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Experimental validation of structured receding
horizon estimation and control for mobile
ground robot slip compensation

Nathan D. Wallace, He Kong, Andrew J. Hill and Salah Sukkarieh

Abstract To achieve high accuracy tracking performance for wheeled mobile robots
in spatially varying terrain conditions, it is necessary to estimate both the robot’s
state and the slip conditions of the environment to a high degree of precision. The
receding horizon estimation and control (RHEC) framework presents a systematic,
adaptive optimisation approach to this problem, to which our prior work proposed
a structured blocking (SB) extension to address performance limitations for motion
both at high speeds and over varying terrain. In this work, we validate these results in
a series of preliminary field experiments with the Swagbot platform, demonstrating
performance improvements in position tracking of up to 7%, and up to 13% for
speed tracking at speeds of 1.5 and 2.5 m/s.

1 Introduction

Accurate navigation in difficult off-road conditions is one of the major challenges
faced in development and deployment of autonomous agents for applications such
as farming and environmental monitoring [1]. This is primarily due to the presence
of arbitrary unknown disturbances, which are hard to model. In fact, estimation of
dynamic systems with unknown inputs has attracted a lot of attention in the systems
and control literature. We refer the reader to [2] for a brief overview of the existing
literature and more recent progress on this subject. Especially in the context of field
robot motion control, the presence of unknown and spatio-temporally varying trac-
tion conditions can degrade the performance of traditional control approaches such
as PID control [3], which do not account for induced wheel slippage on vehicle han-
dling. It is therefore necessary to estimate the traction parameters online, so that the
control algorithm can compensate for wheel slippage and maintain good tracking
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Fig. 1 ACFR’s Swagbot plat-
form pictured during a field
trial at a cattle station near
Nevertire, NSW. Swagbot is
a lightweight, electric robot
designed to collect data on
pasture and livestock, and
perform tasks such as au-
tomomous weeding. The
platform’s rocker chassis de-
sign enables it to clamber over
uneven terrain and low-lying
obstacles.

performance. This is important in situations where the robot is operating near crops
or livestock, to ensure sufficient clearance is maintained.

Nonlinear receding horizon estimation and control (RHEC) is one strategy that
has been successfully applied to this problem, demonstrated on a variety of plat-
forms, and shown to perform well at speeds up to ∼2 m/s [4]–[7]. The focus of
our prior work is on extending the RHEC framework to improve performance at
higher speeds and over more rapidly varying terrains. Building upon insights in
[2], [8]–[10]—and especially the technique in [11]—this is achieved by employ-
ing a structured blocking (SB) strategy, which enforces a blocking structure on the
estimated slip parameter sequence. The performance of the proposed strategy was
demonstrated in simulation to achieve improvements in tracking performance of up
to ∼9% [12, 13] when compared to the previous RHEC approaches [4]–[7], which
fix the slip parameters to a single value over the estimation horizon—henceforth
termed full-horizon blocking (FHB).

With the aim of validating the above method experimentally, in this paper, we im-
plement the nonlinear RHEC approach with structured blocking on the Australian
Centre for Field Robotics’ (ACFR) Swagbot electric ground vehicle—shown in
Figure 1—for trajectory tracking in unknown and variable slip environments.

We compare the results of our method against the FHB strategy adopted in [4]–
[7], and show that the RHEC with SB achieves improved path tracking performance
compared to the FHB method, with a reduction of up to 7% in RMSE. Speed track-
ing at 2.5 m/s was significantly improved also, with a 13% reduction in RMSE,
although a marginal reduction in speed tracking performance was observed for the
1.5 m/s test. Better tracking performance is important for time and energy efficient
operation of the mobile platform, in conjunction with data-driven motion cost mod-
els [14]. Further tests are planned to better characterise and validate control perfor-
mance in more challenging environments.
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2 Related Work

There is an extensive body of literature on slip estimation for wheeled mobile robots
(WMR), covering approaches such as: bounded uncertainty models, extended kine-
matic models (KM) which account for slip effects, machine learning models and
dynamic models. We focus primarily on the extended KM approach here, as it is the
most relevant to the presented work. A more thorough review of the other methods
can be found in our previous works [12, 13].

