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Abstract. In large distributed systems, failures are a daily event occur-
ring frequently, especially with growing numbers of computation tasks
and locations on which they are deployed. The advantage of representing
an application with a workflow is the possibility of exploiting Workflow
Management System (WMS) features such as portability. A relevant fea-
ture that some WMSs supply is reliability. Over recent years, the emer-
gence of hybrid workflows has posed new and intriguing challenges by
increasing the possibility of distributing computations involving hetero-
geneous and independent environments. Consequently, the number of
possible points of failure in the execution increased, creating different
important challenges that are interesting to study. This paper presents
the implementation of a fault tolerance mechanism for hybrid workflows
based on the recovery and rollback approach. A representation of the hy-
brid workflows with the formal framework is provided, together with the
experiments demonstrating the functionality of implementing approach.

1 Introduction

In contemporary contexts, the interest in creating and deploying intricate appli-
cations across expansive networks of diverse computing architectures is increas-
ing in different scientific domains. Many Workflow Management Systems (WMS)
are developed to cope with the demands of applications coming from various
fields, from geophysics [12] to bioinformatics [16], simulation of chemical re-
actions [4] and astrophysics [19]. The necessity to employ different locations to
execute a computation has different reasons, such as computational performance
or data privacy. The heterogeneity of computing architectures is an increasing
trend because new specialised hardware is being developed to execute some tasks
performatively. Moreover, data are the most important asset today, and nobody
wants to share them for many different reasons, for example data can be sensi-
tive and they are protected for legal reasons. Thus, sometimes, it is impossible
to move data, and it is necessary to use them carefully.

Hybrid workflow [8] systems are a possible solution for these requirements
in the workflow application. They can span the steps in multiple and hetero-
geneous environments without sharing memory zones. As said before, hybrid
WMSs can move the data to execute a step in a more suitable location based
on the step requirements, such as a specific processor, or they can move the
computation to minimise the data movements. For example, hybrid workflow
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allows the modelling of federated applications, where it cannot be possible to
move the data, e.g. orchestrating a federated Deep Neural Network training
across different HPC centres [5]. Some of WMS implementing this paradigm are
DagOnStar [14], Pegasus [6] and StreamFlow [3].

When workflow applications run on large distributed systems, failure is not
a possibility but a daily event whose occurrence increases with the number of
activities and actors involved. WMS execution depends on many layers, often
perceived as black boxes. It is not guaranteed that the application used to com-
pute steps or the locations used to deploy steps are fault tolerant. Hence, imple-
menting a fault tolerance mechanism directly in WMS to recover the failed step
execution is becoming inevitable.

The contribution of this paper is two-sided, on one side providing the im-
plementation of the fault tolerance mechanism for hybrid workflow systems
(Sec. 5.1) based on the recovery and rollback techniques (detailed description
given in Sec. 3.1), and, on the other side, giving the formalisation of the be-
haviour of the implemented approach (Sec. 3.2). The formal description of the
actions of a hybrid workflow is given through an example (Sec. 4). The fault
tolerance mechanism is implemented on StreamFlow, and an experiment with a
workflow execution containing the simulated fault behaviour is provided (Sec. 5).

2 Related work

Different types of errors can occur during the workflow execution. They are soft,
fail-stop and silent errors [10]. The soft or fail-stop errors cause the failure of
the step execution. When a soft error occurs, the input data of the step is still
undamaged in the executing locations. Instead, the data is corrupted or lost
when a fail-stop error occurs. Finally, detecting the silent errors is more complex
since the step terminates with success, but the output data is contaminated (i.e.
the step produces the wrong result).

In the literature, various works deal with the mechanisms for error man-
agement involving other fields beyond the scientific workflows. Mainly, these
mechanisms can be divided into two categories, following the notation of [15],
the one dealing with the error when the failure occurs, so-called reactive methods,
or the one trying to predict and prevent the error, so-called proactive methods.
Both approaches require additional work to guarantee reliability, such as sav-
ing metadata at runtime, duplicating data, increasing the execution time or the
number of resources needed compared to an unreliable execution. Therefore, the
choice of the method utilised is guided by the type of failure to manage and
the availability of resources (time and funding). This paper focuses on reactive
methods and different techniques used to recover the failure.

