small ones) can access competitive
markets that were previously attainable only for large corporations with expen-
sive infrastructure for distribution and marketing. These technology-based trade
relationships have increased democratization in access to markets and provided
efficiencies and convenience for both consumers and producers.

The agriculture sector has especially benefited from these technology-based
business models, as small farmers can move away from intermediaries which
traditionally provided distribution channels but take a large share of the revenue
of the end-markets [11]. E-commerce platforms, although intermediaries as well,
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provide more transparent relationships with final customers, such as restaurants
or hotels demanding unique characteristics from specific producers (e.g., organic,
fair-trade) at competitive prices. These advantages contribute to sustainability
in global commerce by closing historical gaps in competitiveness between small
and large players [20].

The shift towards a market based on several small producers implies coordi-
nating a two-echelon supply chain with a network of participants (rather than
a single provider). First, there is an echelon in which products are collected
from suppliers and taken to a distribution center where inventories are managed
(first mile). Then, there is an echelon in which products are distributed to end
customers (last mile). The design and operation of efficient supply chains is cru-
cial to enabling more competitive markets, in contrast to traditional structures
characterized by a concentration of large agricultural companies [18].

The supply chains induced by e-commerce in the agricultural sector have spe-
cial features whose treatment is incipient in the literature. The joint treatment
of procurement logistics and inventory management (i.e., first mile logistics) has
been little studied. Often, problems assume there is a supplier that guarantees
the provision of products under a direct delivery, instead of addressing the logis-
tics of picking up products from distributed suppliers with changing prices and
availability. Moreover, the fact that such procurement strategy must respond
to a dynamic demand of perishable products is a challenging realistic feature
that has not been considered in the literature. In practice, companies struggle
to coordinate procurement strategies with inventory management of fresh agri-
cultural products. For example, perishable food waste in 2017 reached losses of
47 billion USD per year in China and 218 billion USD in the United States [13].
Therefore, solving such integrated problem efficiently is paramount to achieve
the benefits associated to e-commerce.

The objective of this research is to develop and test algorithms that can
efficiently support first-mile logistics decisions as part of a decision support sys-
tem for agri-food supply chains in the context of e-commerce. At this stage, we
present a two-stage math-heuristic methodology that integrates decisions about
quantities to purchase of each of a set of products, inventory levels to satisfy the
demand of perishable products, as well as selection of suppliers and routing of
vehicles to replenish products at a warehouse. Section 2 provides an overview of
the literature on this problem, while Sections 3 and 4 detail the characteristics
of the problem and the solution approach, respectively. Section 5 provides a set
of computational experiments and analysis, and Section 6 concludes.

2 Literature Review

The majority of the research that considered integrated inventory management
and routing decisions are focuses on outbound routing problem, which is most
commonly referred to as the Inventory Routing Problem, and the most studied
variant in the literature is known as the Vendor Managed Inventory (VMI) prob-
lem, in which customers transfer the responsibility of inventory management to
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a vendor, who knows the stock levels of their customers and must plan a distri-
bution scheme to maintain adequate levels for all products of all customers. A
general review of the transportation IRP is presented in [1] and [6].

Few authors address the First-mile problem with inbound transportation and
inventory decisions, as most problems assume that ordered products simply ar-
rive at the warehouse, disregarding the selection of suppliers and the logistics
of collecting products from them. [16] and [17] consider a multiperiod, multi-
supplier, many-to-one supply chain structure problem with a single assembly
plant in which each supplier provides a distinct part type. In both cases, the
problem is deterministic, and the solution approach is approximate optimiza-
tion. In [7] a decomposition matheuristic is developed to solve an assembly,
production, inventory pouting problem with inbound transportation. The au-
thors must select the supplier to visit, the order, and the inventory level at the
supplier and the plant. The supplier offers only one type of product. After, in [8]
the authors solve the same problem, but at this time, the suppliers have differ-
ent products available. A B&C algorithm is proposed to solve the problem. In
contrast to previous works, in our work the suppliers have a different capacity
for each product in each period and to be able to pick up that product from the
supplier you have to pay a price that varies according to the supplier and the
period. In addition, the supplier’s inventory cannot be managed. The work that
most closely resembles ours is presented in [5], however, the authors proposed a
non-linear model, test its performance on a single test instance, and they consid-
ers price discounts in the suppliers. There is some work that considers product
perishability, inventory management and routing decisions together; however,
the authors assume direct shipment from suppliers to the warehouse and do not
consider the selling prices ([23] and [25])