Extended Kalman filters (EKF) with kinematic constraints have been used for
slip estimation in WMRs, with slip modelled as a white-noise velocity perturbation
[15] or as a multiplicative factor within the KM for a skid-steered WMR [16]. In
[17] a tractor-trailer system with steering slip is modelled by generalized bicycle
kinematics with an additional multiplicative factor, using an EKF to estimate state
and slip parameters, and a nonlinear RHC for path tracking. Lateral tracking errors
of <15 cm on straight and gently curved paths are achieved at 3.3 m/s.

A similar method for modelling slip is adopted in [4] for a tractor, augment-
ing a bicycle KM with two multiplicative factors to capture longitudinal and side
slip (rather, slip in the steering angle)—which are assumed to be constant over the
estimation horizon. Due to the existance of state and parameter constraints, and a
nonlinear measurement function, a more sophisticated receding horizon estimation
(RHE) strategy was required. A receding horizon control (RHC) strategy was used
to control the wheel velocity and steering rate, and this RHEC framework is tested
experimentally on wet, uneven grass, with average tracking errors of 0.26 m on
gentle curves, and 0.6 m in headland turns at ∼2 m/s.

Similar approaches have been applied to tracked and skid-steered WMRs in [5]
and [6], using a unicycle KM with factors for longitudinal and lateral slip, achieving
tracking errors of <12 cm at ∼0.2 m/s for the tracked, and <5 cm at ∼0.3 m/s for
the skid-steered robot. A tractor-trailer system was modelled in [7] by a generalised
tricycle KM with three factors for longitudinal and slide slip. Centralised RHE was
used, and the distributed RHC framework is compared against a centralised strategy,
achieving comparable tracking errors of <10 cm with faster solution times.

Recently, the above RHEC framework was compared against a linear RHC ap-
proach in [18], using input-state linearisation with an EKF estimator to compensate
for system state nonlinearity. It is shown that RHEC produces improved trajectory
tracking performance over the input-state linearisation approach, although at a slight
increase in computation cost.

A tractor is modelled in [19] by an extended bicycle KM with additive side slip
effects on both wheels—ignoring longitudinal slip. A nonlinear adaptive control law
embedded with an RHC algorithm was designed to avoid tracking overshoot, achiev-
ing < 15 cm tracking errors with velocity manually controlled, though subsequent
observations in [20] revealed decreased performance as vehicle speed increases. A
mixed backstepping kinematic and dynamic observer was developed to improve slip
observation, improving tracking performance at speeds of up to 5 m/s.
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3 Preliminaries

Notation: Throughout this paper, [a1, . . . ,an] denotes
[
aT

1 , . . . ,a
T
n
]T , where a1, . . . ,an

are appropriately dimensioned scalars/vectors/matrices. The weighted Euclidean
norm is denoted by

∥∥a
∥∥2

R = aT Ra. Subscripts i, j,k denote the value of that vari-
able at time tk, ie ak = a(tk). I j

i denotes the set of integers between i and j.

3.1 System Model

The vehicle model used in this work is an adaptation of the bicycle KM, which is
known to approximate car-like vehicle behaviour quite accurately [21]–[23]. Slip is
incorporated in the model via two multiplicative slip parameters; one for longitudi-
nal slip, and another for steering slip.

This steering slip formulation was adopted in [17] to capture the effect of vehicle
inertia on the steering angle, yielding a slipping angle proportional to the steer-
ing angle. This allows the slip parameter to remain somewhat constant regardless
of the steering motion, whereas an additive slip parameter would change value
constantly—especially in curves. This model assumes that there are no external
forces acting in the sideways direction on the vehicle, which is typically the case,
save for sharp turns at high speeds and steep inclines.

