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Abstract— Nowadays, model checking is applied as an accurate 

technique to verify software systems. The main problem of model 

checking techniques is the state space explosion. This problem 

occurs due to the exponential memory usage by the model checker. 

In this situation, using meta-heuristic and evolutionary algorithms 

to search for a state in which a property is satisfied/violated is a 

promising solution. Recently, different evolutionary algorithms 

like GA, PSO, etc. are applied to find deadlock state. Even though 

useful, most of them are concentrated on finding deadlock. This 

paper proposes a fuzzy algorithm in order to analyze reachability 

properties in systems specified through GTS with enormous state 

space. To do so, we first extend the existing PSO algorithm (for 

checking deadlocks) to analyze reachability properties. Then, to 

increase the accuracy, we employ a Fuzzy adaptive PSO algorithm 

to determine which state and path should be explored in each step 

to find the corresponding reachable state. These two approaches 

are implemented in an open-source toolset for designing and 

model checking GTS called GROOVE. Moreover, the 

experimental results indicate that the hybrid fuzzy approach 

improves speed and accuracy in comparison with other techniques 

based on meta-heuristic algorithms such as GA and the hybrid of 

PSO-GSA in analyzing reachability properties.  

Keywords— Fuzzy Adaptive Particle Swarm Optimization, 

Graph Transformation System, Model Checking, Reachability 

Property, State Space Explosion 

I. INTRODUCTION 

During recent decades, software systems play an essential 
role in developing software systems and security considerations. 
Software development techniques have evolved to make more 
complex software systems over the years. Model-Driven 
engineering takes models in order to describe complex systems 
at multiple levels of abstraction [1]. Modeling systems make it 
possible to use model checking as a formal analysis technique to 
verify software and detect system errors in the design phase that 
is easier and cheaper than after the implementation. It is vital to 
use a modeling language to model systems and verifying them 

by model checking. GTS is a visual graph-based formal 
language that is used to model software systems with dynamic 
structures [2]. GTS uses graphs to describe and model the 
structure of complex systems [3]. For large systems, GTS tends 
to be huge, so the state space explosion is the main drawback of 
model checking [4]. Some classic methods such as symbolic 
verification [5, 6], partial order reduction [7, 8], symmetry 
model checking methods [4, 9-11], scenario-driven model 
checking [12], and several heuristic approaches including depth-
first search [13], best-first search [13, 14], a version of the A* 
algorithm [15], Coverage First Search [16] and an A* search 
algorithm to check liveness property in the explicit-state model 
checking [7] is proposed to resolve the state space explosion 
problem. However, the use of exhaustive search in the state 
space also causes a lack of memory and low speed for classical 
and heuristic methods. In recent years, several methods based on 
meta-heuristic and evolutionary algorithms have been proposed 
in this context concerning their efficiency, comparing classical 
and heuristic approaches. These approaches search a subset of 
the state space of systems instead of all state space to achieve 
the specified properties, so they are more practical to resolve the 
state space explosion problem. In this context, some meta-
heuristic approaches have been proposed to find deadlocks in 
the systems and refute the security property, such as frameworks 
based on reinforcement learning [17] and ant colony algorithm 
[18-20]. A new approach has been proposed using the genetic 
algorithm for verifying the correctness of communication 
protocols in [21]. This genetic validation has been tested on a 
hand-made protocol and on the Transmission Control Protocol. 
In [22] two different learning algorithms have been proposed to 
verify safety, reachability and liveness properties of systems 
whose state space is expressible by regular expressions. In the 
other paper, an ACO-based approach is presented to prevent the 
state explosion problem for finding deadlocks in complex 
networks described by using Calculus of Communicating 
Systems [23]. Two other papers [24, 25] proposed using a type 



of ACO model to refute safety and liveness properties in 
concurrent systems. This Approach applies the GA algorithm on 
several random paths with a specific length starting from the 
initial state as the initial population and finds the first path, 
which leads to a deadlock state. In order to evaluate the 
efficiency of this solution, it is implemented in GROOVE 
toolset. Another proposed approach for this problem uses the 
PSO algorithm to detect deadlocks in graph transformation 
systems [26]. The authors have also suggested a hybrid 
algorithm based on PSO and GSA to avoid the local optima 
problem. Another solution using a simple greedy algorithm 
called BFA is also proposed in this paper in which a state with 
the least outgoing transitions must be selected in each 
exploration step. These two approaches are implemented in the 
GROOVE. In [28], an efficient approach is proposed using data 
mining techniques called EMCDM to check the model of 
complex software systems that are designed according to an 
architectural style and modeled by GTS formally. The EMCDM 
approach is applied to verify the reachability property to refute 
the safety property. In other research [29], a BOA-based 
approach is proposed to detect deadlocks in systems specified 
through graph transformations. The results of this algorithm 
indicate more improvement in terms of speed and accuracy. One 
of the properties which can be verified in model checking 
process is reachability property. It can also be used instead of 
refuting a similar safety property. For checking reachability 
property, a specified goal state must be generated by graph 
transformation rules from an initial configuration of the system; 
however, there is no meta-heuristic approach working on 
reachability check. This aspect of the model checking is very 
similar to rule-based DSE frameworks [30, 31]. 