In the first mile problem proposed in this research, the company must plan the
procurement logistics (i.e., which suppliers to visit, in which order, and how much
to buy of each product from each supplier) based on the estimated demands from
customers, the current inventory levels, and the supplier characteristics (location,
as well as product prices and availability). The Multi-Vehicle Traveling Purchaser
Problem (MV-TPP) addresses this specific challenge (See [19]). MVTPPs, can
be classified according to the following four categories referring to the available
supply, demand, vehicle capacity, and purchasing policy, as is mentioned in [4].

The Table 1 presents a comparison between the different MV-TPP variants
with our work.

Table 1. MVTPP variants comparison

non-split non-split split split

unrestricted [2], [9], [10], [12],[21],[22], [4] invalid capacited
unrestricted [3] invalid uncapacited
restrcited invalid our work invalid [9], [14] capacited
restricted invalid [15] invalid [3] uncapacited

unitary general unitary general
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The focus of this paper at hand is inbound transportation corresponding a
restricted, capacitated, general Multi Vehicle PP with non-split purchases plus
inventory management of perishable products at the warehouse.

3 Problem definition and mathematical formulation

The in-bound multi-product inventory routing problem (IB-MP-IRP) addressed
in this work consists of a many-to-one system composed of a set of M suppliers
and a single warehouse. Over the discrete periods t a planning horizon T , the
warehouse satisfies a deterministic demand, dk,t, of the k products in set K. The
products are purchased and collected from the geographically dispersed suppliers
using a homogeneous fleet F of vehicles v located at the warehouse, each with
capacity Q. The suppliers must be visited by only one vehicle, and the total
quantities purchased in any supplier must not exceed the vehicle capacity (i.e.,
non-split constraints are considered). At period t, product k can be purchased
from a subset of suppliers Mk,t ⊆ M ; each supplier i has their own selling price
pi,k,t and available quantity qi,k,t of each product. At each period, the warehouse
can purchase more than demanded of any product and store the remaining units
in inventory to supply future demand. This encourages a holding cost hk,t. The
warehouse has unlimited storage capacity. Each product has a perishable nature
represented by the subset Ok that limits the maximum number of periods that
the product can remain in inventory. We define the problem on a complete
undirected graph with nodes set N = M ∪{0}, where 0 represent the warehouse,
and a set of edges E = {(i, j) : i, j ∈ N, i < j}.

The decisions to make are: the quantity to be purchased of each product at
each supplier and each period; the quantity to maintain in inventory of each
product at the end of each period; the selection of suppliers to be visited; and
the order in which each vehicle visits suppliers in each period (i.e., the routes).
The warehouse needs to simultaneously minimize the purchasing, inventory, and
transportation costs for the entire planning horizon. It is easy to show that the
(IB-MP-IRP) is NP-hard since the Multi-Vehicle Traveling Purchaser Problem
(TPP) is a special case of it for each period. The problem can be formulated as
the following mixed-integer program:

Variables

– Ik,t,o : inventory level of product k of age o at the end of period t (o = 0
indicates the product is fresh, whereas o = |Ok| is the latest age acceptable
for product k)

– rk,t : quantity of product k to be replenished at period t
– yk,t,o : quantity of product k of age o to be shipped at period t

– xi,j,t,v =

{
1 if arc (i,j) is traversed by vehicle v at period t

0 otherwise

}
– wi,t,v =

{
1 if supplier i is visited by vehicle v at period t

0 otherwise

}
– zikt : quantity of product k purchased at the supplier i at period t
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Objective function

min
∑
t∈T

∑
v∈F

 ∑
(i,j)∈E

cijxijtv +
∑
k∈K

∑
i∈Mk

piktziktv

+
∑
k∈K

∑
o∈Ok

hktIkto

 (1)

