
EasyChair Preprint
№ 4328

Fuzzy Particle Swarm Optimization Algorithm
(NFPSO) for Reachability Analysis of Complex
Software Systems

Nahid Salimi, Vahid Rafe, Hamed Tabrizchi and Amir Mosavi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 8, 2020

Fuzzy particle swarm optimization algorithm

(NFPSO) for reachability analysis of complex

software systems

Nahid Salimi

Department of Computer Engineering,

Faculty of Engineering, Arak University

Arak, Iran

n-salimi@phd.araku.ac.ir

Amir Mosavi

Kalman Kando Faculty of Electrical

Engineering, Obuda University

Budapest, Hungary

amir.mosavi@kvk.uni-obuda.hu

Vahid Rafe

Department of Computer Engineering,

Faculty of Engineering, Arak University

Arak, Iran

 v-rafe@araku.ac.ir

Hamed Tabrizchi

Department of Computer Science, Shahid

Bahonar University

Kerman, Iran

0000-0001-9250-2232

Abstract— Nowadays, model checking is applied as an accurate

technique to verify software systems. The main problem of model

checking techniques is the state space explosion. This problem

occurs due to the exponential memory usage by the model checker.

In this situation, using meta-heuristic and evolutionary algorithms

to search for a state in which a property is satisfied/violated is a

promising solution. Recently, different evolutionary algorithms

like GA, PSO, etc. are applied to find deadlock state. Even though

useful, most of them are concentrated on finding deadlock. This

paper proposes a fuzzy algorithm in order to analyze reachability

properties in systems specified through GTS with enormous state

space. To do so, we first extend the existing PSO algorithm (for

checking deadlocks) to analyze reachability properties. Then, to

increase the accuracy, we employ a Fuzzy adaptive PSO algorithm

to determine which state and path should be explored in each step

to find the corresponding reachable state. These two approaches

are implemented in an open-source toolset for designing and

model checking GTS called GROOVE. Moreover, the

experimental results indicate that the hybrid fuzzy approach

improves speed and accuracy in comparison with other techniques

based on meta-heuristic algorithms such as GA and the hybrid of

PSO-GSA in analyzing reachability properties.

Keywords— Fuzzy Adaptive Particle Swarm Optimization,

Graph Transformation System, Model Checking, Reachability

Property, State Space Explosion

I. INTRODUCTION

During recent decades, software systems play an essential
role in developing software systems and security considerations.
Software development techniques have evolved to make more
complex software systems over the years. Model-Driven
engineering takes models in order to describe complex systems
at multiple levels of abstraction [1]. Modeling systems make it
possible to use model checking as a formal analysis technique to
verify software and detect system errors in the design phase that
is easier and cheaper than after the implementation. It is vital to
use a modeling language to model systems and verifying them

by model checking. GTS is a visual graph-based formal
language that is used to model software systems with dynamic
structures [2]. GTS uses graphs to describe and model the
structure of complex systems [3]. For large systems, GTS tends
to be huge, so the state space explosion is the main drawback of
model checking [4]. Some classic methods such as symbolic
verification [5, 6], partial order reduction [7, 8], symmetry
model checking methods [4, 9-11], scenario-driven model
checking [12], and several heuristic approaches including depth-
first search [13], best-first search [13, 14], a version of the A*
algorithm [15], Coverage First Search [16] and an A* search
algorithm to check liveness property in the explicit-state model
checking [7] is proposed to resolve the state space explosion
problem. However, the use of exhaustive search in the state
space also causes a lack of memory and low speed for classical
and heuristic methods. In recent years, several methods based on
meta-heuristic and evolutionary algorithms have been proposed
in this context concerning their efficiency, comparing classical
and heuristic approaches. These approaches search a subset of
the state space of systems instead of all state space to achieve
the specified properties, so they are more practical to resolve the
state space explosion problem. In this context, some meta-
heuristic approaches have been proposed to find deadlocks in
the systems and refute the security property, such as frameworks
based on reinforcement learning [17] and ant colony algorithm
[18-20]. A new approach has been proposed using the genetic
algorithm for verifying the correctness of communication
protocols in [21]. This genetic validation has been tested on a
hand-made protocol and on the Transmission Control Protocol.
In [22] two different learning algorithms have been proposed to
verify safety, reachability and liveness properties of systems
whose state space is expressible by regular expressions. In the
other paper, an ACO-based approach is presented to prevent the
state explosion problem for finding deadlocks in complex
networks described by using Calculus of Communicating
Systems [23]. Two other papers [24, 25] proposed using a type

of ACO model to refute safety and liveness properties in
concurrent systems. This Approach applies the GA algorithm on
several random paths with a specific length starting from the
initial state as the initial population and finds the first path,
which leads to a deadlock state. In order to evaluate the
efficiency of this solution, it is implemented in GROOVE
toolset. Another proposed approach for this problem uses the
PSO algorithm to detect deadlocks in graph transformation
systems [26]. The authors have also suggested a hybrid
algorithm based on PSO and GSA to avoid the local optima
problem. Another solution using a simple greedy algorithm
called BFA is also proposed in this paper in which a state with
the least outgoing transitions must be selected in each
exploration step. These two approaches are implemented in the
GROOVE. In [28], an efficient approach is proposed using data
mining techniques called EMCDM to check the model of
complex software systems that are designed according to an
architectural style and modeled by GTS formally. The EMCDM
approach is applied to verify the reachability property to refute
the safety property. In other research [29], a BOA-based
approach is proposed to detect deadlocks in systems specified
through graph transformations. The results of this algorithm
indicate more improvement in terms of speed and accuracy. One
of the properties which can be verified in model checking
process is reachability property. It can also be used instead of
refuting a similar safety property. For checking reachability
property, a specified goal state must be generated by graph
transformation rules from an initial configuration of the system;
however, there is no meta-heuristic approach working on
reachability check. This aspect of the model checking is very
similar to rule-based DSE frameworks [30, 31].