The equations describing the robot’s motion are as follows:
ẋpos
ẏpos

β̇

δ̇

=


κu1 cosβ

κu1 sinβ
κu1

l tan(µ ·δ )
u2

 , (1)

where xpos [m] and ypos [m] are the position of the virtual ‘rear wheel’—or centre of
the rear axle in the case of a 4-wheeled vehicle—in global cartesian coordinates, β

[rad] is the yaw angle or heading, and δ [rad] is the steering angle; shown in Figure
2. The control variables are the wheel speed with respect to the ground u1 [m/s], and
the steering rate u2 [rad/s]. The parameter l [m] represents the wheel base.

Fig. 2 Schematic illustration
of adapted bicycle model
with steering slip affecting
the front wheel. The steering
angle δ is shown in red, the
effective steering angle µδ is
shown in blue and the vehicle
heading β is shown in green.
The GPS centre is offset by
a distance d from the rear-
axle centre on the Swagbot
platform.
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The parameters κ,µ represent the longitudinal and steering slip respectively. κ

relates commanded wheel speed to actual ground speed, capturing the influence
of slip, and any error or uncertainty in the vehicle odometry. µ results from ve-
hicle inertia’s impact on steering, which is approximately relative to the steering
angle. The parameter value range is conservatively chosen to be [0,1]—assuming
no over-steering and no negative slip. Though circumstances do exist under which
this assumption does not hold, for the environment and speeds tested, this assump-
tion closely matched observations, and enforcing these bounds ensured the problem
solution was both well-behaved, and quickly solvable. The choice of domain also
allows the percentage slip experienced to be expressed as 1−κ and 1−µ .

It is our goal to eventually accommodate the effects of lateral slip in our model,
either by introducing a side-slip term, or adopting a more sophisticated 4-wheel in-
dependent steer/drive model. Both approaches increase the difficulty of the optimi-
sation problem, and in adding additional unobservable parameters, could risk com-
promising the estimates of each. That said, for the conditions and speeds featured in
our experiments, the robot’s momentum was insufficient for significant lateral slip-
page to occur, and thus the primary slip contributions were due to longitudinal and
steering slip. For this reason, and for ease of comparison with the existing motion
models used in related literature, we chose to ignore the lateral slip component.

4 Method

4.1 Receding Horizon Estimation and Control

An RHEC strategy is adopted in this work, which consists of solving two least
squares optimisation problems—one for estimation, and one for predictive control—
resulting in a closed-loop control strategy.

It should be noted that while we detail the standard RHC case in this section,
a packeted RHC approach was implemented on the platform, which publishes the
entire control horizon, rather than just the next action. This improves robustness to
time overrun by ensuring suitable actions are available even when a control itera-
tion is missed. The packeted approach is otherwise identical to standard RHC. In
our testing, time overrun was only observed during the first 1–2s of operation; a
consequence of the initialisation overhead of internal MATLAB functions.

The nonlinear RHEC problem is formulated as follows. Let xk ∈ Rnx represent
the state of the system, and yk ∈ Rny be an observation of this system state—here,
the cartesian position and heading of the robot in world co-ordinates, and the steer-
ing angle. Let uk ∈ Rnu represent the control actions taken—the commanded for-
ward speed and steering angle—and pk ∈ Rnp the system parameters to be esti-
mated, which in our case are the longitudinal and steering slip experienced by the
robot. We assume the system evolves in accordance to the given dynamic model
ẋk = f (xk,uk, pk), and observations are taken in accordance with the measurement
model function yk = h(xk,uk, pk). Let variables (xk,yk,uk, pk) refer to the real pro-
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cess. These each have associated decision and optimal decision variables in the op-
timisation, which we denote (χk,ηk,νk,ρk) and (x̂k, ŷk, ûk, p̂k) respectively. The val-
ues of these decision variables are iteratively varied, subject to the constraints, by the
optimiser, eventually yielding the optimal decision once the objective is minimised.