Subject to

Ik1o = Ik0o − yk1o ,∀k ∈ K,∀o ∈ Ok|o > 1 (2)

Ikt1 = rkt − ykt1 ,∀k ∈ K,∀t ∈ T (3)

Ikto = Ikt−1o−1 − ykto ,∀k ∈ K,∀t ∈ T |t > 1,∀o ∈ Ok|o > 1 (4)∑
o∈Ok

ykto = dkt ,∀k ∈ K,∀t ∈ T (5)∑
v∈F

∑
i∈Mkt

ziktv = rkt ,∀k ∈ K,∀t ∈ T (6)∑
v∈F

ziktv ≤ qikt ,∀k ∈ K,∀t ∈ T, ∀i ∈ Mkt (7)

ziktv ≤ qi,k,twitv ,∀k ∈ K,∀t ∈ T, ∀v ∈ F (8)∑
v∈F

witv ≤ 1 ,∀t ∈ T, ∀i ∈ M (9)∑
k∈K

∑
i∈Mkt

ziktv ≤ Q , ∀t ∈ T, ∀v ∈ F (10)∑
(i,j)∈δ+({m})

xijtv =
∑

(i,j)∈δ−({m})

xijtv = wm,t,v ,∀v ∈ F,∀t ∈ T, ∀m ∈ M

(11)

uitv − ujtv + |N |xijtv ≤ |N | − 1 ,∀t ∈ T, ∀v ∈ F,∀i ∈ M,∀j ∈ M (12)

Ikto ≥ 0 ,∀k ∈ K,∀t ∈ T, ∀o ∈ Ok (13)

rkt ≥ 0 ,∀k ∈ K,∀t ∈ T (14)

ykto ≥ 0 ,∀k ∈ K,∀t ∈ T, ∀o ∈ Ok (15)

xi,j,t,v ∈ {0, 1} ,∀(i, j) ∈ E,∀v ∈ F,∀t ∈ T (16)

wi,t,v ∈ {0, 1} ,∀i ∈ M, ∀v ∈ F,∀t ∈ T (17)

zikt ≥ 0 ,∀i ∈ Mk,t,∀k ∈ K,∀t ∈ T (18)
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The objective function (1) minimizes the total purchasing, inventory, and
transportation costs. The holding cost is only considered in the warehouse. Ini-
tialization and inventory flow balance for the products of different ages is imposed
through constraints (2)-(4). Constraint (5) guarantees demand satisfaction. Con-
straints (6) and (7) ensure to buy the quantity to be replenished and respect
the quantities available from each supplier. Constraint (8) limits the quantity to
be purchased at a supplier depending on the capacity of the vehicle that visits
them. Constraints (9) and (10) limit the supplier to be visited only by one vehicle
and not purchase more than vehicle capacity. These are the non-split constraints.
Constraints (11) and (12) rule the visiting tour feasibility. Eqs. (11) impose that,
for each visited supplier, exactly one arc must enter and leave the relative node,
where, for any subset N ′ of nodes, δ+(N ′) := {(i, j) ∈ E : i ∈ V ′, j ̸∈ V ′} and
δ−(N ′) := {(i, j) ∈ E : i ̸∈ V ′, j ∈ V ′}. Inequalities (12) are connectivity con-
straints that prevent the creation of sub-tours by controlling the order of visits of
the suppliers. Miller-Tucker-Zemlin (MTZ) formulation is used. The constraints
(13)-(18) correspond to the domain of the variables.

4 A two-stage matheuristic decomposition

In this section, we present a two-stage matheuristic decomposition for the IB-
MP-IRP with perishability. Algorithm 1 presents an overview of the matheuris-
tic. Our algorithm decomposes the problem into two separate subproblems. The
first subproblem aims to decide, for each period, the inventory levels and the
quantity of each product to be purchased at each supplier by solving a simpli-
fied problem where an approximate transportation cost ( ˆci,t) is used to estimate
the actual cost of visiting supplier i at period t. This is done as routing deci-
sions are not considered at this stage. The objective function presented in (1) is
reformulated as follows:

min
∑
t∈T

(∑
i∈M

ĉitwit +
∑
k∈K

∑
i∈Mk

piktzikt +
∑
k∈K

∑
o∈Ok

hktIkto

)
(19)

We define the first stage model with the objective function (19) subject to
constraints (2)-(10), omitting the index v ∈ F corresponding to the fleet of
vehicles. Solving this model (line 3 - Algorithm 1) results in a (sub-optimal)
purchasing and inventory plan that respects perishability.