In this paper, two meta-heuristic solutions based on PSO
approach are used to verify the reachability property in the
systems specified through GTS. Despite the high speed of
convergence of the PSO algorithm, estimating the appropriate
value for C1 and C2 is a critical challenge. As well a Fuzzy
Adaptive Particle Swarm Optimization Algorithm is proposed,
which uses Fuzzy systems to estimate the best values of C1 and
C2 in each particle swarm optimization Iteration. These
proposed approaches for checking the reachability property can
also be used as a search-based model transformation approach
to search and produce a set of target models from a given initial
model.

This paper is organized as follows: We present our proposed
approaches based on PSO and Fuzzy PSO algorithms in Section
2. Section 3 briefly describes the necessary background, such as
model checking, GTS formalism, PSO algorithm, and Fuzzy
inference systems. Section 4 includes obtained the experimental
results based on several well-known case studies. Moreover, a
discussion on the observations is presented. The superiority of
the proposed approaches have been discussed in section 5.
Finally, Section 6 concludes the paper and highlights the future
works.

II. BACKGROUND

A. Model Checking

As a completely automatic technique, model checking
attempts to verify the correctness properties of different systems.
This technique determines if a typical correctness property suits

a given system by exploring the possible transitions in different
states. Some of the properties which can be verified in the model
checking process are safety, reachability, liveness, and fairness.
A safety property defines that “no undesired situation should
occur” or a “desired event” must always happen in a system.
This property is satisfied when all finite and infinite paths in the
model satisfy it. Finding a finite path into a goal state violating
the safety property can decline the property. In the case of the
reachability property, the model checks whether there will be a
particular configuration in the system or not. Finding a finite
path into the goal state satisfying the property leads to detecting
the state that leads to verifying the reachability property. The
two above-mentioned properties are dual; in fact, verifying the
reachability property as the negation of a safety property can be
a counterexample violating the safety property [32].

B. Graph Transformation System

Using model checking to verify a system requires that the
system is described by a formal language. To model systems
with dynamic structures, graph transformation can be used as a
graph-based visual formal language [33]. The formal, accurate
mathematical basis of the graph transformation system is one of
its basic features [34]. An attributed GTS is a triple: AGT = (TG,
HG, R) in which the type graph, host graph, and ruleset are
shown by TG, HG, and R, respectively. The system’s overview
and Meta-model can be determined by TG. The initial
configuration of a system can be determined by HG, as an
instance of TG. A system’s different configurations can be
created by applying transformation rules on a host graph. A
triple like (LHS, RHS, NAC) can define the graph
transformation rule set R on a TG. The left and right-hand sides
are represented by LHS and RHS, determining the rule’s pre-
conditions and post-conditions, respectively. NAC (harmful
application condition) is a particular configuration that is used
to verify that there is not any subgraph in the rule.

C. Particle Swarm Optimization Algorithm

PSO algorithm, as one of the most widely used optimization
algorithms to solve multi-dimensional problems. At first, this
algorithm randomly creates an initial population of candidate
solutions as particles. The position of the i^th the particle can be
described by the vector xi. Next step, in each iteration, the
algorithm calculates each particle’s fitness. Fitness is the degree
of the optimality of a particle to be a desirable solution. Until a
termination criterion occurs, g_best and p_best are updated for
all particles as the “personal best” and “global best” particles,
respectively. The velocity and the position of particles are
updated, as shown by Eq. (1) and Eq. (2):

𝑣𝑖(𝑡 + 1) = 𝑊 ∗ 𝑣𝑖(𝑡) + 𝐶1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) ∗
𝑅1 + 𝐶2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) ∗ 𝑅2 (1)

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (1)

C1 and C2 represent “cognitive coefficient” and “social
coefficient,” specifying the weight of the personal experience
and collective experience effect on particle behavior,
respectively. These two coefficients are real-valued and usually

in the range of 0 ≤ C1 + C2 ≤ 4. The momentum weight

represented by W determines to what extent a particle’ s

velocity in the current step influences its velocity in the
subsequent step. Also, R1 and R2 are two random factors

Identify applicable funding agency here. If none, delete this text box.

containing two diagonal matrices of random real numbers lying
the range of (0,1)[35]. The iterative process of calculating
finesse and updating g_best, p_best, position and velocity for all
particles continues until a termination condition is realized.

The pseudo-code related to the algorithm can be seen in
Algorithm 1.

Algorithm 1. Pseudo code of the PSO algorithm

1. Initialization

a. Initialize the particle’s position xi(t) (t=0 ,

i:1…N)

b. Initialize the particle’s best position to its initial

position

pi(t) = xi(t) (t=0 , i:1…N)

c. Calculate the fitness of each particle f(xi(t))

(t=0 , i:1…N)

d. if f(xi(0)) ≤ f(xj(0)) (for each i:1…N, i≠j) then

 initialize the global best as gbest = xj(t) (j:1…N)

2. while a stopping criterion is not met,

repeat the following steps:

a. Update the velocity vi for each particle:

vi(t+1) = W*vi(t) + C1(pbesti - xi(t))R1 + C2(gbest - xi(t))R2

b. Update the position xi for each particle:

xi(t+1) = xi(t) + vi(t+1)

c. Evaluate the fitness f(xi(t+1)) for each particle

d. if f(xi(t+1))≥ f(pbesti) then

 Update personal best: pbesti = xi(t+1)

e. if f(xi(t+1))≥ f(gbest) then

 Update personal best: gbest = xi(t+1)

At the end of iterative process the best solution is

represented by gbest.