A simple fault tolerance approach is retry-rollback, which re-executes the
failed step. However, the step can have some dependencies on other steps, which
obliges their rollback [7]. In the worst scenario, the workflow is fully re-executed,
describing the domino effect [18]. This approach, usually, is coupled with check-
point in which the WMS saves the workflow state and the data at runtime by
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applying different heuristics [9]. The recovery of the failure is modelled by bring-
ing the state of the workflow back to the last checkpoint (its valid state) and
restarting the execution from there.

Another technique is replication, where the WMS executes the step with the
same input data multiple times in parallel; hence, if one replica fails, other repli-
cas are still alive, ensuring that the workflow executions continue. This mecha-
nism can also be used to detect silent errors [1].

Finally, the rescue DAG approach, implemented in DAGMan [20], saves
metadata when a failure occurs and continues to run the workflow until it is
possible. In the state where the workflow has only failed and pending steps
(waiting for the output of the failed steps), it terminates the execution and cre-
ates a new workflow (using saved metadata) containing only the missing steps.
This new workflow continues the execution of the original workflow.

3 The fault tolerance mechanism for hybrid workflows

This section describes the considered workflow setting and the fault tolerance
implemented, giving a formal syntactical representation of the hybrid workflow
and its fault-tolerant mechanism. The workflow is represented as Direct Cyclic
Graph (DCG), where the vertices are the steps to be computed and the edges
are the dependencies between the steps given by data dependency. It is supposed
that the step execution is deterministic since many of the workflow applications
we are dealing with are deterministic. Moreover, the step is seen as a black box;
thus, the step re-execution is done from the beginning, regardless of its internal
state when the failure occurs. The WMS discards the data produced by a failed
step because they can be incomplete. Finally, the step can not operate the data
in-place, thus input data are still valid if they exist after the failure. The hybrid
workflow is obtained by mapping steps to different locations, assuming that the
locations are mutually connected following some topology[2].

3.1 The implemented fault tolerance approach

The fault tolerance mechanism employed in this paper is based on the recovery
workflow approach. Creating a separate workflow aims to retrieve the valid state
of the failed steps while the non-affected continue to run their executions. After
recovering the failed step, its output is returned to the original workflow. The
support of the loops and the concurrent executions between the original workflow
and the recovery workflows are the main differences between our solution and
the DAGMan approach. The existence of two types of failure-free entities is
assumed: WMS, in this paper called driver or driver location, and all locations
on which the initial dataset is stored. In this way, it is guaranteed that the initial
input to re-execute the whole workflow (if necessary) will not be lost.

The presented implementation manages two types of errors, soft and fail-stop
errors, that occur during step execution. Specifically, during the implementation,
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the considered failures are the application failure (e.g., a segmentation fault oc-
curs) and the location failure (e.g., the HPC system has extraordinary mainte-
nance while a step is running). In the case of application failure, it is enough
to re-execute the step on the location1. Instead, in the case of location failure,
all the data on the location can be lost when it has ephemeral memory (e.g., in
the Kubernetes Pods without a permanent volume). In this case, there are two
possible scenarios. It is possible to copy the input data to the failed location, and
the same strategy of application failure can be applied if the data are available
in another location. Otherwise, if the data is not present in any location, it is
necessary to roll back and recover the steps that produced the lost data.

As mentioned in Sec. 2, the fault tolerance mechanism introduces some over-
head. In this approach, the overhead is given by metadata collection and in-
creased workflow execution time. The metadata tracks the step data produced,
the required inputs, and the location where the data resides. These metadata are
stored by the driver; however, the data are across different locations. Thus, the
driver saves a token that represents the data. They are collected as a graph, called
provenance graph, where the vertices are the data information and the edges are
the dependencies between the data. In the implementation, the steps to rollback
are decided through the bottom-up navigation of the provenance graph with a
Breadth-First Search (BFS) visit. The starting data of the navigation are the
input data of the failed step. If the data of the provenance graph vertex is avail-
able in some locations, it becomes an input of the recovery workflow. Otherwise,
it is necessary to visit the parent vertices of the current vertex.