In this paper, two meta-heuristic solutions based on PSO 
approach are used to verify the reachability property in the 
systems specified through GTS. Despite the high speed of 
convergence of the PSO algorithm, estimating the appropriate 
value for C1 and C2 is a critical challenge. As well a Fuzzy 
Adaptive Particle Swarm Optimization Algorithm is proposed, 
which uses Fuzzy systems to estimate the best values of C1 and 
C2 in each particle swarm optimization Iteration. These 
proposed approaches for checking the reachability property can 
also be used as a search-based model transformation approach 
to search and produce a set of target models from a given initial 
model. 

This paper is organized as follows: We present our proposed 
approaches based on PSO and Fuzzy PSO algorithms in Section 
2. Section 3 briefly describes the necessary background, such as 
model checking, GTS formalism, PSO algorithm, and Fuzzy 
inference systems. Section 4 includes obtained the experimental 
results based on several well-known case studies. Moreover, a 
discussion on the observations is presented. The superiority of 
the proposed approaches have been discussed in section 5. 
Finally, Section 6 concludes the paper and highlights the future 
works. 

II. BACKGROUND  

A. Model Checking 

As a completely automatic technique, model checking 
attempts to verify the correctness properties of different systems. 
This technique determines if a typical correctness property suits 

a given system by exploring the possible transitions in different 
states. Some of the properties which can be verified in the model 
checking process are safety, reachability, liveness, and fairness. 
A safety property defines that “no undesired situation should 
occur” or a “desired event” must always happen in a system. 
This property is satisfied when all finite and infinite paths in the 
model satisfy it. Finding a finite path into a goal state violating 
the safety property can decline the property.  In the case of the 
reachability property, the model checks whether there will be a 
particular configuration in the system or not. Finding a finite 
path into the goal state satisfying the property leads to detecting 
the state that leads to verifying the reachability property. The 
two above-mentioned properties are dual; in fact, verifying the 
reachability property as the negation of a safety property can be 
a counterexample violating the safety property [32]. 

B. Graph Transformation System 

Using model checking to verify a system requires that the 
system is described by a formal language. To model systems 
with dynamic structures, graph transformation can be used as a 
graph-based visual formal language [33]. The formal, accurate 
mathematical basis of the graph transformation system is one of 
its basic features [34]. An attributed GTS is a triple: AGT = (TG, 
HG, R) in which the type graph, host graph, and ruleset are 
shown by TG, HG, and R, respectively. The system’s overview 
and Meta-model can be determined by TG. The initial 
configuration of a system can be determined by HG, as an 
instance of TG. A system’s different configurations can be 
created by applying transformation rules on a host graph. A 
triple like (LHS, RHS, NAC) can define the graph 
transformation rule set R on a TG. The left and right-hand sides 
are represented by LHS and RHS, determining the rule’s pre-
conditions and post-conditions, respectively. NAC (harmful 
application condition) is a particular configuration that is used 
to verify that there is not any subgraph in the rule. 

C. Particle Swarm Optimization Algorithm 

PSO algorithm, as one of the most widely used optimization 
algorithms to solve multi-dimensional problems. At first, this 
algorithm randomly creates an initial population of candidate 
solutions as particles. The position of the i^th the particle can be 
described by the vector xi. Next step, in each iteration, the 
algorithm calculates each particle’s fitness. Fitness is the degree 
of the optimality of a particle to be a desirable solution. Until a 
termination criterion occurs, g_best and p_best are updated for 
all particles as the “personal best” and “global best” particles, 
respectively. The velocity and the position of particles are 
updated, as shown by Eq. (1) and Eq. (2): 

𝑣𝑖(𝑡 + 1)  =  𝑊 ∗ 𝑣𝑖(𝑡)  +  𝐶1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 −  𝑥𝑖(𝑡)) ∗
𝑅1 +  𝐶2 ∗ (𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑖(𝑡)) ∗ 𝑅2 (1) 

𝑥𝑖(𝑡 + 1)  =  𝑥𝑖(𝑡)  +  𝑣𝑖(𝑡 + 1) (1) 

C1 and C2 represent “cognitive coefficient” and “social 
coefficient,” specifying the weight of the personal experience 
and collective experience effect on particle behavior, 
respectively. These two coefficients are real-valued and usually 

in the range of 0 ≤ C1 + C2 ≤ 4. The momentum weight 

represented by W determines to what extent a particle’ s 

velocity in the current step influences its velocity in the 
subsequent step. Also, R1 and  R2 are two random factors 
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containing two diagonal matrices of random real numbers lying 
the range of (0,1)[35]. The iterative process of calculating 
finesse and updating g_best, p_best, position and velocity for all 
particles continues until a termination condition is realized. 