D. Fuzzy inference system

A fuzzy system consisted of three main parts namely, the
fuzzification, FIS, and defuzzification.

• In the fuzzification process, the linguistic variables (of
inputs and outputs) are defined.

• The FIS defines the rules describing how the system
works and map inputs into outputs.

• In the defuzzification process, outputs are computed.

To design a fuzzy model, the following should be defined:
the input and output variables, the fuzzy membership functions,
the fuzzy rules, and the parameters used in equations (2) and (3).

III. THE PROPOSED APPROACHES

Here, two PSO and fuzzy Adaptive PSO-based approaches
are proposed to manage the state space explosion in the systems
defined formally by GTS to verify reachability property.
Although meta-heuristic algorithms such as PSO are widely
employed to deal with optimization problems, we use these
algorithms to search the reachability property in a potentially
huge state space which may even be infinite.

A. Particle Encoding

A reachability property p can be verified by finding a state
where p occurs through exploring the system’s reachable state
space. The output in our proposed algorithms is the path that
starts from an initial state and ends at the state holding the
reachability property. As mentioned, particles are candidate
solutions, and their positions can be specified by a sequence of
the numbers representing a path. Each number represents a
transition in each stage, and its minimum value is 0, whereas its
maximum value is the maximum number of the state space’s
possible outgoing transitions. For example, the path ’1 0 2 1’ in
Figure 1 shows a particle’s position. This position can be
encoded to the path “𝑟1𝑟0𝑟2𝑟1” that 𝑟𝑖 implies the applied rule.

Figure 1. A Solution Encoded by the Path <1,0,2,1>

B. Fitness Function

• Fitness is the degree that specifies how much a particle is
good to be the goal solution. In our approach, each particle
is a path with a specific length that starts from the initial state
and ends at another state belonging to the state space and our
goal is to find a state that is the same as defined reachability
property. One can guess that the more similar the last state
of the path to the reachability property the more likely the
path is to be a promising one. So, we use the similarity
between the path’s last state and the specified reachability
property for defining fitness function. In this paper, the
system is modeled by GTS and the associated states and
properties are represented by graphs using GROOVE
toolset. As mentioned earlier, a GTS is a triple (TG, HG, R)
where TG, HG, and R represent type graph, host graph, and
graph transformation rule set respectively. Also, R can be
specified by the triple (LHS, RHS, NAC) where LHS and
RHS are left and right-hand sides describing the pre and
post-conditions of the rules respectively. Also, NAC stands
for Negative Application Condition and specifies a
configuration which should not occur to apply the rule.

In GROOVE toolset, LHS, RHS, and NAC are represented
together as an individual graph using colors to recognize the
original LHS, RHS, and NAC graphs. If the blue dashed thin
edges and nodes are present in LHS, the rule could be

applied to the host graph, and they can be removed after
applying the rule. The bolded green solid edges and nodes
belong to RHS, which should be created after rule
application [36]. In this graph, NACs also displayed by red
bold dashed nodes and edges. To apply the rule, they should
not occur in the graph. Each node and edge in the graph can
have their labels that can be defined by a self-loop edge
named by the node’s label.

The two inputs of the fitness function are a particle and the
under-study reachability property. The fitness value can be
calculated as follows:

1. Finding the pairs of two nodes in which the first node
belongs to the given property graph (except NAC nodes) and
the second belongs to the last state of the path specified by
the particle so that they have the same labels.

2. Calculating the total number of pairs found in the first
step.

3. Calculating the total number of each NAC’s nodes and
edges for given properties occurring in the graph specifies
the path’s last state which is encoded using the given
particle.

4. The difference between the value calculated in step 2 and
the value achieved in step 3 is considered as the fitness value.

 The pseudo-code related to the fitness function can be seen
in Algorithm 2.

Algorithm 2. Fitness Function of PSO and FAPSO

1. Input & Output:

a. Input: h: a particle and

 p: a given reachability property to be

checked;

b. Output: the fitness value of h;

2. Initialization:

a. Initialize NodeList member Npi with node ith of

Gp;

 (i: 0 to Number of nodes Gp)

b. Initialize EdgeList member Epi with edge ith of Gp;

 (i: 0 to Number of edge Gp)

c. Initialize NodeList member Nhi with node ith of

Gh;

 (i: 0 to Number of nodes Gh)

d. Initialize EdgeList member Ehi with edge ith of Gh;

 (i: 0 to Number of edge Gh)

e. Initialize BooleanList member hVisitedij with false;

f. Initialize BooleanList member pVisitedij with false;

g. Initialize BooleanList member Visitedij with false;

 (For part e, f and g: i: 0 to Number of nodes Gh

and j: 0 to

 Number of nodes Gp)

3. for each Nhi

 for each Npj

 EdgeList ENP = all edges of Ep whose source

node is Npj;

 EdgeList ENH = all edges of Eh whose source node is

Nhi;

 E-Countij = The number of pairs (p,h) which (p)

is from

 ENP and (h) is from ENH as p’s label is equal to

h’s label;

 PE-Countij = size of ENP;

 DE-Countij = E-Countij – PE-Countij;

 end for

 end for

4. EQ-Count = 0;

 while all Visitedij is not true do

 Find the smallest DE-Countij that Visitedij = false;

 Visitedij = true;

 if !pVisitedij && !hVisitedij then

 EQ-Count += E-Countij;

 pVisitedij = true;

 hVisitedij = true;

 end if

 end while

5. Find all NACs of Gp and store in ArrayList of

NACs allNAC

 NEQ-Count = 0;

 for each NACi in allNAC do

 NEQ-Count += The number of nodes and edges

of NACi

 occurring in Gh;

 end for

• return EQ-Count – NEQ-Count;

