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Abstract: A prime gap is the difference between two successive prime numbers. The nth prime gap,
denoted gn is the difference between the (n + 1)st and the nth prime numbers, i.e. gn = pn+1 − pn. A
twin prime is a prime that has a prime gap of two. On the one hand, the twin prime conjecture states
that there are infinitely many twin primes. There isn’t a verified solution to twin prime conjecture yet.
In this note, using the Chebyshev function, we prove that

lim inf
n→∞

gn + gn−1
log(pn) + log(pn + 2)

≥ 1,

under the assumption that the twin prime conjecture is false. It is well-known the proof of Daniel
Goldston, János Pintz and Cem Yildirim which implies that lim infn→∞

gn
log pn

= 0. In this way, we
reach an intuitive contradiction. Consequently, by reductio ad absurdum, we can conclude that the
twin prime conjecture is true. On the other hand, the Andrica’s conjecture deals with the difference
between the square roots of consecutive prime numbers. While mathematicians have showed it
true for a vast number of primes, a general solution remains elusive. We consider the inequality
θ(pn+1)
θ(pn)

≥
√

pn+1
pn

for two successive prime numbers pn and pn+1, where θ(x) is the Chebyshev

function. In this note, under the assumption that the inequality θ(pn+1)
θ(pn)

≥
√

pn+1
pn

holds for all

n ≥ 1.3002 · 1016, we prove that the Andrica’s conjecture is true. Since θ(pn+1)
θ(pn)

≥
√

pn+1
pn

holds indeed
for large enough prime number pn, then we show that the statement of the Andrica’s conjecture can
always be true for all primes greater than some threshold.
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1. Introduction

Prime numbers, the building blocks of integers, have fascinated mathematicians for
centuries. Their irregular distribution, with gaps of seemingly random size between them,
is a source of ongoing intrigue. A twin prime is a prime that has a prime gap of two. The
twin prime conjecture states that there are infinitely many twin primes. The question of
whether there exist infinitely many twin primes has been one of the great open questions in
number theory for many years. In 1849, de Polignac made the more general conjecture that
for every natural number k, there are infinitely many primes p such that p + 2 · k is also
prime [1]. The case k = 1 of de Polignac’s conjecture is the twin prime conjecture. There is
a stronger form of the twin prime conjecture, the Hardy-Littlewood conjecture, postulates a
distribution law for twin primes [2].

In May 2013, the popular Yitang Zhang’s paper was accepted by the journal Annals
of Mathematics where it was announced that for some integer N, that is less than 70
million, there are infinitely many pairs of primes that differ by N [3]. A few months later,
James Maynard gave a different proof of Yitang Zhang’s theorem and showed that there
are infinitely many prime gaps with size of at most 600 [4]. A collaborative effort in the
Polymath Project, led by Terence Tao, reduced to the lower bound 246 just using Zhang and
Maynard results. Moreover assuming the Elliott-Halberstam conjecture and its generalized
form, the Polymath Project wiki states that the bound is 12 and 6, respectively. As of August
2022, the current largest twin prime pair known is 2996863034895 · 21290000 ± 1 [5].
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In this work, using a proof by contradiction, we prove that the twin prime conjecture
is true. The resolution of the twin prime conjecture would undoubtedly inspire mathemati-
cians to tackle even more challenging unsolved problems. It could open doors to entirely
new areas of inquiry, pushing the boundaries of human knowledge in number theory.
A proven twin prime conjecture would be far more than just satisfying an intellectual
curiosity. It would represent a significant leap forward in our understanding of prime
numbers, potentially leading to advancements across various branches of mathematics with
far-reaching consequences. The impact could be profound, both for theoretical knowledge
and potentially for practical applications in the future.