The second stage solves, for each period t, a Capacitated Vehicle Routing
Problem using the purchasing decisions found in the first stage. We fix the vari-
ables values of w̄i,t, z̄́ı,k,t. First, with the values of w̄i,t, a Nearest Neighbour
Algorithm is run to obtain the order in which selected suppliers will be visited
(line 4). Then, with this tour and the quantities to be purchased at each sup-
plier, z̄́ı,k,t, a split C-VRP procedure is developed to obtain the vehicle routes
that respect vehicle capacities (line 5). The augmented graph is built and the
shortest path problem is solved using the Bellman-Ford algorithm. the solution
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is assembled (line 5) with the routes and the values of źıkt, wı́t and Ikto, and if
the solution is better than the incumbent, it is updated.

The information flow between the two stages is through parameter ˆci,t, which
must be updated at each iteration. At iteration 0 (iter = 0), in line 1 (Algorithm
1) this parameter is initialized with the direct shipping cost (i.e., ˆci,t

iter = c0,i+
ci,0,∀i ∈ M , ∀t ∈ T ). At the end of each iteration, the cost ˆci,t

iter is updated
after vehicles’ routes have been obtained for each period (line 7). There are two
ways of updating this parameter. First, if supplier i is part of a route at period
t, the cost of the visiting them in the next iteration (iter = iter + 1) will be
ˆci,t

iter = ( ˆci,t
iter−1+cip,i+ci,is−cip,is)/2, where ip and is are the predecessor and

successor nodes of supplier i in their current route in that period. Second, if node
i is not visited in any of the routes, then we set ˆci,t

iter = ( ˆci,t
iter−1+cinsertion)/2,

where cinsertion is equal to the cost of the cheapest insertion into an existing
route in that period. This is based on the assumption that when a supplier i is
eliminated from their route, an acceptable route can be obtained by connecting
the predecessor and successor suppliers. Similarly, when inserting supplier i, an
acceptable route can be obtained with the best insertion among all the routes
in a specific period. The two stages are executed until the stopping criterion is
reached (line 2).

Algorithm 1 Two-stage matheheuristic decomposition

1: Initialize← ĉit
2: while termination condition not satisfied do
3: zikt, Ikto, wit ← SolvePurchaseAndInventory(T,M,K,Ok, pikt, qikt, hkt, ĉit;Q)
4: Tour ← NearestNeighbourAlgorithm(T,wit, cij)
5: Routes← SolveSplit CV RP (Tour, cij , zikt, Q)
6: CurrentSolution← assembleSolution(Routes, zikt, wit, Ikto)
7: ĉit ← updatedRoutingEstimation(Routes, cij)
8: Update Incumbent if CurrentSolution is better
9: end while
10: return Incumbent

5 Computational Experiments

The MIP and the decomposition matheuristic were implemented in Python 3.7,
with Gurobi 9.1.1 as a solver for exact models. All computational experiments
were performed on a 2.11 GHz processor with 16GB of RAM. The termination
condition of Algorithm 1 (line 2) is parameter maxCount, which defines a maxi-
mum number of consecutive iterations without incumbent solution improvement,
and was set at 20 iterations.
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5.1 Data sets