C. PSO-based Approach

The first proposed approach applies the PSO algorithm to search
the state space to find the path starting from an initial state and
ending at the state satisfying the given reachability property. As
already mentioned in this algorithm each particle is encoded into
a path of transitions. The algorithm starts with an initial random
population of particles. Then, the fitness value of each particle
is calculated, 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡 are updated based on the fitness
values of the particles. Next, the termination condition is
checked. If updated 𝑔𝑏𝑒𝑠𝑡 is a perfect solution or current
iteration number of the algorithm is not less than the predefined
maximum number of generations, the algorithm will be finished
otherwise Equations 1 and 2 will update each particle’s velocity
and position respectively. The algorithm will run with the phase
of calculating fitness until one of the termination conditions is
met.

D. FAPSO-based Approach

Another approach proposed in this paper applies the Fuzzy
Adaptive PSO algorithm called FAPSO to verify the GTS-based
defined systems’ reachability property. In traditional PSO,
parameters C1 and C2 are two constant values which cannot be
varied through all generations. It should be noted that better
results can be obtained through dynamic changes in C1 and C2
during algorithm execution. In FAPSO, fuzzy inference systems
can be used to adjust C1 and C2 in each generation. As a PSO
algorithm, the proposed FAPSO starts with an initial population
of particles produced randomly. Next, each particle’s fitness
value is obtained and 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡 are updated based on the
fitness values of particles. If the termination condition is not met,
two input parameters of the fuzzy system called Diversity and
Iteration will be calculated. The diversity measure can be
defined as the dispersion degree of particles, i.e. the more the
particles are separated the higher the diversity. According to Eq.
(3), the diversity measure can be the average Euclidean distance
between each particle and the best one in the related generation
[37].

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑆(𝑡)) =
1

𝑛𝑠

∑ √∑ (𝑥𝑖𝑗(𝑡) − �̅�𝑗(𝑡))2𝑛𝑥

𝑗=1
𝑛𝑠
𝑖=1 (3)

The fuzzy system’s second input is a percentage of iterations
calculated by Eq. (4). At the start of the algorithm, Iteration is
“Low” and gets higher while the number of algorithm iterations
is getting close to the maximum iteration number [37].

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (4)

The two above-mentioned measures are used as the inputs of
the fuzzy system adjusting C1 and C2. Of course, C1 and C2 will
be the outputs of this fuzzy system. It is worth noting that the
fuzzy system’s inputs lie in the range of [0, 1]. The Iteration
variable can be defined in the acceptable range of values, but it
is necessary to perform normalization on the Diversity to
convert it into a value between 0 and 1. The normalization
performed on Diversity is shown in Eq. (5) and (6). Eq. (5)
indicates that when the maximum and minimum Euclidean
distances are equal, normalized Diversity is 0 because particles’
positions have not changed. If the maximum and minimum
Euclidean distances are different, normalized Diversity can be
calculated by Eq. (6) [37].

Normal Diversity = {
 0 𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝑁𝑜𝑟𝑚 𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ≠ 𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

 (5)

𝑁𝑜𝑟𝑚 =
𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦−𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦− 𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
 (6)

 In this approach, a Mamdani’s fuzzy system inference
method with two input variables of Iteration and Diversity and
two output variables of C1 and C2 is proposed. Figure 2 presents
the proposed fuzzy system.

Figure 2. The Fuzzy System of the Proposed Approach

For each input of the fuzzy system, Three triangular
membership functions are designed [37]. Figures 3 and 4
represent the membership functions employed for the input
variables of Iteration and Diversity respectively.

According to the fact that it is recommended to select C1 and
C2 from the range of [0.5 2.5] [38], the output variables should
be adjusted in this range. As seen in Figures 5 and 6, the output
variables of C1 and C2 are granulated in five triangular
membership functions. Tables 1 and 2 show the fuzzy system’s
rule sets. It should be noted that considering the following two
points is necessary to define the fuzzy system’s rules.

Figure 3. Input 1: Iteration

Figure 4. Input 2: Diversity

Figure 5. Output 1: C1

Figure 6. Output 2: C2

The first point is that the exploration process must be done
in the early iterations of the PSO algorithm to exploit desired
solutions eventually. The second one is that exploration must be
done in low diversities whereas the exploitation must be done in
high diversities i.e. when particles are far apart [37, 43].

TABLE I RULE SET OF FUZZY SYSTEM TO CALCULATE C1

Iteation

Low Medium High

Diversity

Low High
Medium

 High
Medium

Medium
Medium

High
Medium

Medium

Low

High
Medium

High

Medium

Low
Low

1 https://sourceforge.net/projects/groove-and-ga-boa-reachability/files/

TABLE II. RULE SET OF FUZZY SYSTEM TO CALCULATE C2

Iteration

Low Medium High

Diversity Low Low Medium

Low

High

Medium Medium Medium Medium

High

When the fuzzy system’s input variables namely, Diversity
and Iteration are calculated via Eq. 3 and Eq. 4, in the
fuzzification phase, the percentage of their membership can be
obtained using the membership functions shown in Figures 5
and 6. Each membership function has three categories of high,
medium, and low. In the next step, the rules defined by the
inference system which is shown in Tables 1 and 2 are applied
to calculate C1 and C2. The variables acquired from the inference
system are the percentage of the membership of C1 and C2 to
five categories high, medium-high, medium, medium-low, and
low. The used defuzzification method is the centroid method
that calculating the ultimate values of C1 and C2 through output
membership functions presented in Figures 7 and 8 respectively.
As seen in Figure 7, the proposed approach attempts to
dynamically adjust the PSO algorithm’s parameters in each
iteration by taking advantage of a fuzzy system.