Andrica’s conjecture tackles this very irregularity, proposing a relationship between
the sizes of these prime gaps and the primes themselves. Andrica’s conjecture (named
after Dorin Andrica) is a conjecture regarding the gaps between prime numbers [6]. The
conjecture states that the inequality

√
pn+1 −

√
pn < 1

holds for all n, where pn is the nth prime number. If gn = pn+1 − pn denotes the nth prime
gap, then Andrica’s conjecture can also be rewritten as

gn < 2 · √pn + 1.

Imran Ghory has used data on the largest prime gaps to confirm the conjecture for n up to
1.3002 · 1016 [7].

Legendre’s conjecture, proposed by Adrien-Marie Legendre, states that there is a
prime number between n2 and (n + 1)2 for every positive integer n [7]. The conjecture is
one of Landau’s problems (1912) on prime numbers. If Legendre’s conjecture is true, the
gap between any prime p and the next largest prime would be O(

√
p ), as expressed in

big O notation. Oppermann’s conjecture is another unsolved problem in mathematics on
the distribution of prime numbers [7]. It is closely related to but stronger than Legendre’s
conjecture and Andrica’s conjecture. It is named after Danish mathematician Ludvig Op-
permann, who announced it in an unpublished lecture in March 1877 [8]. If the conjecture
is true, then the gap size would be on the order of gn <

√
pn.

This seemingly simple statement has profound implications for our understanding
of prime number distribution. Unfortunately, despite its apparent elegance, Andrica’s
conjecture remains unproven. Mathematicians have extensively verified it for a tremendous
number of primes, but a universal solution proving its truth for all primes continues to
be elusive. This lack of proof doesn’t diminish the significance of the conjecture. It
serves as a guidepost, nudging mathematicians towards a deeper understanding of prime
number distribution. The quest to solve Andrica’s conjecture pushes the boundaries of
our knowledge and holds the potential to unlock new insights into the enigmatic world of
primes. We also study the inequality θ(pn+1)

θ(pn)
≥

√
pn+1

pn
for two successive prime numbers pn

and pn+1 which has a close relation to Andrica’s conjecture, where θ(x) is the Chebyshev
function.

2. Materials and methods

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x, where
log is the natural logarithm. We know the following properties of this function:
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Proposition 1. For every x ≥ 41 [9, Corollary pp. 70]:(
1 − 1

log x

)
· x < θ(x).

Proposition 2. We have [10, pp. 1539]:

θ(x) ∼ x as (x → ∞).

A natural number Nn is called a primorial number of order n precisely when,

Nn =
n

∏
k=1

pk

where pk is the kth prime number (We also use the notation pn to denote the nth prime
number). This implies that θ(pn) = log Nn.

Proposition 3. For n ≥ 25 there is always a prime between n and
(

1 + 1
5

)
· n [11].

The definition of limit inferior is widely used in mathematics.

Definition 1. The limit inferior of a sequence of real numbers xn is the largest real number b such
that, for any positive real number ε, there exists a natural number N such that xn > b − ε for all
n > N. In other words, any number below the limit inferior is an eventual lower bound for the
sequence. Only a finite number of elements of the sequence are less than b − ε.

The following is a key Proposition:

Proposition 4. If gn = pn+1 − pn denotes the nth prime gap, then we know that [12]:

lim inf
n→∞

gn

log pn
= 0.

Putting all together yields two proofs related to large and small prime gaps.

3. Results
3.1. The twin prime conjecture

This is a main insight of this section.

Theorem 1. If we assume that the twin prime conjecture is false, then

lim inf
n→∞

gn + gn−1

log(pn) + log(pn + 2)
≥ 1.

Proof. If pn and pn+1 are twin primes, then

pn · (Nn + 2 · Nn−1) = Nn+1.