The pseudo-code related to the algorithm can be seen in 
Algorithm 1. 

Algorithm 1. Pseudo code of the PSO algorithm 

1. Initialization 

a. Initialize the particle’s position xi(t)   (t=0 , 

i:1…N) 

b. Initialize the particle’s best position to its initial 

position        

pi(t) = xi(t)   (t=0 , i:1…N) 

c. Calculate the fitness of each particle f(xi(t))    

(t=0 , i:1…N) 

d. if  f(xi(0)) ≤ f(xj(0)) (for each i:1…N, i≠j)  then 

          initialize the global best as gbest = xj(t)   (j:1…N) 

2. while a stopping criterion is not met,  

repeat the following steps: 

a. Update the velocity vi for each particle: 

vi(t+1) = W*vi(t) + C1(pbesti - xi(t))R1 + C2(gbest - xi(t))R2 

b. Update the position  xi for each particle: 

xi(t+1) = xi(t) + vi(t+1) 

c. Evaluate the fitness f(xi(t+1)) for each particle 

d. if   f(xi(t+1))≥ f(pbesti)  then    

             Update personal best:  pbesti = xi(t+1) 

e. if   f(xi(t+1))≥ f(gbest)  then    

             Update personal best:  gbest = xi(t+1) 

At the end of iterative process the best solution is 

represented by gbest. 

 

D. Fuzzy inference system 

A fuzzy system consisted of three main parts namely, the 
fuzzification, FIS, and defuzzification.  

• In the fuzzification process, the linguistic variables (of 
inputs and outputs) are defined. 

• The FIS defines the rules describing how the system 
works and map inputs into outputs.  

• In the defuzzification process, outputs are computed. 

To design a fuzzy model, the following should be defined: 
the input and output variables, the fuzzy membership functions, 
the fuzzy rules, and the parameters used in equations (2) and (3). 

III. THE PROPOSED APPROACHES 

Here, two PSO and fuzzy Adaptive PSO-based approaches 
are proposed to manage the state space explosion in the systems 
defined formally by GTS to verify reachability property. 
Although meta-heuristic algorithms such as PSO are widely 
employed to deal with optimization problems, we use these 
algorithms to search the reachability property in a potentially 
huge state space which may even be infinite. 

A. Particle Encoding 

A reachability property p can be verified by finding a state 
where p occurs through exploring the system’s reachable state 
space. The output in our proposed algorithms is the path that 
starts from an initial state and ends at the state holding the 
reachability property. As mentioned, particles are candidate 
solutions, and their positions can be specified by a sequence of 
the numbers representing a path. Each number represents a 
transition in each stage, and its minimum value is 0, whereas its 
maximum value is the maximum number of the state space’s 
possible outgoing transitions. For example, the path ’1 0 2 1’ in 
Figure 1 shows a particle’s position. This position can be 
encoded to the path “𝑟1𝑟0𝑟2𝑟1” that 𝑟𝑖 implies the applied rule. 

 

Figure 1. A Solution Encoded by the Path <1,0,2,1> 

B. Fitness Function 

• Fitness is the degree that specifies how much a particle is 
good to be the goal solution. In our approach, each particle 
is a path with a specific length that starts from the initial state 
and ends at another state belonging to the state space and our 
goal is to find a state that is the same as defined reachability 
property. One can guess that the more similar the last state 
of the path to the reachability property the more likely the 
path is to be a promising one. So, we use the similarity 
between the path’s last state and the specified reachability 
property for defining fitness function. In this paper, the 
system is modeled by GTS and the associated states and 
properties are represented by graphs using GROOVE 
toolset. As mentioned earlier, a GTS is a triple (TG, HG, R) 
where TG, HG, and R represent type graph, host graph, and 
graph transformation rule set  respectively. Also, R can be 
specified by the triple (LHS, RHS, NAC) where LHS and 
RHS are left and right-hand sides describing the pre and 
post-conditions of the rules respectively. Also, NAC stands 
for Negative Application Condition and specifies a 
configuration which should not occur to apply the rule.  

In GROOVE toolset, LHS, RHS, and NAC are represented 
together as an individual graph using colors to recognize the 
original LHS, RHS, and NAC graphs. If the blue dashed thin 
edges and nodes are present in LHS, the rule could be 



applied to the host graph, and they can be removed after 
applying the rule. The bolded green solid edges and nodes 
belong to RHS, which should be created after rule 
application [36]. In this graph, NACs  also displayed by red 
bold dashed nodes and edges. To apply the rule, they should 
not occur in the graph. Each node and edge in the graph can 
have their labels that can be defined by a self-loop edge 
named by the node’s label.  