Figure 7. The main idea of the approach

When C1 and C2 values are achieved form fuzzy system,
the PSO algorithm will update each particle’s velocity and by
equations 1 and 2. Then, the phase of fitness calculation will be
performed until one of the termination conditions is met.

IV. EXPERIMENTAL RESULTS

We implemented our approaches in GROOVE toolset using
Java programming language to evaluate and compare their
performance. We manipulate some existing classes of the
GROOVE and create some new classes to better implement our
approaches. For evaluation purposes, the dining philosophers
[39], shopping [41], Pac-Man [40], process life cycle, N-Queen,
and 8-puzzle [42] models were considered. These models can be
downloaded through the web1. The initial parameters used in
PSO are listed in Table 3. The value of W and Iteration used in
the FAPSO algorithm is the same as the PSO method. A PC with
an Intel CORE i5 processor and 3 GB of memory was employed
for our experiments. it should be noted that the values of
parameters like depth limit and population size is defined based
on the problems and their model size so that the lager the size of

the model, the more expanded the state space and the harder the
goal state finding; so, the higher the depth limit and population
size should be defined.

TABLE III. INITIAL PARAMETERS OF THE PSO-BASED
APPROACH

Iteration 100

C1 2

C2 2

W 0.8

It is worth noting that it is necessary to change the GA
proposed in [2] and the PSO-GSA approach in [26] for
comparing the proposed methods’ efficiencies. These two
approaches were proposed to decline the safety property of the
systems specified through GTS by detecting a deadlock state.
We just replace their fitness function with the one presented in
4.2 to use them to verify the reachability properties.

Experimental results obtained from an average of 20
independent runs and were presented in two tables for each case
study. Average running times were reported in the first table and
the detailed results were presented in the second one.

A. Dinning philosopher’s problem

This problem was first introduced by E.W. Dijkstra. In this
problem, several philosophers are sitting around a table. There
is a fork between each pair of adjacent philosophers. After
thinking, philosophers get hungry. Each philosopher picks up
the left and right forks to use them for eating. A hungry
philosopher should have both the left and right forks to start
eating. after eating, the philosopher puts the left and the right
forks on the table and thinks again. This process continues until
the deadlock situation happens when all philosophers are
waiting for their right fork as they have picked up their left forks
[39]. This state is the reachability property checked in different
kinds of this problem. The results obtained by performing the
proposed approaches for verifying this problem’s reachability
property can be found in Table 4.

B. Pac-Man game problem

In the Pac-Man game, three types of objects are defined:

Pac-Man, marbles, and ghosts [40]. According to the rules of

the game, the Pac-Man and the Ghost can move to an adjoining

box in each stage.

TABLE IV. THE COMPARISON OF RUNNING TIMES OF ALL

APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE

DINING PHILOSOPHERS’ PROBLEM

Number of
philosophers

Depth
Limit

Population FAPSO
(sec)

GA
(sec)

PSO
(sec)

PSO-
GSA

(sec)

10 50 15 2.81 6.27 8.12 7.06

20 100 20 29.2 22 85 68

25 150 40 38.52 41 112 90

30 200 60 49.86 91 137 109

If Pac-Man moves to a new box and there is a marble

in, he can eat that marble. However, if the ghost moves to an

adjoining box when Pac-Man is in the box, the ghost kills Pac-

Man. The game ends when all marbles are eaten or Pac-Man is

killed by a ghost. In this problem, the following reachability

property should be checked: Pac-Man is the winner and eats

all apples.

The results obtained by different approaches for the Pac-

Man game problem can be found in Table 5.

TABLE V. THE COMPARISON OF RUNNING TIMES OF ALL

APPROACHES TO VERIFY THE REACHABILITY PROPERTY

IN THE PAC-MAN PROBLEM

Dimension

of

Pac-man

Game

Depth

Limit

Population

FAPSO

(sec)

GA

(sec)

PSO

(sec)

PSO-

GSA

(sec)

4×4 100 40 4.13 4.88 15.07 12.49

4×5 100 60 7.96 11.15 36.79 27.31

5×6 100 80 17.59 72.03 59.1 60.26

The results related to this problem demonstrate that the

FAPSO approach takes a shorter time to find the given

reachability property and decreases the number of explored

states significantly.

C. Process Life Cycle problem

Process Life Cycle describes the stages related to the life
cycle of a process traversing in an OS. This cycle starts with
creating a new process. Then, it is loaded into the memory
providing that enough free memory is available. Afterward, it
waits for I/O devices or CPU. After the complete execution of
the process, all allocated resources are released and the process
stops. The reachability property that should be checked in the
models of this problem is: All existing processes have been
completed. The results obtained by different approaches for the
Process life cycle problem can be seen in Table 6. As seen in
this table, FAPSO Approach, unlike other proposed Approaches
can find the given reachability property even with increased
dimensions of this problem.

TABLE VI. THE COMPARISON OF RUNNING TIMES OF ALL

APPROACHES TO VERIFY THE REACHABILITY PROPERTY

IN THE PROCESS LIFE CYCLE PROBLEM

Process
Life Cycle

Depth
Limit

Population
FAPSO
(sec)

GA
(sec)

PSO
(sec)

PSO-
GSA
(sec)

20:
process

8:
memory

180 20 7.08 6.58 37.09 17.66

30:
process

8:
memory

280 40 7.28 8.16 37.61 16.92

40:
process

8:memory

350 60 19.52 125.4 80.28 54.13

50:
process

8:
memory

450 80 40.95 Out of Memory

D. Shopping problem

This problem is related to the purchase process of the
customers in a store originally presented in [41]. The
reachability property considered here is: all customers have
successfully finished their shopping. Tables 7 represents the
results obtained by different approaches for the Shopping
problem.