At each sampling time tk, let the real system state be xk. A sensor measurement
yk is taken, and the RHE uses the past Ne measurements y j, j ∈ I k

k−Ne+1 to es-
timate (xk, pk). This estimate (x̂k, p̂k) is used by the RHC module along with a
time-based reference trajectory λ j =

[
λ x

j ,λ
u
j
]
, λ x

j ⊆Rnx ,λ u
k ⊆Rnu , j∈I k+Nc

k+1 . The
RHC module computes the optimal control actions over a finite forward horizon of
Nc timesteps, and the next action ûk is executed by the robot. This process repeats
each sampling time (∆ t seconds apart) until the end of the trajectory is reached.

4.2 Nonlinear Receding Horizon Estimation

RHE is a powerful optimisation-based estimation technique that provides a system-
atic framework for handling constraints and nonlinearities. In contrast to full infor-
mation estimation (FIE)—which utilises the entire history of available information—
RHE uses only measurements taken within a finite time-frame, and captures the
information of prior measurements in an arrival cost term.

Given Ne past measurements y j, j ∈I k
k−Ne+1 and a measurement model function

h, the constrained estimation problem to be solved at time tk is:

min
χ(·),ν(·),ρ(·)

{
Γk−Ne+1 +

k

∑
i=k−Ne+1

∥∥ηi− yi
∥∥2

Rk

}
(2)

s.t. χ̇ j = f (χ j,ν j,ρ j)
η j = h(χ j,ν j,ρ j)
χmin ≤ χ j ≤ χmax
ρmin, j ≤ ρ j ≤ ρmax, j

 j ∈I k
k−Ne+1

Γk−Ne+1 =

∥∥∥∥χk−Ne+1− x̂k−Ne+1
ρk−Ne+1− p̂k−Ne+1

∥∥∥∥2

Π
−1
k−Ne+1

(3)

where Γk−Ne+1 is the arrival cost function, x̂k−Ne+1 = x̂k−Ne+1|k−Ne is the optimal
state prediction at tk−Ne+1, Rk is the symmetric positive semi-definite weighting ma-
trix equal to the inverse of the measurement noise covariance matrix [24], and Π−1

is the inverted covariance matrix of a smoothed EKF—as considered in [4, 25].
In the context of localisation and slip estimation, this RHE problem chooses the

sequence of positions, control actions and slip values which minimise the least-
squares distance between the extended KM and the measured robot state over the
horizon. Consideration of the motion constraints allows the optimiser to estimate
the extent of the slippage the robot’s motion was subject to.
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(a)

(d)
Ignored

(b)

(c)

SGB(-P)

Penalised Deviation

SB-O

SB-P

Penalised Deviation

SGB-O

Fig. 3 Illustration of the SB extensions. The true κ value—not typically observable, shown here
purely for illustrative purposes—is shown in light grey, and the best fit parameter estimate ρk based
on noisy measurement data is shown in purple. (a) The FIE SB structure for block size S = 5; the
RHE observes only the last Ne time steps. The equivalent FHB block is shown in blue. (b) SB with
an overlap o = 4. The terminal block in the sequence (red) has size 3 < o and thus is suppressed.
(c) SB with block value deviations penalised. (d) SGB variants.

4.3 Structured noise blocking in estimation

One of the main limitations inherent in constrained estimation methods such as
RHE—and especially FIE—is that an optimisation problem must be solved at each
sampling time. This burden can be reduced either via reformulation as a multi-
parametric quadratic program [26], exploiting the optimisation structure [27], or
via the structured blocking strategy introduced in our previous work [11, 12, 13].

The SB strategy has recently been adopted in FIE and RHE for estimating the
process noise sequence [11], and more importantly, it was shown that the segment
structure of the noise sequence from SB FIE must also be enforced over the finite
estimation horizon of RHE (i.e., steps between T −N and T −1). The resulting SB
RHE strategy becomes a dynamic estimator with periodically varying computational
complexity. An illustrative example of this concept is shown in Figure 3 (a).

Our recent work applies this strategy to nonlinear RHEC. In [13], it was observed
that while SB improved state estimation quality, the parameter estimates in the ter-
minal block—used for the following RHC step—fluctuated in quality, due to the
changing size of the terminal block in the receding horizon. A SB with overlapping
blocks (SB-O) strategy was proposed to ameliorate this issue, enabling a trade-off
between state and parameter estimate quality via an overlap extent parameter o. An
example of this strategy is shown in Figure 3 (b).