The two inputs of the fitness function are a particle and the 
under-study reachability property. The fitness value can be 
calculated as follows: 

1. Finding the pairs of two nodes in which the first node 
belongs to the given property graph (except NAC nodes) and 
the second belongs to the last state of the path specified by 
the particle so that they have the same labels. 

2. Calculating the total number of pairs found in the first 
step. 

3. Calculating the total number of each NAC’s nodes and 
edges for given properties occurring in the graph specifies 
the path’s last state which is encoded using the given 
particle. 

4. The difference between the value calculated in step 2 and 
the value achieved in step 3 is considered as the fitness value.  

 The pseudo-code related to the fitness function can be seen 
in Algorithm 2. 

Algorithm 2. Fitness Function of PSO and FAPSO 

1. Input & Output:  

a. Input: h: a particle and  

              p: a given reachability property to be  

checked; 

b. Output: the fitness value of h; 

 

2. Initialization: 

a. Initialize NodeList member Npi with node ith of 

Gp;  

            (i: 0 to   Number of nodes Gp) 

b. Initialize EdgeList member Epi with edge ith of Gp;  

            (i: 0 to Number of edge Gp) 

c. Initialize NodeList member Nhi with node ith of 

Gh;  

            (i: 0 to Number of nodes Gh) 

d. Initialize EdgeList member Ehi with edge ith of Gh;  

             (i: 0 to Number of edge Gh)                

e. Initialize BooleanList member hVisitedij with false; 

f. Initialize BooleanList member pVisitedij with false; 

g. Initialize BooleanList member Visitedij with false; 

           (For part e, f and g: i: 0 to Number of nodes Gh 

and j: 0 to  

            Number of nodes Gp) 

3. for each Nhi 

      for each Npj 

          EdgeList ENP = all edges of Ep whose source 

node is Npj; 

          EdgeList ENH = all edges of Eh whose source node is 

Nhi; 

          E-Countij = The number of pairs (p,h) which (p) 

is from             

          ENP and (h) is from ENH as p’s label is equal to 

h’s label; 

          PE-Countij = size of ENP; 

          DE-Countij = E-Countij – PE-Countij; 

      end for 

   end for 

 

4. EQ-Count = 0; 

    while all Visitedij is not true do  

        Find the smallest DE-Countij that Visitedij = false; 

        Visitedij = true; 

         if  !pVisitedij && !hVisitedij  then 

              EQ-Count += E-Countij; 

              pVisitedij = true; 

              hVisitedij = true; 

         end if 

     end while 

 

5. Find all NACs of Gp and store in ArrayList of 

NACs allNAC  

             NEQ-Count = 0; 

   for each NACi in allNAC do 

         NEQ-Count += The number of nodes and edges 

of NACi           

                                   occurring in Gh; 

   end for 

•        return EQ-Count – NEQ-Count; 

 

C. PSO-based Approach 

The first proposed approach applies the PSO algorithm to search 
the state space to find the path starting from an initial state and 
ending at the state satisfying the given reachability property. As 
already mentioned in this algorithm each particle is encoded into 
a path of transitions. The algorithm starts with an initial random 
population of particles. Then, the fitness value of each particle 
is calculated, 𝑔𝑏𝑒𝑠𝑡  and 𝑝𝑏𝑒𝑠𝑡  are updated based on the fitness 
values of the particles. Next, the termination condition is 
checked. If updated 𝑔𝑏𝑒𝑠𝑡  is a perfect solution or current 
iteration number of the algorithm is not less than the predefined 
maximum number of generations, the algorithm will be finished 
otherwise Equations 1 and 2 will update each particle’s velocity 
and position respectively. The algorithm will run with the phase 
of calculating fitness until one of the termination conditions is 
met.  



D. FAPSO-based Approach 

Another approach proposed in this paper applies the Fuzzy 
Adaptive PSO algorithm called FAPSO to verify the GTS-based 
defined systems’ reachability property. In traditional PSO, 
parameters C1 and C2 are two constant values which cannot be 
varied through all generations. It should be noted that better 
results can be obtained through dynamic changes in C1 and C2 
during algorithm execution. In FAPSO, fuzzy inference systems 
can be used to adjust C1 and C2 in each generation. As a PSO 
algorithm, the proposed FAPSO starts with an initial population 
of particles produced randomly. Next, each particle’s fitness 
value is obtained and 𝑔𝑏𝑒𝑠𝑡  and 𝑝𝑏𝑒𝑠𝑡 are updated based on the 
fitness values of particles. If the termination condition is not met, 
two input parameters of the fuzzy system called Diversity and 
Iteration will be calculated. The diversity measure can be 
defined as the dispersion degree of particles, i.e. the more the 
particles are separated the higher the diversity. According to Eq. 
(3), the diversity measure can be the average Euclidean distance 
between each particle and the best one in the related generation 
[37]. 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑆(𝑡))  =  
1