3.2 Syntactical representation

This section gives a hint on a formalisation of the fault tolerance mechanism for
the hybrid workflows. The workflow description follows the idea presented in [2],
while the formalisation is inspired by the distributed π-calculus approach [11]
to model location aware workflows [13] with a more elaborated framework to be
able to cover the recovery part of the workflow. As in [2], the information about
the location is recorded into the location configuration, in this case, containing
the name of the location l, the set of the data and messages saved at the location l
(denoted by Dl) and the trace t of the actions to be performed on the location l.
Another addition respect to the semantics given in [2] is the modelling of the
driver location, which contains the additional elements, saved into the set Dld ,
the trace of the whole workflow structure tW and the mapping function M(s)
that maps the step s to the location on which it is deployed. The driver location
has a global knowledge of the workflow and its execution. It orchestrates the
execution of the steps: knows when the data is produced or received, manages
all recovery actions, and so on.

The traces are built by the following actions: execution of the step s, denoted
as exec(s, I ,O) recording sets of input and output data of the step s; transfer,

1 It is possible also to change location, but other policies are necessary, such as copying
the input data to a new location if it is needed
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denoted by couple of prefixes tran(v, l2) and tran(v, l1) modeling the transfer
of the value v from location l1 to the location l2. The value v could be the data
d or different messages: md,l, sent from location l to the driver, signalling that
the data d is produced on the location l; ms, sent from the driver to indicate
that the step s can be executed; okd and okms

, sent to the driver to confirm the
reception of the corresponding data/message; err(s), sent to the driver location
indicating that the step s failed (soft error) and the data to re-execute it are still
present on the location; err(D, l), transferred to the driver indicating that the
data contained in the set D is missing on the location l due to the location fails
(fail-stop error); err(d, l) and err(ms) indicating that the data and the message
are not received on the location l due to the transfer failure. Finally, rec(x) is
the recovery of the failed element x. This element can be the step s, in which the
application fails, the lost data, or the value not received due to transfer failure.

The basic actions are composed in the trace by applying different operators,
sequential execution ., parallel composition | and the choice operator +. Dif-
ferently from the classic process algebra, the prefix representing the executed
step is not discarded but annotated with the pointer ▷. For instance, considering
the trace t = exec(s, I ,O).tran(v, l2), in the classical case, after the execution
of the step, the obtained trace is t′ = tran(v, l2), representing only the actions
to be executed in the future. In our case, the initial trace t is annotated with
the pointer, indicating the state of the execution; therefore, the trace t becomes
▷exec(s, I ,O).tran(v, l2), and after the execution of the step, the obtained trace
is t′′ = exec(s, I ,O).▷tran(v, l2) indicating that the next action to be performed
is transfer of the value v. Formally:

Definition 1. The grammar defines the syntax of a workflow system W:
W ::= ⟨l,Dl, t⟩ ∥ (W1 | W2)
t ::= µ ∥ t1.t2 ∥ (t1 | t2) ∥ (t1 + t2) ∥▷ t ∥ 0

µ ::= exec(s, I ,O) ∥ tran(v, l2) ∥ tran(v, l1) ∥ rec(x)

v ::= d ∥ ms ∥ md,l ∥ okms ∥ okd ∥ err(x)

x ::= s ∥ D, l ∥ d, l ∥ ms, l

The confirmation of the data/message received can be modelled using the
syntax of Def. 1 in the following way:

conf(x, l) = tran(okx, ld) + tran(err(x, l), ld) where x = ms ∨ x = d.

For instance, location l confirms to the driver location the reception of the data d
(denoted as conf(x, l)) by transferring to it or the message okd, meaning that the
data is received successfully, or err(d, l) indicating that the data is not received
on the location l.

Notation. We introduce some simplifications of the notation, when possi-
ble, to improve the paper’s readability. Therefore, we write exec(s), instead of
exec(s, I ,O) and tran(x, l).conf instead of tran(x, l).conf(okx, l′) since from
tran(x, l) is clear what is the message which reception is necessary to confirm. To
simplify the traces of the step (actions necessary to execute the step and transfer
the data to the succeeding computations), the trace regarding the step s can be
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modelled as: input actions, divided in input of the message ms and the input
of necessary data (denoted as trace tI (s) =

∏
j tran(dj , lh).conf(okdj

, lh)); ex-
ecution of the step; actions signalling to the driver about the outcome of the
step (confirming the produced data or indicating an error in the execution); and
output actions transferring data to the targeting locations (tO(s)). Considering
this, the trace of any step s can be represented with:

t(s) =(tran(ms, ld).conf | tI (s)).exec(s).(
∏
i

(tran(mdi,l, ld) + tran(err(x), ld))).tOut(s)

To simplify, the notation t(s\tI(s)) denotes the trace t(s) without the input data
part (tI (s)). The trace on the driver location which represents the orchestration
of the step s mapped to the location l is complementary to the t(s) and it is
modelled as:

td(s) = (tran(ms, l).conf | tdI(s)).(
∏
i

(tran(mdi,l, l) + tran(err(x), l)))

where tdI(s)
=

∏
j tran(dj , l).conf |

∏
h conf(okdh

, l) means that the driver
sends data dj to the step s and receives the confirmations okdh

of the data
received on location l.