A number of complementary strategies for SB RHEC were also introduced in
[12], including the addition of a value-shift penalty between consecutive blocks
(SB-P)—shown in Figure 3 (c)—and a strategy combining this with SB-O, termed
SB-OP. Furthermore, gradient blocking methods were also proposed, which, in con-
trast to the aforementioned value blocking methods, instead perform blocking on the
first-derivative of the parameter sequence. An example is shown in Figure 3 (d).



8 Nathan D. Wallace, He Kong, Andrew J. Hill and Salah Sukkarieh

4.4 Nonlinear Receding Horizon Control

The RHC algorithm seeks to predict the system behaviour over a finite time horizon
via minimisation of a cost function composed of states, inputs and references, and
similarly to RHE, the RHC framework also supports handling of state and input
constraints.

For RHC, at the current time tk we wish to predict the control sequence for the
next Nc time steps; thus the constrained optimisation problem to be solved is:

min
ν(·)

{
k+Nc−1

∑
i=k+1

∥∥∥∥λ x
i −χλ

i
λ u

i −νλ
i

∥∥∥∥2

Vk

+Ωk+Nc

}
(4)

s.t. χ̇ j = f (χ j,ν j,ρ j)
χmin ≤ χ j ≤ χmax
νmin ≤ ν j ≤ νmax

 j ∈I k+Nc
k+1

Ωk+Nc =
∥∥∥λk+Nc −χλ

k+Nc

∥∥∥2

VN
(5)

where Ωk+Nc is the terminal cost function, χλ
k ∈ Rnλ is the subset of the state vari-

ables χk with corresponding entries in λk, and Vk,VN are the symmetric positive-
semidefinite weighting matrices.

In the context of path tracking, the RHC problem chooses the sequence of control
actions which, given the current position and slip parameter values, minimises the
least-squares distance between the model predicted motion and the target reference
path over the horizon.

4.5 Solution methods

Both RHE (2) and RHC (4) are nonlinear least squares optimisation problems, so
similar methods can be used to solve both. In this work, the generalised Gauss-
Newton multiple-shooting method—derived from the classical Newton method—is
used. This method was developed specifically for solving least-squares optimisation
problems quickly, by utilising the real-time iteration scheme proposed in [28], which
improves convergence and reduces computation cost.

To solve the constrained nonlinear optimisation problems involved in RHEC, the
ACADO code-generation tool is used, which is an open-source software package
which generates customised real-time RHE and RHC algorithms as efficient, self-
contained C-code modules [29]. The generated dense quadratic sub-problems are
then solved using the qpOASES online quadratic program solver [30].
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5 Experimental Setup

The objective in these real-time experiments is to demonstrate the performance of
the proposed RHEC with SB strategy for accurately following a user-defined tra-
jectory (waypoints and speed) over a grass field on a slight incline—an example of
the scenario described can be seen in Figure 4. We note that while the chosen test
site is homogeneous in terms of terrain type, it does contain a steady incline, which
we expect to impact slip in a more systematic and controlled manner as opposed to
changing the type of terrain—an important property when attempting to characterise
performance during preliminary testing.

The platform used in these experiments is the ACFR Swagbot (Figure 1). The
measurements available from this platform include the GPS position and orientation,
the angles of the steering joints, and the angular rate of the drive joints. The joint
angles are used to calculate the virtual centre steering angle, steering rate and speed.
The pose is provided by the Trimble BD982 GNSS, and the joint measurements by
encoders and Hall-effect sensors for the steering and drive joints respectively.

The system runs using a combination of MATLAB, Python and ACFR inter-
nal software modules, with inter-communication handled using ROS. The RHEC
algorithm is implemented in MATLAB, receiving sensor readings via custom ROS
buffer messages, and publishing the sequence of control commands over the forward
horizon to an Ackermann module, which emulates Ackermann steering behaviour
on the Swagbot platform. The system diagram describing the sensing-estimation-
control-actuation pipeline as implemented on the robot is shown in Figure 5.