𝑛𝑠

∑ √∑ (𝑥𝑖𝑗(𝑡) − �̅�𝑗(𝑡))2𝑛𝑥

𝑗=1
𝑛𝑠
𝑖=1     (3) 

The fuzzy system’s second input is a percentage of iterations 
calculated by Eq. (4). At the start of the algorithm, Iteration is 
“Low” and gets higher while the number of algorithm iterations 
is getting close to the maximum iteration number [37]. 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (4) 

The two above-mentioned measures are used as the inputs of 
the fuzzy system adjusting C1 and C2. Of course, C1 and C2 will 
be the outputs of this fuzzy system. It is worth noting that the 
fuzzy system’s inputs lie in the range of [0, 1]. The Iteration 
variable can be defined in the acceptable range of values, but it 
is necessary to perform normalization on the Diversity to 
convert it into a value between 0 and 1. The normalization 
performed on Diversity is shown in Eq. (5) and (6). Eq. (5) 
indicates that when the maximum and minimum Euclidean 
distances are equal, normalized Diversity is 0 because particles’ 
positions have not changed. If the maximum and minimum 
Euclidean distances are different, normalized Diversity can be 
calculated by Eq. (6) [37]. 

Normal Diversity = {
    0        𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝑁𝑜𝑟𝑚  𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ≠ 𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

       (5) 

𝑁𝑜𝑟𝑚 =  
𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦−𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦− 𝑀𝑖𝑛𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
 (6) 

 In this approach, a Mamdani’s fuzzy system inference 
method with two input variables of Iteration and Diversity and 
two output variables of C1 and C2 is proposed. Figure 2 presents 
the proposed fuzzy system. 

 

Figure 2. The Fuzzy System of the Proposed Approach 

For each input of the fuzzy system, Three triangular 
membership functions are designed [37].  Figures 3 and 4 
represent the membership functions employed for the input 
variables of Iteration and Diversity respectively. 

According to the fact that it is recommended to select C1 and 
C2 from the range of [0.5 2.5] [38], the output variables should 
be adjusted in this range. As seen in Figures 5 and 6, the output 
variables of C1 and C2 are granulated in five triangular 
membership functions. Tables 1 and 2 show the fuzzy system’s 
rule sets. It should be noted that considering the following two 
points is necessary to define the fuzzy system’s rules. 

 

Figure 3. Input 1: Iteration 

 

Figure 4. Input 2: Diversity 



  

Figure 5. Output 1: C1 

 

Figure 6. Output 2: C2 

The first point is that the exploration process must be done 
in the early iterations of the PSO algorithm to exploit desired 
solutions eventually. The second one is that exploration must be 
done in low diversities whereas the exploitation must be done in 
high diversities i.e. when particles are far apart [37, 43]. 

TABLE I RULE SET OF FUZZY SYSTEM TO CALCULATE C1 

Iteation 

 
Low Medium High 

Diversity 

Low High 
Medium 

 High 
Medium 

Medium 
Medium 

High 
Medium 

Medium 

Low 

High 
Medium 

High 

Medium 

Low 
Low 

 

 

 

 
1 https://sourceforge.net/projects/groove-and-ga-boa-reachability/files/ 

 

 

TABLE II. RULE SET OF FUZZY SYSTEM TO CALCULATE C2 

Iteration 

 

Low Medium High 

Diversity Low Low Medium 

Low 

High 

Medium Medium Medium Medium 

High 

 

When the fuzzy system’s input variables namely, Diversity 
and Iteration are calculated via Eq. 3 and Eq. 4, in the 
fuzzification phase, the percentage of their membership can be 
obtained using the membership functions shown in Figures 5 
and 6. Each membership function has three categories of high, 
medium, and low. In the next step, the rules defined by the 
inference system which is shown in Tables 1 and 2 are applied 
to calculate C1 and C2. The variables acquired from the inference 
system are the percentage of the membership of C1 and C2 to 
five categories high, medium-high, medium, medium-low, and 
low. The used defuzzification method is the centroid method 
that calculating the ultimate values of C1 and C2 through output 
membership functions presented in Figures 7 and 8 respectively. 
As seen in Figure 7, the proposed approach attempts to 
dynamically adjust the PSO algorithm’s parameters in each 
iteration by taking advantage of a fuzzy system. 

 

Figure 7. The main idea of the approach 

When C1 and C2 values are achieved form fuzzy system, 
the PSO algorithm will update each particle’s velocity and by 
equations 1 and 2. Then, the phase of fitness calculation will be 
performed until one of the termination conditions is met. 