Certainly, we have

pn · (Nn + 2 · Nn−1) = pn · Nn−1 · (pn + 2)

= Nn · (pn + 2)

= Nn+1
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whenever pn+1 = pn + 2. Suppose that the twin prime conjecture is false. Hence, there
exists a large enough prime pn0 > 2996863034895 · 21290000 + 1 such that

pn · (Nn + 2 · Nn−1) < Nn+1

holds for all n ≥ n0. That is the same as

log(pn · (Nn + 2 · Nn−1)) < log Nn+1

after of applying the logarithm to the both sides. That is equivalent to

log(pn) + log(Nn + 2 · Nn−1) < θ(pn+1)

which means that

1 <
θ(pn+1)− θ(pn−1)

log(pn) + log(pn + 2)

holds for all n ≥ n0, because of

log(Nn + 2 · Nn−1) = log(Nn−1 · (pn + 2))

= log(Nn−1) + log(pn + 2)

= θ(pn−1) + log(pn + 2).

By Proposition 2, we see that

θ(pn+1) ∼ pn+1 as (n → ∞)

and
θ(pn−1) ∼ pn−1 as (n → ∞).

In addition, we notice that

pn+1 − pn−1 = (pn+1 − pn) + (pn − pn−1)

= gn + gn−1.

Note that, the inequality

1 <
θ(pn+1)− θ(pn−1)

log(pn) + log(pn + 2)

implies that

1 <
gn + gn−1

log(pn) + log(pn + 2)
+ εn

where

εn =
(θ(pn+1)− pn+1)− (θ(pn−1)− pn−1)

log(pn) + log(pn + 2)

tends rapidly to zero when n → ∞ and

θ(pn+1)− θ(pn−1)

log(pn) + log(pn + 2)
=

gn + gn−1

log(pn) + log(pn + 2)
+ εn.

By definition of limit inferior, we finally deduce that

lim inf
n→∞

gn + gn−1

log(pn) + log(pn + 2)
≥ 1

when we assume that the twin prime conjecture is false.

This is the main theorem of this section.
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Theorem 2. The twin prime conjecture is true.

Proof. This is a direct consequence of putting together Proposition 4 with Theorem 1
and using a proof by contradiction. Certainly, the sequence of positive real numbers
xn = gn+gn−1

log(pn)+log(pn+2) is upper bounded by yn = max
(

gn
log(pn)

, gn−1
log(pn−1)

)
since

gn + gn−1

log(pn) + log(pn + 2)
<

(
gn

2 · log(pn)
+

gn−1

2 · log(pn−1)

)
≤ max

(
gn

log(pn)
,

gn−1

log(pn−1)

)
,

where max(. . . , . . .) is the maximum function. Since this implies that

1 ≤ lim inf
n→∞

xn ≤ lim inf
n→∞

yn = 0

by Proposition 4 and Theorem 1, we reach a contradiction. Consequently, by reductio ad
absurdum, we can confirm that the twin prime conjecture is true.

3.2. The Andrica’s conjecture

The following is a key Lemma.

Lemma 1. Let pn and pn+1 be two successive prime numbers such that n ≥ 1.3002 · 1016. Then,

θ(pn+1) < θ(pn) ·
(

1 +
1

√
pn

)
.

Proof. The inequality

θ(pn+1) < θ(pn) ·
(

1 +
1

√
pn

)
.

would be

log(θ(pn+1))− log(θ(pn)) < log
(

1 +
1

√
pn

)
.

after of applying the logarithm to the both sides and distributing the terms. By properties
of the Chebyshev function, we have

log(θ(pn+1))− log(θ(pn)) = log log(Nn+1)− log log(Nn)

= log(log(Nn) + log(pn+1))− log log(Nn)

= log
(
(log(Nn)) ·

(
1 +

log(pn+1)

log(Nn)

))
− log log(Nn)

= log log(Nn) + log
(

1 +
log(pn+1)

log(Nn)

)
− log log(Nn)

= log
(

1 +
log(pn+1)

log(Nn)

)
= log

(
1 +

log(pn+1)

θ(pn)

)
.