There are no available data sets for the IB-MP-IRP considered in this work. We
built a data set of 240 instances, taking into account the inventory characteristics
of [16] and supplier characteristics of [19]. The number of suppliers, products,
and periods were set as M ∈ {10, 25, 50, 100, 150}, K ∈ {10, 25, 50, 100} and
T ∈ {5, 10, 21}. The supplier locations were generated in a [0, 1000] × [0, 1000]
square according to a uniform distribution and routing costs cij as truncated Eu-
clidean distances. Each product k at period t is associated with |Mkt| randomly
selected suppliers, where |Mkt| is uniformly generated number in [1, |N | − 1].
Parameter qikt of offered quantities is randomly taken in [1, 15]. Parameter λ
is used to control the number of suppliers in a feasible solution through the
product demand dkt := [λmaxi∈Mkt

qikt + (1− λ)
∑

i∈Mkt
qikt],∀k ∈ K, ∀t ∈ T ,

with 0 < λ < 1. The lower the value of λ, the higher the number of suppliers
in a solution; λ was set as λ ∈ {0.5, 0.9}. The selling price pikt, and the hold-
ing cost hkt were uniformly generated in [1, 500]. The latest age acceptable for
product k was uniformly generated in [1, |T |]. To find a feasible vehicle capacity
Q, we solve a model with objective function min z = Q subject to (2)-(10),
omitting the index v ∈ F corresponding to the fleet of vehicles. The result of
this model is a feasible capacity, which is multiplied by 1.2 and rounded up to
avoid a hard constraint. The number of vehicle v ∈ F in the fleet is obtained
by |F | =

⌈∑
t∈T

∑
k∈K dk,t/Q

⌉
. Finally, two replicates were generated for each

combination of M , K, T y λ.

5.2 Results

Two time-limits were defined to test the performance of the MIP. Initially, we
attempted to solve instances within 1800 seconds, but required an increase to
3600 seconds to obtain reasonable solutions for a larger number of instances
(i.e., the time limit of 3600 seconds is used when the model does not find an
integer solution in 1800 seconds, or the MIP GAP is greater than 10%). Table 2
presents the results obtained by the MIP and the proposed matheuristic decom-
position. Instances that do not appear in the table cannot be compared because
the model did not find an integer solution in 3600 seconds or the computer mem-
ory is not sufficient. As the MIP model could not find an optimum solution in
3600 seconds for any instances; the results presented in the MIP columns are
the best integer solution found. Also, the Bestbound and the gap calculated by
Gurobi (GAPB&b) are reported. The column ∆MIP−H is the percentage differ-
ence between the solutions obtained for the both approaches. It is calculated as
∆MIP−H = ((BKSMIP −BKSH)/BKSMIP ) ∗ 100.

Table 2 shows that when the size of the instance increased, the GAPB&B of
the model also increase, as expected, due to the limited capacity of the exact
model to solve big instances. On the other hand, when the size instance increased,
the proposed mathheuristic finds better solutions than the MIP with a lower
CPU time required. These results provide a preliminary confirmation about the
potential of the proposed methodology. Currently, adjustments on the proposed
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strategies and more comprehensive experiments are being developed in order to
determine, with better statistical significance, which variations of instances and
strategies lead to better results.