IV. EXPERIMENTAL RESULTS 

We implemented our approaches in GROOVE toolset using 
Java programming language to evaluate and compare their 
performance. We manipulate some existing classes of the 
GROOVE and create some new classes to better implement our 
approaches. For evaluation purposes, the dining philosophers 
[39], shopping [41], Pac-Man [40],  process life cycle, N-Queen, 
and 8-puzzle [42] models were considered. These models can be 
downloaded through the web1. The initial parameters used in 
PSO are listed in Table 3. The value of W and Iteration used in 
the FAPSO algorithm is the same as the PSO method. A PC with 
an Intel CORE i5 processor and 3 GB of memory was employed 
for our experiments.  it should be noted that the values of 
parameters like depth limit and population size is defined based 
on the problems and their model size so that the lager the size of 



the model, the more expanded the state space and the harder the 
goal state finding; so, the higher the depth limit and population 
size should be defined. 

TABLE III. INITIAL PARAMETERS OF THE PSO-BASED 
APPROACH 

Iteration 100 

C1 2 

C2 2 

W 0.8 

 

It is worth noting that it is necessary to change the GA 
proposed in [2] and the PSO-GSA approach in [26] for 
comparing the proposed methods’ efficiencies. These two 
approaches were proposed to decline the safety property of the 
systems specified through GTS by detecting a deadlock state. 
We just replace their fitness function with the one presented in 
4.2 to use them to verify the reachability properties. 

Experimental results obtained from an average of 20 
independent runs and were presented in two tables for each case 
study. Average running times were reported in the first table and 
the detailed results were presented in the second one. 

 

A. Dinning philosopher’s problem 

This problem was first introduced by E.W. Dijkstra.  In this 
problem, several philosophers are sitting around a table. There 
is a fork between each pair of adjacent philosophers. After 
thinking, philosophers get hungry. Each philosopher picks up 
the left and right forks to use them for eating. A hungry 
philosopher should have both the left and right forks to start 
eating. after eating, the philosopher puts the left and the right 
forks on the table and thinks again. This process continues until 
the deadlock situation happens when all philosophers are 
waiting for their right fork as they have picked up their left forks 
[39]. This state is the reachability property checked in different 
kinds of this problem. The results obtained by performing the 
proposed approaches for verifying this problem’s reachability 
property can be found in Table 4.  

B. Pac-Man game problem 

In the Pac-Man game, three types of objects are defined: 

Pac-Man, marbles, and ghosts [40]. According to the rules of 

the game, the Pac-Man and the Ghost can move to an adjoining 

box in each stage. 

 
TABLE IV. THE COMPARISON OF RUNNING TIMES OF ALL 

APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE 

DINING PHILOSOPHERS’ PROBLEM 

Number of 
philosophers 

Depth 
Limit 

Population FAPSO 
(sec) 

GA 
(sec) 

PSO 
(sec) 

PSO-
GSA 

(sec) 

10 50 15 2.81 6.27 8.12 7.06 

20 100 20 29.2 22 85 68 

25 150 40 38.52 41 112 90 

30 200 60 49.86 91 137 109 

If Pac-Man moves to a new box and there is a marble 

in, he can eat that marble. However, if the ghost moves to an 

adjoining box when Pac-Man is in the box, the ghost kills Pac-

Man. The game ends when all marbles are eaten or Pac-Man is 

killed by a ghost. In this problem, the following reachability 

property should be checked: Pac-Man is the winner and eats 

all apples. 

The results obtained by different approaches for the Pac-

Man game problem can be found in Table 5. 

 
TABLE V. THE COMPARISON OF RUNNING TIMES OF ALL 

APPROACHES TO VERIFY THE REACHABILITY PROPERTY 

IN THE PAC-MAN PROBLEM 

   

Dimension 

of  

Pac-man 

Game 

    

Depth 

Limit 

   

Population 

   

FAPSO 

(sec) 

    

GA 

(sec) 

    

PSO 

(sec) 

   

PSO-

GSA 

(sec) 

4×4 100 40 4.13 4.88 15.07 12.49 

4×5 100 60 7.96 11.15 36.79 27.31 

5×6 100 80 17.59 72.03 59.1 60.26 

 

The results related to this problem demonstrate that the 

FAPSO approach takes a shorter time to find the given 

reachability property and decreases the number of explored 

states significantly. 

 

C. Process Life Cycle problem 

Process Life Cycle describes the stages related to the life 
cycle of a process traversing in an OS. This cycle starts with 
creating a new process. Then, it is loaded into the memory 
providing that enough free memory is available. Afterward, it 
waits for I/O devices or CPU. After the complete execution of 
the process, all allocated resources are released and the process 
stops. The reachability property that should be checked in the 
models of this problem is: All existing processes have been 
completed. The results obtained by different approaches for the 
Process life cycle problem can be seen in Table 6. As seen in 
this table, FAPSO Approach, unlike other proposed Approaches 
can find the given reachability property even with increased 
dimensions of this problem. 