In this way, we obtain that

log
(

1 +
log(pn+1)

θ(pn)

)
< log

(
1 +

1
√

pn

)
which is (

1 +
log(pn+1)

θ(pn)

)
<

(
1 +

1
√

pn

)



6 of 8

and
log(pn+1)

θ(pn)
<

1
√

pn

after simplifying the whole expression. We show that

log(pn+1)(
1 − 1

log pn

)
· pn

<
1

√
pn

since
1(

1 − 1
log pn

)
· pn

>
1

θ(pn)

by Proposition 1. That is equivalent to

log(pn)

log(pn)− 1
· log(pn+1) <

√
pn

because of √
pn =

pn√
pn

.

That would be
2 · log(pn+1) <

√
pn

since the fraction x
x−1 decreases as x increases whenever x > 1 and so,

log(pn)

log(pn)− 1
<

2
2 − 1

= 2.

Hence, it is enough to show that

2 · log
((

1 +
1
5

)
· pn

)
<

√
pn

trivially holds for n ≥ 1.3002 · 1016 according to the Preposition 3. Thus, the proof is
done.

This is a main insight of this section.

Theorem 3. For n ≥ 1.3002 · 1016, the inequality

√
pn+1 −

√
pn < 1

holds when
θ(pn+1)

θ(pn)
≥

√
pn+1

pn

holds as well.

Proof. There is not any natural number n′ such that

√
pn′+1 −

√
pn′ = 1

since this implies that gn′ = 2 · √pn′ + 1. For every n, gn is a natural number and 2 · √pn + 1
is always irrational. In fact, all square roots of natural numbers, other than of perfect squares,
are irrational [13]. Suppose that there exists a natural number n0 ≥ 1.3002 · 1016 such that

√
pn0+1 −

√
pn0 > 1
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under the assumption that the inequality

θ(pn0+1)

θ(pn0)
≥

√
pn0+1

pn0

holds. That is equivalent to √
pn0+1

pn0

− 1 >
1

√pn0

and √
pn0+1

pn0

> 1 +
1

√pn0

after dividing both sides by √pn0 and distributing the terms. We obtain that

θ(pn0+1)

θ(pn0)
> 1 +

1
√pn0

when we assume that
θ(pn0+1)

θ(pn0)
≥

√
pn0+1

pn0

.

That would be the same as

θ(pn0+1) > θ(pn0) ·
(

1 +
1

√pn0

)
.

Since this implies that the Lemma 1 should be false for some n0 ≥ 1.3002 · 1016, we reach a
contradiction. Consequently, by reductio ad absurdum, we conclude that the Theorem 3 is
true.

This is the main theorem of this section.

Theorem 4. There exists some natural number n0 ≥ 1.3002 · 1016 such that gn < 2 · √pn + 1 for

n ≥ n0. Moreover, the Andrica’s conjecture is true if the inequality θ(pn+1)
θ(pn)

≥
√

pn+1
pn

holds for all

n ≥ 1.3002 · 1016.

Proof. By Proposition 2, the inequality

θ(pn+1)

θ(pn)
≥

√
pn+1

pn

holds for large enough prime number pn since

θ(pn+1)

θ(pn)
∼ pn+1

pn
as (n → ∞)

and
pn+1

pn
≫

√
pn+1

pn

where the symbol ≫ means “much greater than”. Therefore, there exists some natural
number n0 ≥ 1.3002 · 1016 such that the inequality

θ(pn+1)

θ(pn)
≥

√
pn+1

pn

holds for all n ≥ n0. To sum up, the Theorem 4 is a direct consequence of Theorem 3.
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4. Conclusion

Further exploration about this result may involve:

• Developing new techniques in analytic number theory, the branch of mathematics that
studies the distribution of prime numbers.

• Leveraging advanced computational methods to test this result for even larger prime
ranges and potentially uncover patterns.

• Investigating connections between this result and other unsolved problems in prime
number theory.

This result could be a significant advancement in our understanding of prime number
distribution.
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