TABLE VII. THE COMPARISON OF RUNNING TIMES OF ALL
APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE

SHOPPING PROBLEM

Shopping Depth
Limit

Population FAPSO

(sec)

GA

(sec)

PSO

(sec)

PSO-
GSA

(sec)

Shop-10-
cus30-
good

160 20 2.45 2.01 3.89 4.14

Shop-15-
cus30-
good

170 30 10.53 32.74 34.5 27.62

Shop-20-
cus30-
good

180 40 33.58 Out of Memory

E. N-Queen Problem

An N×N chessboard and N queens are the elements of this
problem. These queens should be placed on the chessboard so
that no queen can guard another one. In the chess game, each
queen can move horizontally, vertically, or diagonally as far as
she wants, and two queens can guard each other as long as their
rows, columns, or diameters are the same. In this regard, the
acceptable arrangement is the situation that the columns, rows,

and diameters of all queens are different. The reachability
property considered in the different models of this problem is:
All queens have been placed in the locations where none of them
can guard others. Table 8 represents the results obtained by
different approaches for the N-queen problem.

TABLE 8. THE COMPARISON OF RUNNING TIMES OF ALL
APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE

N-QUEEN PROBLEM

 N-Queen
Dimension

Depth
Limit

Population
FAPSO
(sec)

GA
(sec)

PSO
(sec)

PSO-
GSA
(sec)

 8 × 8
100

20 3.0 7 1.45 6.83 2.17

 16 × 16
120

 30 24.17 Out of Memory

F. 8-Puzzel Problem

In this problem, there is a nine-box board where eight boxes

are filled by numbered tiles (from 1 to 8) and one is empty [42].

A tile can move to the empty box when it is adjoining to the

empty cell. I this game, one should begin with an arbitrary

configuration of tiles and try to arrange the numbers in

ascending order.

Table 9 shows the results obtained by different approaches

for this problem.

TABLE IX. THE COMPARISON OF RUNNING TIMES OF ALL

APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE

8-PUZZEL PROBLEM

Initial

arrangement

Depth

Limit

Population FAPSO

(sec)

GA

(sec)

PSO

(sec)

PSO-

GSA

(sec)

100 40 2.77 1.79 11.37 12.45

100 50 6.57 5.91 47.13 61.9

100 60 34.93 26.3 126.03 276.35

100 70 102.5 116.51 209.23 380.52

V. DISCUSSION

The proposed approaches’ advantages and limitations are
described as follows.

As explained in the literature, the previous approaches
proposed detects a deadlock state for declining safety property
of the GTS-specified systems. We applied the FAPSO approach
for declining Safety property by verifying the right reachability
property in dining philosopher’s, process life cycle, and 8-
puzzle problems and comparing the results with Evolutionary
approaches proposed to refute safety properties through
deadlock detection. Table 10 presents the comparison results.

TABLE X. COMPARING THE PERFORMANCE OF FAPSO APPROACH

TO REFUTE SAFETY BY REACHABILITY PROPERTY WITH
PROPOSED APPROACHES TO SAFETY REFUTATION BY

DETECTING A DEADLOCK STATE

A
p

p
r
o
a
c
h

p
r
o
b

le
m

D
e
p

th
 lim

it

P
o
p

u
la

tio
n

F
A

P
S

O

n
B

O
A

G
A

P
S

O

P
S

O
-G

S
A

B
A

P
S

O

B
F

A

B
S

10 dining

philosopher

s

25 15
4.4

1

0.7

1 ±

0.1

5

10.

12

13.

45

38.

92

8.3

4

0.9

4

3.8

5

20 dining

philosopher

s

10

0
20

29.

2

1.0

4 ±

0.1

5

23 158 170
64.

6
1.9

4.1

2

process life

cycle

(40-process-

8-memory)

35

0
60

19.

52

1.4

4 ±

0.8

No

t

fou

nd

Not

fou

nd

939

.45

85

4

No

t

fou

nd

No

t

fou

nd

process life

cycle

50:process8

:memory

45

0
80

40.

95

1.8

1 ±

0.3

9

No

t

fou

nd

Not

fou

nd

Not

fou

nd

No

t

fou

nd

No

t

fou

nd

No

t

fou

nd

8-puzzel

(Second

Arrangemen

t)

10

0
50

6.5

7

1.1

5 ±

0.3

3

35.

81

94.

72

16.

7

45.

53

0.1

6

1.3

3

8-puzzel

(Third

Arrangemen

t)

10

0
60

34.

93

No

t

fou

nd

16

5

165

.51

147

.7

70.

93
3.5

2.3

3

Another important advantage of the FAPSO approach is its
accuracy. In fact, the higher the number of successful runs, the
higher the accuracy. The proposed approaches’ accuracy in
terms of the reachability verification of the given properties in
all mentioned problems has been compared through the chart in
Figure. 8.

Figure 8. Comparing the accuracy of the proposed approaches

As the previously presented results indicate, the execution
speed of these approaches, especially the FAPSO, is more than
that of others.

Additionally, the proposed approaches generate shorter
counterexamples/witnesses in comparison with other
approaches. The chart in Fig. 9 compares the length of the
witnesses created by different approaches to verify reachability
in the dining philosopher’s problem—in the case of 10
philosophers.

Figure 9. Comparing the length of counterexample/witness
of the proposed approaches to reachability verification in the

dining philosophers’ problem with 10 philosophers

It should be noted that generating the shorter
counterexamples/witnesses is very important in the process of
model checking. So, the generated counterexamples/witnesses’
length in the proposed approaches were controlled using the
depth limit parameter.