4 Formalisation through the example

Representation of the hybrid workflows in the formal language defined with
Def. 1 is given by modelling the workflow provided in Fig. 1. For the sake of
paper readability, we show the mechanism by concentrating on the specific ac-
tion, while the semantics rules ([17, Fig. 5 and 6]), extensive definition of the
workflow behaviour and illustration of the recovery mechanism are provided in
App. [17]. It is assumed that the necessary contextual rules, together with the
structural congruence rules like commutativity of the parallel and choice opera-
tor, neutral element for the sequence and parallel operator (element 0), and so
on, are holding.

The initial state of the workflow in Fig. 1 can be represented using the syntax
of Def. 1 in the following way:

W = ⟨ld, Dld ,
▷ td, tW⟩ |

4∏
i=1

⟨li, ∅, ∅⟩

where Dld = {tW,M(si), d,msi}, i = 1, . . . , 4 and tW =
∏4

i=1 t(si). Trace td con-
sists of four subtraces td(si), executing on the driver location and orchestrating
the executions of the four steps si. The trace tW comprises the four traces t(si)
representing the actions to perform on the locations on which the steps si are
deployed. For instance, t(s3) denotes the inputs of the data d2 and message ms3 ;
the confirmation of the reception, the execution of the step which produces the
new data d4 or complementing error, then communicating to the driver about
the value produced and when the data is produced, finally, transferring the data
to the next step/location (s4/l1). Formally:

t(s3) =(tran(d2, l1).conf(okd2 , l2) | tran(ms3 , ld).conf).

exec(s3).(tran(md4,l2 , ld) + tran(err(x), ld)).tran(d4, l1)
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{d1}

S1

{d2}

{d3}

S2

{d4}

S3

{d}

{d5}

l1 ld l2

S4

Fig. 1. The hybrid workflow
consisting of four steps (repre-
sented as circles), connected in
the following way: step s1 pro-
duces data d1 and d2 necessary
for the execution of the steps s2
and s3, respectively. The result-
ing data of those two steps trig-
ger the execution of the step s4.
The steps s1, s2 and s4 are de-
ployed on the location l1, while
step s3 is mapped on the loca-
tion l2. The driver location con-
tains the initial input data of the
workflow, and it orchestrates the
executions.

The corresponding trace on the driver location td(s3) would be:

td(s3) =init(t(s3), l2).(tran(ms3 , l2).conf |
conf(okd2 , l2)).(tran(md4,l2 , l2) + tran(err(x), l2))

The driver first initialises the trace of the step on the deploying location, then
receives the confirmation that necessary data is received on the location and
triggers the step execution. At the end, it receives the produced data or the
obtained error. A full representation of the traces can be found in App. [17].

The following text shows how some actions work, by using the traces t(s3)
and td(s3). In particular are shown the transfer of the data, successful step
execution and unsuccessful execution with recovery mechanism. To simplify the
presentation and highlight the executing action, T[ ] denotes the context of the
executing action. Therefore, the traces t(s3) and td(s3), which show the transfer
of the message ms from the driver location to the location l2, can be written as:

t(s3) = T[ ▷
tran(ms3 , ld) ] and td(s3) = T′[▷tran(ms3 , l2)]

Componing the traces and the locations, there is:

⟨ld, Dld ,T[▷tran(ms3 , l2)]⟩ |
〈
l2, Dl2 ,T

′[▷tran(ms3 , ld)]
〉
−→

⟨ld, Dld ,T[tran(ms3 , l2)
▷]⟩ |

〈
l2, Dl2∪{ms3 , okms3

},T′[tran(ms3 , ld)
▷]
〉

When all necessary elements are on the location l2, the step s3 can be exe-
cuted successfully:〈

l2, Dl2 ,T
′′[▷exec(s3)]