The GPS centre is offset to correspond to the robot body frame centre, whereas
the bicycle model position is defined to be the centre of the rear axle—which lies
at a distance of d = 0.64m directly behind the robot centre. Thus the position mea-
surements at the rear axle vary nonlinearly with the platform heading β .

(a) (b)

Fig. 4 (a) Reference (black) and actual (blue) trajectory followed by Swagbot using the SB RHEC
strategy. Contour map displays the elevation in metres. (b) A photograph of the testing area - the
region used for the experiments is highlighted with a red border.
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Fig. 5 System diagram of the RHEC implementation on the Swagbot platform.

Conservative estimates of variance for the sensor measurements were used: σx =
σy = 0.12m for the GPS position measurement and σβ = 0.035 for the heading
(based on the GPS accuracy on the day), σδ = 0.035 for the steering angle, and
σu1 = 0.1 m/s and σu2 = 0.17 rad/s for the actuation measurements.

The RHE and RHC modules are implemented in ACADO and MATLAB. For
simplicity, we opt to use similar weightings as employed in [4]. The horizon length
and step size used are Ne = Nc = 15 and ∆ t = 0.2 s respectively, to ensure sufficient
spatial distance between consecutive sampling points, and a long enough horizon to
allow reliable convergence to the reference path. The steering angle is constrained
to −45◦ ≤ δ ≤ 45◦, and the initial guesses for the estimated slip parameter values
are κ0 = µ0 = 0.5.

5.1 RHE Configuration

The measurement function used in these experiments is h(x,u) = [xpos +d cos(β ),
ypos + d sin(β ),β ,δ ,u1,u2]

T , with d being the offset defined in Section 5. The
measurement variances are used in the calculation of the RHE weighting matrix,

Rk = diag
(

σ2
x ,σ

2
y ,σ

2
β
,σ2

δ
,σ2

u1
,σ2

u2

)−1
∈ R6×6.

To enforce the desired blocking structure within the ACADO solver—as ACADO
does not yet explicitly support parameter estimation—the state and system model
(1) is augmented with the slip parameter terms and two corresponding virtual
controls—uκ ,uµ —as follows:

[
. . . , κ̇, µ̇

]T
=
[
. . . ,uκ ,uµ

]T
. The virtual controls are

introduced to control the rate of change of the slip parameters κ and µ , which are
constrained to be zero everywhere except at the start of a blocking interval.

In the FHB case, uκ ,uµ are set to zero, fixing the parameter value over the hori-
zon. To implement block overlapping, two blocking parameters S and o are intro-
duced, specifying block size and overlap extent respectively. Each sampling time
the bounds for uκ ,uµ are set to be zero everywhere except at the start of a new
block, both defining and enforcing the blocking structure. The overlap constraint is
enforced by suppressing the formation of new blocks after time tk−o∆ t.

To penalise the parameter value shift between blocks, the virtual control terms
uκ ,uµ are added to the measurement function, h(x,u) =

[
· · · ,uκ ,uµ

]T , and corre-
sponding weighting terms wuκ

,wuµ
are added to Rk. The value of these weighting
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terms dictates the extent to which block value deviations are penalised relative to
the other measured values. The value of the virtual uκ ,uµ measurements are always
set to zero, thus penalising the magnitude of the value shift. Additionally, the shift
in parameter values between blocks is constrained to be−1/∆ t ≤ κ̇, µ̇ ≤ 1/∆ t—the
maximum shift in value possible within the bounds.

For the experiments conducted, the SB-OP RHEC variant is used, with a block-
size and overlap S = o = 3, and penalty weightings of wuκ

= wuµ
= 10. We have

considered only the value-blocking variant in this paper, due to its more consistent
performance across all speeds.