The proposed approaches, especially the FAPSO,
outperform other approaches in terms of the number of explored

states. The number of states explored by different approaches to
verify the reachability property considered for the dining
philosopher’s problem—in the case of 10 philosophers—can be
compared through the chart in Figure 10.

Figure 10. Comparing the number of explored states of the
proposed approaches to reachability verification in the dining

philosophers’ problem with 10 philosophers

There are some limitations to employ the PSO-based
Approach proposed in this paper. One of the essential limitations
is to choose the best value for C1 and C2. To deal with this
limitation, we proposed the FAPSO approach taking advantage
of a fuzzy system to calculate C1 and C2 effectively. However,
the FAPSO approach also has some limitations. The time spent
to evaluate the population and calculate the inputs of the fuzzy
system increases in the large complex systems having numerous
transformation rules.

VI. CONCLUSIONS

This paper presents two practical approaches in order to
verify a reachability property aiming to find a configuration that
its occurrence refutes the safety property. The primary purpose
of these approaches is to manage problem of the state space
explosion in model checking of complex software systems that
are specified GTS. In this solution, a PSO-based algorithm and
a Fuzzy Adaptive PSO-based algorithm are proposed to explore
the state space intelligently and find a target state in which the
reachability property is satisfied. These two algorithms are
implemented in the GROOVE toolset, and some parts of the
source code are modified by Java programming language. We
also implemented two other techniques based on GA and PSO-
GSA algorithms to evaluate the efficiency of our approaches.
The experimental results indicate the fact that the FAPSO
approach is generally faster and more accurate than GA, PSO,
PSO-GSA approaches, especially when the size of the problem
increases. Also, fewer numbers of explored states and shorter
lengths of counterexample/witness are other advantages of the
FAPSO solution in comparison with the PSO-based approach.

Further researches can be done by changing the fuzzy system
to improve the efficiency of the algorithm. Applying the

proposed fitness function to verify reachability in other
approaches proposed to detect deadlock can be considered as
future works.

TABLE XI. GLOSSARY OF ACRONYMS

Genetic algorithm GA

Particle swarm
optimization

PSO

Graph ttransformation
system

GTS

Gravitational search
algorithm

GSA

Design space exploration DSE

Operating System OS

Ant Colony Optimization ACO

Fuzzy inference system FIS

REFERENCES

[1] J. Denil, M. Jukss, C. Verbrugge, and H. Vangheluwe, “Search-Based

Model Optimization Using Model Transformations,” in System Analysis
and Modeling: Models and Reusability, Springer International
Publishing, pp. 80–95, 2014.

[2] R. Yousefian, V. Rafe, and M. Rahmani, “A heuristic solution for model
checking graph transformation systems,” Applied Soft Computing, vol.
24, pp. 169–180, Nov. 2014.

[3] L. Baresi and R. Heckel, Tutorial introduction to graph transformation: A
software engineering perspective, In Graph Transformation (ICGT),
2002.

[4] A.L. Lafuente, Symmetry reduction and heuristic search for error
detection in model checking, In Workshop on Model Checking and
Artificial Intelligence, 2003.

[5] E.M. Clarke, K.L. McMillan, S.V.A. Campos and V.I. Hartonas-
Garmhausen, Symbolic model checking, In Computer Aided Verification
1102 , pp. 419-422, 1996.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang,
Symbolic model checking: 1020 states and beyond. Information and
Computation 98(2), pp. 142-170, 1992

[7] S. Edelkamp, S. Leue and A.L. Lafuente, Directed explicit-state model
checking in the validation of communication protocols, International
Journal on Software Tools for Technology Transfer (STTT) 5, pp. 247–
267, 2004.

[8] D. Boˇsnaˇcki, S. Leue and A.L. Lafuente, Partial-order reduction for
general state exploring algorithms, International Journal on Software
Tools for Technology Transfer (STTT) 11 , pp. 39–51, 2009.

[9] E.A. Emerson and A.P. Sistla, Symmetry and model checking, formal
methods in system design 9 , pp. 105–131, 1996.

[10] E.M. Clarke, R. Enders, T. Filkorn and S. Jha, Exploiting symmetry in
temporal logic model checking, Formal Methods in System Design 9 , pp.
77–104, 1996.

[11] V. Gyuris and A.P. Sistla, On-the-fly model checking under fairness that
exploits symmetry, Formal Methods in System Design 15 , pp. 217–238,
1999.

[12] V. Rafe, Scenario-driven analysis of systems specified through graph
transformations, Visual Languages and Computing 24(2), pp. 136–145,
2013.

[13] F.J. Lin, P.M. Chu and M.T. Liu, Protocol verification using reachability
analysis: the state space explosion problem and relief strategies, In ACM
Workshop on Frontiers in Computer Communications Technology,
ACM New York, pp. 126–135, 1987.

[14] C.H. Yang and D.L. Dill, Validation with guided search of the state space,
In DAC’98 Proceedings of the 35th Annual Design Automation
Conference. ACM New York, pp. 599-604, 1998.

[15] S. Edelkamp and F. Reffel, OBDDs in Heuristic Search, In Lecture Notes
in Computer Science. Springer-Verlag, pp. 81–92, 1998.

[16] G. Friedman, A. Hartman, K. Nagin and T. Shiran, Projected state
machine coverage for software testing, In ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM New York, pp.
134–143, 2002.

[17] V. Rafe, A.T. Rahmani, L. Baresi and P. Spoletini, Towards automated
verification of layered graph transformation specifications. IET Software
3 , pp. 276–291, 2009.