〉
−→

〈
l2, (Dl2 \ms3)∪{md4,l2 , d4},T

′′[exec(s3)
▷]
〉

Considering the failure of a step, for instance, the computation of the step
has failed and the data is still present on the location l2, then the computation
would be:〈

l2, Dl2 ,T
′′[▷exec(s3)]

〉
−→

〈
l2, (Dl2 \ms3)∪{err(s3)},T

′′[exec(s3)
▷]
〉
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To recover the error, the failure is communicated to the driver location by
adding the rec(s3) trace to the driver execution trace:〈

l2, Dl2 ,T
′′′[▷tran(err(s3), ld)]

〉
|
〈
ld, Dld ,T

iv[▷tran(err(s3), l2)]
〉
−→〈

l2, Dl2 \ err(s3),T′′′[tran(err(s3), ld)
▷]
〉
|〈

ld, Dld ∪ err(s3),T
iv[tran(err(s3), l2)

▷] | ▷
rec(s3)

〉
By executing the recover action, the driver location is coordinating the neces-

sary computation by repeating the step execution without transferring the data
since it is already present on the location:〈

ld, Dld , t
′
d | ▷

rec(s3)
〉
|
〈
l2, Dl2 , t

′(s3)
〉
−→〈

ld, Dld \ err(s3), t′d | rec(s3)▷ | ▷td(s \ tdI(s3)
)
〉 〈

l2, Dl2 ,0 | ▷t(s3 \ tI (s3))
〉

where t(s3 \ tI (s3)) (similar for the trace td(s \ tdI(s3)
)) is:

t(s3 \ tI (s3)) =tran(ms3 , ld).conf .exec(s3).

(tran(md4,l2 , ld) + tran(err(x), ld)).tran(d4, l1)

5 Implementation and experiments

5.1 Implementation

We implemented this mechanism on StreamFlow, a hybrid WMS based on the
open standard Common Workflow Language (CWL). It has a well-defined mod-
ule structure, allowing the community to develop some plugins to customise the
default StreamFlow features, such as a new scheduling policy.

The fault tolerance implementation has some features and optimisations that
are not currently included in the semantics. A feature of StreamFlow that is sup-
ported in our implementation is the possibility of having loops in the workflow.
Loops change nothing in our idea; indeed, the provenance graph is always a Di-
rect Acyclic Graph (DAG) because the iterations already executed are unfolded
in the provenance. Furthermore, thanks to creating a new workflow, the loop
management is responsible for the workflow engine, in this case, the StreamFlow
driver, which already supports loops. However, it was necessary to introduce
a mechanism to stop the recovery workflow and its loop immediately after the
failed step was recovered. An optimisation regarding the semantics is synchro-
nising recovery workflows that want to roll back the same step concurrently.
The implementation introduces a dependency between the steps across different
recovery workflows. The driver manages this synchronisation.

5.2 Experiment environment

We developed an application and encapsulated it in a Docker image2. The ap-
plication has some hyper-parameters to raise the failures. It is possible to choose
2 https://hub.docker.com/repository/docker/mul8/sf-failure/general

 https://hub.docker.com/repository/docker/mul8/sf-failure/general
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S1

S2

S2

S3

A B C D

Workflow model:
- S1: SplitRows
- S2: SumRow
- S3: Merge

Ld

Location topology:
- K8s Pods: A, B, C, D
- driver location: Ld

Fig. 2. Workflow model presents a loop of 3 steps where the S2 (i.e. SumRow) step
has multiple instances. These steps are mapped on the A, B, C and D locations.

the probability and the type of failure occurrence. The failure type can be tool,
i.e. soft error, or resource, i.e. fail-stop error. The latter simulates a resource
preemption or a shutdown of the location for any reason. The application forces
the Docker container to terminate with error to simulate the fail-stop error.

In the experiments, we ran the StreamFlow driver on our local machine, which
also contains the dataset. Instead, we configured a virtualised Kubernetes (K8s)
cluster for the remote locations. The K8s cluster has 3 control plane nodes and
4 worker nodes. Each node has 4 virtual CPUs and 8GB of memory. In our
experiment, we used 4 Pods and each one uses our Docker image. When the
Docker container exits with an error, it also fails the Pod, and K8s will restart
it. All data in the Pod will be lost because it does not have a persistent volume.