 

 

 

 

 

 

 

 

 



TABLE VI. THE COMPARISON OF RUNNING TIMES OF ALL 

APPROACHES TO VERIFY THE REACHABILITY PROPERTY 

IN THE PROCESS LIFE CYCLE PROBLEM 

Process 
Life Cycle 

Depth      
Limit 

Population 
FAPSO    
(sec) 

GA      
(sec) 

PSO      
(sec) 

PSO-
GSA    
(sec) 

20: 
process 

8: 
memory 

180 20 7.08 6.58 37.09 17.66 

30: 
process 

8: 
memory 

280 40 7.28 8.16 37.61 16.92 

40: 
process 

8:memory 

350 60 19.52 125.4 80.28 54.13 

50: 
process 

8: 
memory 

450 80 40.95 Out of Memory 

 

D. Shopping problem 

 

This problem is related to the purchase process of the 
customers in a store originally presented in [41]. The 
reachability property considered here is: all customers have 
successfully finished their shopping. Tables 7 represents the 
results obtained by different approaches for the Shopping 
problem. 

TABLE VII. THE COMPARISON OF RUNNING TIMES OF ALL 
APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE 

SHOPPING PROBLEM 

Shopping Depth 
Limit 

Population FAPSO 

(sec) 

GA 

(sec) 

PSO 

(sec) 

PSO-
GSA 

(sec) 

Shop-10-
cus30-
good 

160 20 2.45 2.01 3.89 4.14 

Shop-15-
cus30-
good 

170 30 10.53 32.74 34.5 27.62 

Shop-20-
cus30-
good 

180 40 33.58 Out of Memory 

E. N-Queen Problem 

An N×N chessboard and N queens are the elements of this 
problem. These queens should be placed on the chessboard so 
that no queen can guard another one. In the chess game, each 
queen can move horizontally, vertically, or diagonally as far as 
she wants, and two queens can guard each other as long as their 
rows, columns, or diameters are the same. In this regard, the 
acceptable arrangement is the situation that the columns, rows, 

and diameters of all queens are different. The reachability 
property considered in the different models of this problem is: 
All queens have been placed in the locations where none of them 
can guard others. Table 8 represents the results obtained by 
different approaches for the N-queen problem. 

TABLE 8. THE COMPARISON OF RUNNING TIMES OF ALL 
APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE 

N-QUEEN PROBLEM 

 N-Queen  
Dimension 

Depth 
Limit 

Population   
FAPSO       
(sec) 

     
GA        
(sec) 

     
PSO      
(sec) 

 
PSO-
GSA     
(sec) 

 8 × 8      
100 

20 3.0 7 1.45  6.83 2.17 

 16 × 16       
120 

 30 24.17 Out of Memory 

 

F. 8-Puzzel Problem 

In this problem, there is a nine-box board where eight boxes 

are filled by numbered tiles (from 1 to 8) and one is empty [42]. 

A tile can move to the empty box when it is adjoining to the 

empty cell. I this game, one should begin with an arbitrary 

configuration of tiles and try to arrange the numbers in 

ascending order.  

Table 9 shows the results obtained by different approaches 

for this problem. 

 
TABLE IX. THE COMPARISON OF RUNNING TIMES OF ALL 

APPROACHES TO VERIFY THE REACHABILITY PROPERTY IN THE 

8-PUZZEL PROBLEM 

Initial 

arrangement 

Depth 

Limit 

Population FAPSO 

(sec) 

GA 

(sec) 

PSO 

(sec) 

PSO-

GSA 

(sec) 

 

 

 

100 40 2.77 1.79 11.37 12.45 

 

 

 

100 50 6.57 5.91 47.13 61.9 

 

 

 

100 60 34.93 26.3 126.03 276.35 

 

 

 

100 70 102.5 116.51 209.23 380.52 

 

V. DISCUSSION 

The proposed approaches’ advantages and limitations are 
described as follows. 



As explained in the literature, the previous approaches 
proposed detects a deadlock state for declining safety property 
of the GTS-specified systems. We applied the FAPSO approach 
for declining Safety property by verifying the right reachability 
property in dining philosopher’s, process life cycle, and 8-
puzzle problems and comparing the results with Evolutionary 
approaches proposed to refute safety properties through 
deadlock detection. Table 10 presents the comparison results. 

TABLE X. COMPARING THE PERFORMANCE OF FAPSO APPROACH 

TO REFUTE SAFETY BY REACHABILITY PROPERTY WITH 
PROPOSED APPROACHES TO SAFETY REFUTATION BY 

DETECTING A DEADLOCK STATE 
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0.7

1 ± 

0.1

5 

10.

12 

13.

45 

38.