[18] G. Francesca, A. Santone, G. Vaglini, M.L. Villani, Ant Colony
Optimization for Deadlock Detection in Concurrent Systems, In 35th
IEEE Annual Computer Software and Applications Conference, Munich,
Germany, pp. 108-117, 2011.

[19] E. Alba and F. Chicano, Ant Colony Optimization in Model Checking, In
11th international conference on Computer Aided Systems Theory, Gran
Canaria, España, pp. 523-530, 2007.

[20] L.M. Duarte, L. Foss, R. Wagner and T. Heimfarth, Model Checking the
Ant Colony Optimisation, In Distributed, Parallel and Biologically
Inspired Systems, IFIP Advances in Information and Communication
Technology, Springer, pp. 221-232, 2010.

[21] E. Alba and J.M. Troya, Genetic Algorithms for Protocol Validation, In
International Conference on Parallel Problem Solving from Nature PPSN
IV, Springer, Berlin, Heidelberg, pp. 869-879, 1996.

[22] A. Vardhan, Learning to Verify Systems, University of Illinois at Urbana-
Champaign, 2006.

[23] G. Francesca, A. Santone, G. Vaglini and M.L. Villani, Ant Colony
Optimization for Deadlock Detection in Concurrent Systems, In 35th
Annual Computer Software and Applications Conference, IEEE, Munich,
Germany, pp. 108-117, 2001.

[24] E. Alba and F. Chicano, Finding safety errors with ACO, In 9th annual
conference on Genetic and evolutionary computation, pp. 1066-1073,
2007.

[25] E. Alba and F. Chicano, Searching for Liveness Property Violations in
Concurrent Systems with ACO, In 10th Annual Conference on Genetic
and Evolutionary Computation. ACM, Atlanta, Georgia, USA, 2008.

[26] M. Moradi, V. Rafe, R. Yousefian and A. Nikanjam, A Meta-Heuristic
Solution for Automated Refutation of Complex Software Systems
Specified through Graph Transformations. Applied Soft Computing 33,
pp. 136-149, 2015.

[27] R. Yousefian, S. Aboutorabi and V. Rafe, A greedy algorithm versus
metaheuristic solutions to deadlock detection in Graph Transformation
Systems, Journal of Intelligent & Fuzzy Systems 31(1), pp. 137–149,
2016.

[28] E. Pira, V. Rafe and A. Nikanjam, EMCDM: Efficient Model Checking
by Data Mining for Verification of Complex Software Systems Specified

through Architectural Styles, Applied Soft Computing 44 , pp. 1185-
1201, 2016.

[29] E. Pira, V. Rafe and A. Nikanjam, Deadlock detection in complex
software systems specified through graph transformation using Bayesian
optimization algorithm, Journal of Systems and Software 131, pp. 181-
200, 2017.

[30] H. Abdeen, D. Varró, H. Sahraoui, A.S. Nagy, Á. Hegedüs and Á
Horváth, Multi-Objective Optimization in Rule-Based Design Space
Exploration, In 29th ACM/IEEE international conference on Automated
software engineering. Vasteras, Sweden, pp. 289-300, 2014.

[31] M. Fleck, J. Troya, and M. Wimmer, Search-based model
transformations, Journal of Software: Evolution and Process 28(12), pp.
1081-1117, 2016.

[32] A. Rensink, Á. Schmidt and D. Varró, Model Checking Graph
Transformations: A Comparison of Two Approaches, In International
Conference on Graph Transformation. Springer, Berlin, Heidelberg, pp.
226-241, 2004.

[33] R. Heckel, Graph Transformation in a Nutshell, Electronic Notes in
Theoretical Computer Science (ENTCS) 148(1), pp. 187-198, 2006.

[34] L. Baresi and R. Heckel, Tutorial introduction to graph transformation: A
software engineering perspective, In The First International Conference
on Graph Transformation (ICGT), Springer, pp. 402-429, 2002.

[35] J. Kennedy, Particle Swarm Optimization. Encyclopedia of Machine
Learning. Springer, pp. 760-766, 2010.

[36] H. Kastenberg and A. Rensink, Model Checking Dynamic States in
GROOVE, In International SPIN Workshop on Model Checking of
Software. Springer, Berlin, Heidelberg, pp. 299-305, 2006.

[37] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez,
Optimal design of fuzzy classification systems using PSO with dynamic
parameter adaptation through fuzzy logic, Expert Systems with
Applications 40(8), pp. 3196-3206, 2013.

[38] F. Olivas and O. Castillo, Particle Swarm Optimization with Dynamic
Parameter Adaptation Using Fuzzy Logic for Benchmark Mathematical
Functions, In Recent Advances on Hybrid Intelligent Systems. Springer,
Berlin, Heidelberg, pp. 247-258, 2013.

[39] A. Schmidt, Model Checking of Visual Modeling Languages, Master's
Thesis, Budapest University of Technology, Hungary, 2004.

[40] R. Heckel, Graph Transformation in a Nutshell, Electronic Notes in
Theoretical Computer Science (ENTCS) 148(1), pp. 187-198, 2006.

[41] J.H. Hausmann, Dynamic Meta Modeling: A Semantics Description,
Technique for Visual Modeling Techniques, Ph.D. Dissertation
University of Paderborn, Germany, 2005.

[42] J. Gaschnig, Performance measurement and analysis of certain search
algorithms, Carnegie Mellon University technical report, Pittsburgh, PA,
USA, 1979.

[43] Salimi et al. Fuzzy Genetic Algorithm Approach for Verification of
Reachability and Detection of Deadlock in Graph Transformation
Systems, CANDO Conference, Budapest , Hungary, 2020.