It should be noted that persistent excitation is required to accurately estimate the
traction parameters, since the mechanism by which these parameters are observed
is proprioceptive in nature. As the robot’s speed and steering angle approach zero,
these parameters will become unobservable.

5.2 RHC Configuration

A ‘global’ space-based reference trajectory Λ j = [x( j)
re f ,y

( j)
re f ,u

( j)
1,re f ,u

( j)
2,re f ]

T consists
of a sequence of waypoints augmented with a desired control reference. At each tk,
a new time-based ‘local’ trajectory λ is generated from Λ , as defined in Section 4.1.

This is achieved by taking the current position estimate and finding the clos-
est point (x̃re f , ỹre f ) on the global trajectory. The next Nc points along the trajec-
tory, spaced equally ∆ t · ũk

re f metres along the path, are then returned as the lo-
cal trajectory λk. Interpolation is performed to obtain the associated control values
(ũ1,re f , ũ2,re f ). The weighting matrices for the RHC step are Vk = diag(1.0,1.0,5.0,
5.0) and VT = 10 ·Vk, and the steering rate constraints are −45◦/s≤ u2 ≤ 45◦/s.

6 Results and Discussion

Despite being initialised in a slightly off-track position, Swagbot was observed to
quickly converge to the reference trajectory and remain on-track thereafter. For com-
parison of the reference and actual trajectories of the robot, see Figure 4 (a). This
trajectory was tracked one time each for the FHB and SB-OP methods at 1.5 m/s,
and again at 2.5 m/s. The trajectory was manually specified by selecting waypoints,
and as such is composed of straight line segments with abupt turns, which are impos-
sible to track perfectly with an Ackermann vehicle. The controller instead produces
a smoother trajectory, managing to remain close to the reference while also min-
imising steering effort. It is worth noting that while the infeasible reference path
will result in a larger tracking error compared to an equivalent clothoid path, it does
present a more challenging tracking problem for the controller.

The packeted RHC method allows the system to continue tracking even if a sam-
pling time deadline is missed, though this behaviour was only observed in the first
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1–2s of the tracking, due to initialisation overhead. As a safeguard, if more than a
second passes without an update, or if the estimator or controller fails, the robot is
immediately commanded to stop.

An example of the slip parameter estimates for the 2.5 m/s runs can be seen
in Figure 6. We observe that the SB-OP strategy is able to recover far more quickly
from the (intentionally) poor initial slip estimate than the FHB strategy, rapidly con-
verging to the expected slip values, albeit with some initial oscillation in µ . Overall,
the values for both parameters tended to fall within the 0.8–1 range. While slip
bounds of 0–1 were chosen as the parameter constraints, these were fairly conser-
vative for the conditions, and these bounds may be relaxed or tightened to suit the
environment. Tighter ranges would serve to increase speed of convergence, and re-
duce risk of instability due to noise and outlier measurements, though the model
would then have difficulty accounting for motions resulting from slippage outside
the described range.

The value of κ gradually decreased over the course of the run, indicating an in-
crease in slip correllating with the gradual increase in slope along the trajectory
(from roughly −5◦ to 5◦). The large initial oscillations in the µ estimate were ex-
pected, as the steering slip is unobservable at the initial steering angle and rate of
zero. Once turn commands are given, the value quickly converges to a more reason-
able estimate. We do see an increase in steering slip occurring at the 9–15s interval,
which corresponds to when the sharpest turn is negotiated.

In terms of path tracking, the impact of SB-OP’s improved slip estimation per-
formance can best be seen in the 0–5s interval of Figure 7 (a), where the strategy
recovers quickly from a larger initial position error, and displays better position
tracking performance up until the point that the two strategies’ estimates converge.
This clearly demonstrates SB-OP’s improved ability to compensate for sudden and
significant changes in slip conditions. This same trend is also reflected in both the
speed tracking and steering effort minimisation, as shown in Figure 7 (b) and (c)
respectively.