Table 2. Comparison MIP and Matheuristic

MIP Math-heuristic
M K T λ ID BKS Time (s) BestBound GAPB&B BKS Time (s) ∆MIP−H

10 10 5 0.5 1 179999 1801 170842.56 5.09 180835 0.89 0.46
10 10 5 0.5 2 173967 1802 165152.84 5.07 174396 0.83 0.25
10 10 5 0.9 1 152601 1802 146504.75 4.00 153044 0.91 0.29
10 10 5 0.9 2 168418 1801 161358.37 4.19 170265 0.95 1.10
10 10 10 0.5 1 351791 3606 310593.85 11.71 350653 2.17 -0.32
10 10 10 0.5 2 334332 3605 301934.26 9.69 336872 2.33 0.76
10 10 10 0.9 1 287696 3605 264497.63 8.06 286580 2.95 -0.39
10 10 10 0.9 2 255647 1804 246408.63 3.61 257094 1.39 0.57
10 25 5 0.5 1 336682 1802 324702.13 3.56 341168 1.13 1.33
10 25 5 0.5 2 338057 1802 312685.40 7.51 341580 1.22 1.04
10 25 5 0.9 1 290924 1802 273539.65 5.98 293026 1.20 0.72
10 25 5 0.9 2 281152 1802 266002.45 5.39 284913 0.95 1.34
10 25 10 0.5 1 651117 3606 598765.96 8.04 655208 3.11 0.63
10 25 10 0.5 2 699029 3607 654,946 6 707306 2.97 1.18
10 25 10 0.9 1 613872 3608 575706.69 6.22 615916 2.77 0.33
10 25 10 0.9 2 646987 1806 610636.93 5.62 650546 3.16 0.55
25 10 5 0.5 1 313159 3621 209788.22 33.01 318562 3.25 1.73
25 10 5 0.5 2 285475 3619 241288.27 15.48 286671 6.76 0.42
25 10 5 0.9 1 155564 3614 126783.32 18.5 159081 4.33 2.26
25 10 5 0.9 2 214676 3619 133925.36 37.62 214455 7 -0.10
25 10 10 0.5 1 590851 3675 375950.68 36.37 569111 12.54 -3.68
25 10 10 0.9 1 334735 3689 189621.55 43.35 329694 11.91 -1.51
25 10 10 0.9 2 322966 3656 220217.06 31.81 321824 10.12 -0.35
25 25 5 0.5 1 557466 3621 462325.5 17.07 553392 4.05 -0.73
25 25 5 0.5 2 556578 3621 427084.79 23.27 564814 3.95 1.48
25 25 5 0.9 1 373589 3622 241736.5 35.29 370630 5.36 -0.79
25 25 5 0.9 2 343748 3622 236289.92 31.26 338638 10.01 -1.49
25 25 10 0.5 2 1224065 3680 844555.11 31 1138494 13.58 -6.99
25 25 10 0.9 2 700790 3676 493845.7 29.53 683151 10.39 -2.52
50 10 5 0.5 1 444768 3744 234986.9 47.17 443279 15.01 -0.33
50 10 5 0.5 2 553434 3756 260349.26 52.96 549946 13.01 -0.63
50 10 5 0.9 1 337031 3872 115652.24 65.69 317415 15.44 -5.82
50 10 5 0.9 2 180982 3693 102025.31 43.63 185137 11.57 2.30

The table 3 presents the average computation times required by the matheuris-
tics for each of the combinations of M , K and T . It can be seen that the largest
increase in time occurs as the number of periods increases, followed by the in-
crease in the number of suppliers. Although the matheuristic is able to obtain
results for instances with 100 suppliers and 100 products when 21 periods are
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Table 3. Heuristic computational times

Average CPU time (s)

M 10 25 50 100 150
K\T 5 10 21 5 10 21 5 10 21 5 10 21 5 10 21

10 1 2 13 5 10 46 14 61 211 76 355 13038 259 - -
25 1 3 10 6 12 47 21 61 239 88 580 - 304 - -
50 2 5 17 9 25 59 20 75 247 109 401 - - - -
100 4 9 34 9 24 79 36 80 304 118 497 - - - -

considered with 100 or more suppliers, the computer memory is not enough to
solve the model.

6 Conclusions

We presented a math-heuristic decomposition approach for the in-bound multi-
product inventory routing problem, responding to challenges of the agri-food
supply chain in the context of e-commerce. The key contribution is the inte-
gration of inventory decisions to satisfy a demand of perishable products with
procurement decisions, including a selection of supplier for each product (with
varying locations and product availability and price) and routing decisions. As a
first step, the proposed math-heuristic approach obtains good quality solutions
within reasonable computation times, given the limitations of the exact model
and the scarcity of approaches for the proposed problem in the literature. Current
results provide an initial confirmation on the potential of the proposed approach.
However, ongoing work is devoted to the execution of a more comprehensive set
of computational experiments that allow to reach more solid conclusions regard-
ing the variants of the approach that are better suited for each type of instance.
The next step of the research is the incorporation of stochasticity in the demand
and product prices and availability at the supplier, as well as the possibility to
update decisions dynamically, as usually allowed in e-commerce platforms.
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21. Riera-Ledesma, J., Salazar-González, J. J. (2012). Solving school bus routing
using the multiple vehicle traveling purchaser problem: A branch-and-cut approach.
Computers Operations Research, 39(2), 391-404.



12 F. Author et al.
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