92 

8.3

4 

0.9

4 

3.8

5 

20 dining 

philosopher

s 

10

0 
20 

29.

2 

1.0

4 ± 

0.1

5 

23 158 170 
64.

6 
1.9 

4.1

2 

process life 

cycle 

(40-process-

8-memory) 

35

0 
60 

19.

52 

1.4

4 ± 

0.8 

No

t 

fou

nd 

Not 

fou

nd 

939

.45 

85

4 

No

t 

fou

nd 

No

t 

fou

nd 

process life 

cycle 

50:process8

:memory 

45

0 
80 

40.

95 

1.8

1 ± 

0.3

9 

No

t 

fou

nd 

Not 

fou

nd 

Not 

fou

nd 

No

t 

fou

nd 

No

t 

fou

nd 

No

t 

fou

nd 

8-puzzel 

(Second 

Arrangemen

t) 

10

0 
50 

6.5

7 

1.1

5 ± 

0.3

3 

35.

81 

94.

72 

16.

7 

45.

53 

0.1

6 

1.3

3 

8-puzzel 

(Third 

Arrangemen

t) 

10

0 
60 

34.

93 

No

t 

fou

nd 

16

5 

165

.51 

147

.7 

70.

93 
3.5 

2.3

3 

 

Another important advantage of the FAPSO approach is its 
accuracy. In fact, the higher the number of successful runs, the 
higher the accuracy. The proposed approaches’ accuracy in 
terms of the reachability verification of the given properties in 
all mentioned problems has been compared through the chart in 
Figure. 8. 

 

 

 

Figure 8. Comparing the accuracy of the proposed approaches 

 

As the previously presented results indicate, the execution 
speed of these approaches, especially the FAPSO, is more than 
that of others.  

Additionally, the proposed approaches generate shorter 
counterexamples/witnesses in comparison with other 
approaches. The chart in Fig. 9 compares the length of the 
witnesses created by different approaches to verify reachability 
in the dining philosopher’s problem—in the case of 10 
philosophers. 

 

Figure 9. Comparing the length of counterexample/witness 
of the proposed approaches to reachability verification in the 

dining philosophers’ problem with 10 philosophers 

It should be noted that generating the shorter 
counterexamples/witnesses is very important in the process of 
model checking. So, the generated counterexamples/witnesses’ 
length in the proposed approaches were controlled using the 
depth limit parameter. 

The proposed approaches, especially the FAPSO, 
outperform other approaches in terms of the number of explored 



states. The number of states explored by different approaches to 
verify the reachability property considered for the dining 
philosopher’s problem—in the case of 10 philosophers—can be 
compared through the chart in Figure 10. 

 

Figure 10. Comparing the number of explored states of the 
proposed approaches to reachability verification in the dining 

philosophers’ problem with 10 philosophers 

 

There are some limitations to employ the PSO-based 
Approach proposed in this paper. One of the essential limitations 
is to choose the best value for C1 and C2. To deal with this 
limitation, we proposed the FAPSO approach taking advantage 
of a fuzzy system to calculate C1 and C2 effectively. However, 
the FAPSO approach also has some limitations. The time spent 
to evaluate the population and calculate the inputs of the fuzzy 
system increases in the large complex systems having numerous 
transformation rules. 

VI. CONCLUSIONS 

This paper presents two practical approaches in order to 
verify a reachability property aiming to find a configuration that 
its occurrence refutes the safety property. The primary purpose 
of these approaches is to manage problem of the state space 
explosion in model checking of complex software systems that 
are specified GTS. In this solution, a PSO-based algorithm and 
a Fuzzy Adaptive PSO-based algorithm are proposed to explore 
the state space intelligently and find a target state in which the 
reachability property is satisfied. These two algorithms are 
implemented in the GROOVE toolset, and some parts of the 
source code are modified by Java programming language. We 
also implemented two other techniques based on GA and PSO-
GSA algorithms to evaluate the efficiency of our approaches. 
The experimental results indicate the fact that the FAPSO 
approach is generally faster and more accurate than GA, PSO, 
PSO-GSA approaches, especially when the size of the problem 
increases. Also, fewer numbers of explored states and shorter 
lengths of counterexample/witness are other advantages of the 
FAPSO solution in comparison with the PSO-based approach.  

Further researches can be done by changing the fuzzy system 
to improve the efficiency of the algorithm. Applying the 

proposed fitness function to verify reachability in other 
approaches proposed to detect deadlock can be considered as 
future works. 

TABLE XI. GLOSSARY OF ACRONYMS 

Genetic algorithm GA 

Particle swarm 
optimization 

PSO 

Graph ttransformation 
system 

GTS 

Gravitational search 
algorithm 

GSA 

Design space exploration DSE 

Operating System OS 

Ant Colony Optimization ACO 

Fuzzy inference system FIS 
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