Merge'
SumRow 9'

SumRow 6'

SumRow 3'

Merge''

SumRow 6''

SumRow 3''

Merge'''
SumRow 9'''

SumRow 4'''
SumRow 3'''

wf1
wf2
wf3
wf4

Fig. 3. Execution of the workflow in Fig. 2. Some step names are omitted for the sake
of readability. The execution is represented in minutes and seconds.
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Provenance graph Recovery-workflow

S2
i1''

SumRow
3

Merge

S1''

S3'

S2
i6''

S2
i10''

S2
i3''

SumRow
6

S3': Token of 
Merge step 
at iteration 1

S1'': Token of 
SplitRows step 

at iteration 2

S2 i{1-10}'': 
Token of SumRow
step instances at

iteration 2

Fig. 4. Left: the visited provenance graph. Right: the created recovery workflow.

5.3 Experiment

Fig. 2 shows the workflow configuration. The steps are enclosed in a loop;
the SumRow step has different instances based on how much output data the
SplitRows generate. The exit condition of the loop is to reach the i-th itera-
tion. In this experiment, we set it at three iterations; moreover, the SplitRows
generates 10 data, so there will be 10 SumRow step instances. We used four
locations, i.e. K8s Pods, named A, B, C and D. The SplitRow step is mapped
on the location A and the Merge step is mapped on the location D. SumRow
instances are mapped on all the locations, and each is scheduled on the first
available location. Moreover, we set the location failure only in the Merge step
with 50% of probability.

Fig. 3 shows an example of execution. The bars represent the step execution,
and the cross represents the failure of the step. The wf1 is the original workflow.
Instead, the wf2-4 are recovery workflows. In this execution, the container in
Merge step throws the location failure at each iteration. The recovery mechanism
creates a recovery workflow with the appropriate steps to rollback (e.g., the wf3,
which is the teal-colored bars in Fig. 3). For example, Fig. 3 shows the Merge
step fails at the second iteration, called Merge”, while Fig. 4 shows the recovery
mechanism of the failure. In the provenance graph, the green diamonds are the
available data in some locations, and the red diamonds are lost data. The visit
of the provenance graph starts from its input data; in this case, there are only
two lost data. In particular, these lost data are produced by SumRow 3” and 6”.
We lose these data because these two steps have been scheduled and executed
on the same location of Merge”, i.e. location D, and the data were not copied
to other locations. The recovery workflow is created with 3 steps. The available
data are in the input of the Merge step, whileas, the SumRow 3” and 6” steps
are re-executed. In this experiment, we do not use fully the potential of hybrid
workflows because we used only homogeneous locations. However, the approach
does not change. If a location fails but becomes available again, as in the case
of K8s Pod, it can be used to re-execute the step. Otherwise, it is possible to
apply a scheduling policy that changes the location to retry the step execution.
In the implementation, there is a delay, choosen by the user, before retrying to
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communicate with a failed location; indeed, in the experiment, the delay was set
to 20 seconds. These 20 seconds of delay can be seen in Fig. 3; in fact, there are
idle times between the failure steps and the first step of the recovery workflows.

6 Conclusions

Given the escalating computational demands of scientific applications, their ex-
ecution time remains a significant challenge. Therefore, a robust system that
safeguards against the loss of hours or days of computation is crucial. This un-
derscores the importance of WMSs and their role in ensuring such applications’
reliability. Moreover, the hybrid workflow paradigm, a relatively new and versa-
tile approach, has gained traction recently. In this work, we show a fault toler-
ance mechanism for hybrid workflows. We also model the idea with semantics,
showing an example of execution. Then, we implement the concept and show a
workflow with different patterns, such as loops and multi-instances.

One key advantage of our fault tolerance mechanism is the absence of com-
plex logic in the workflow engine to restore previous internal states or undo
some actions. Instead, it is just necessary to synchronise different workflow exe-
cutions. Finally, we can retrieve the successful steps that produce the workflow
output by navigating the provenance graph, which is built across different work-
flows. Future work involves evaluating implementation overhead, especially with
more complex configurations using real-case workflows and different numbers of
locations. It also involves combining the retry-rollback with checkpointing the
data in safe locations. Other future work involves aligning semantics with the
implementation describing synchronisation and loops and extending both with
nondeterministic workflows.
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