There is no significant drift in the magnitude of the position error over the run
(Figure 7 (a)), as would be expected in the presence of nonuniform slip conditions,
indicating that the controller has successfully compensated for the increased slip-

(a) (b)

Fig. 6 Estimated slip parameter values for RHE at 2.5 m/s. (a) Estimated κ value. (b) Estimated µ

value. Black dashed line denotes parameter upper bound of 1.
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Fig. 7 Tracking error comparison between FHB and SB-OP at 2.5 m/s. (a) Position error, mea-
sured as distance from closest point on reference path. (b) Speed (u1) error. (c) Steering rate (u2)
error. Note that the purpose of the steering rate tracking is to minimise steering effort, rather than
perfectly track a given profile (ie. u2,re f = 0), thus zero error only occurs when not actively turning.

page in the uphill section; this is also mirrored by the decrease in estimated κ in
Figure 6 (a). We do however observe an increase in speed tracking error (Figure 7
(b)) for this segment, indicating that the longitudinal slip experienced is not wholly
being compensated for. We suspect the reason for this lies in our overly conserva-
tive initial estimate for the wheel speed measurement covariance, which lowers the
weighting of this term in the optimisation problem, and thus limits how aggressively
the speed error is minimised. Further characterisation of the speed sensing pipeline
is planned in order to provide a more realistic covariance estimate.

The tracking performance of the methods at each tested speed is summarised in
Figure 8, displaying RMSE for the position and speed; adjusting for the discrepancy
in starting displacement. The improved slip estimation afforded by the SB-OP strat-
egy is reflected by a 4–7% reduction in root-mean-squared error (RMSE); an overall
improvement in tracking performance comparable with our simulation results.

In terms of speed tracking, a significant improvement was observed at 2.5 m/s,
with ∼13% reduction in RMSE. For 1.5 m/s, the speed tracking of SB-OP was
slightly worse than FHB, and we suspect that this may be due to the increased sus-
ceptability to measurement noise at these lower speeds, where the slip variation over
the horizon is less significant, and thus better approximated by a larger block-size.

Optimal selection of Ne,Nc,S,o,wuκ
,wuµ

is guaranteed to yield tracking perfor-
mance at least as good as FHB in all cases, as FHB is a special case of SB-OP (where
o = Ne)—the reduced performance seen here is a result of a suboptimal manual se-
lection of these parameters. At lower speeds, the spatial interval between successive
samples—and consequently, the spatial extent of the horizon—is reduced substan-
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Fig. 8 Tracking RMSE for each run, for (a) the position, and (b) the speed.

tially, and thus measurement noise becomes a larger contributor to variance between
the samples, compromising parameter estimation accuracy. One way to resolve this
issue involves increasing the sampling interval, and thereby the spatial span of the
horizon, however, sparse sampling is undesirable in a control context, as it limits the
controller’s ability to adapt quickly to changes in conditions. With SB, it is possible
to increase the horizon length without adjusting the sampling interval, whilst mod-
ulating the block size S to curtail the number of parameters to estimate, and thus
the complexity of the problem, emulating the benefits of larger sampling intervals
without sacrificing controllability.

Similarly, o encodes the minimum spatial extent necessary for a good current
slip estimate, and wuκ

,wuµ
encode the expected rate of spatial variance of surface

slip in the environment. All these quantities can reasonably be selected as a function
of platform speed, requiring only determination of a sufficient spatial interval for
accurate parameter estimation. Thus only one design parameter would be required
to determine a near optimal configuration for the SB-OP across the full range of op-
erating speeds. Optimal selection of o,wuκ

,wuµ
, however, would also be dependent

on the roughness (spatial slip variance) of the terrain.

7 Conclusion

An RHEC algorithm for tracking trajectories in slippery environments was imple-
mented on the Swagbot platform and preliminary testing of the strategy was per-
formed. Both FHB and SB methods were tested, and their performance compared.
Results demonstrated SB improved tracking performance by 4–7% over FHB. Fu-
ture work will involve further testing and validation on more varied and challenging
terrain conditions, optimal blocking parameter and horizon selection as a function
of speed, and application of the RHEC SB strategy with a more complex 4 wheel
independent steer/drive model.
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