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Abstract
Networks of systems are of increasing relevance, in particular in robotics, where a cooperating and
communicating network of robots can achieve things unachievable by a single robot. In such applications,
the robots themselves as well as the overall system consisting of the robots, their task space and the
objects therein can be modeled as multibody systems. Employing a network of systems with underlying
distributed decision-making algorithms is in some ways more robust than centralized or single-system
approaches since the network can potentially reorganize to compensate for breakdowns of individual
systems. However, networked, interconnected behavior is usually rather intricate to understand, design,
and analyze, which also makes it vulnerable. In particular, in uncontrolled environments, it may happen
that malevolent agents enter the network, derogating the performance of the whole network. Due to inter-
dependencies and dynamic couplings, it may not be immediately clear to spectators which system is the
culprit. This work proposes and discusses two distinct approaches to automatically detect anomalous
behavior in networks of multibody systems, one of which is based on inverse optimal-control, whereas
the other is based on machine learning. Anomalous behavior in this work reaches from merely passively
erroneous behavior, e.g., as it may appear due to defects, to actively antagonistic behavior that may strike
a balance between causing maximum damage and remaining undetected.
This work considers two prototypical problems from networked robotics that serve as building blocks for
many practical applications. Firstly, formation control is considered, where the systems need to coordi-
nate their states relatively to one another, e.g., a group of mobile robots attaining a certain formation, see
the left-hand side of Figure 1 for an illustrative simulation example. Therein, four robots use a formation
controller to track an ∞-shaped path with the geometric center of the formation while keeping a square
formation that is rotated at a constant rate around the formation center. The trajectories of the robots are
plotted in the same colors as the circles representing the robots. Formation control can, e.g., be useful for
cooperative manipulation tasks [1]. Secondly, coverage problems are considered, where the robots need
to optimally cover an area of interest, which can be useful for surveillance and monitoring purposes, e.g.,
in emergency scenarios. A simulated coverage scenario is illustrated on the right-hand side of Figure 1.
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Figure 1: On the left, the red-colored robot’s behavior is correctly detected as anomalous by the inverse
optimal control approach, revealing that, goal-wise, it puts more emphasis on low control effort than
on high accuracy. On the right, in those time instances marked by a square, the red-colored robot is
correctly detected as anomalous by the machine-learning-based approach. The antagonistic robot aims
to get closer to its red-shaded area of interest instead of following the overall goal of the swarm.



The two proposed identification approaches are furnished as follows. The first approach makes use of
the fact that, for technical systems such as robots, the dynamics and physical functioning of the system
are often known. In such a case, an antagonistic robot may be subject to the same physical dynamics as
a benevolent robot but it may use a controller designed to achieve a different goal. Then, a deterministic
behavior model is identified for each robot in the form of a model predictive controller, where the cost
function is identified using available observation data from the network to fit the behavior of each robot.
This approach fits into the general framework of inverse optimal control [2], which has mainly seen ap-
plications in biomechanics as a way to analyze motion in a non-networked setting [3]. Having identified
the goals of each robot in the form of an individualized cost function, this contribution examines whether
and how this allows to deduce which robot may behave anomalously.
In other applications, an a-priori model of the dynamics might not be available, system behavior may
not be fully deterministic, or formulating an inverse optimal control problem may require too much
information on the real decision-making structure employed. In such instances, it can be more fitting to
directly learn a stochastic behavior model of each system in the network from observed data using tools
from machine learning. Hence, this work’s second approach builds upon a so-called normalizing flow [4],
which is a type of neural network that can be used to approximate an unknown probability distribution
from data. The network learns an invertible mapping from a predefined, simple base distribution (e.g.,
Gaussian or uniform) to the target distribution. This way, based on observation data from benevolent
robots, a conditional probability distribution is learned for the actions of a benevolent robot given the
current state of the coverage task. It is then expected that an anomalous robot will more often perform
actions that are in areas of low probability density, permitting to categorize the robots’ dynamic behavior.
Still, a direct usage of a normalizing flow can be problematic in coverage tasks since the network’s
inputs, i.e., its features, which are of fixed dimensionality, need to describe the state of the coverage
task. However, depending on the setting and situation, describing the task’s state requires a varying
number of pieces of information, such as relative positions of a varying number of neighboring robots.
To that end, we employ two long-short-term-memory networks (LSTMs) to embed the information on the
coverage problem’s state in a latent space of fixed dimensionality. One LSTM is used to deal with position
information of the robots, whereas the other deals with information on the boundaries of the coverage
area. Concretely, the LSTMs are fed the necessary information as a sequence of inputs of variable
lengths, whereas their outputs form the fixed-dimension state description employed by the normalizing
flow. The whole network structure, consisting of LSTMs and normalizing flow, is trained end to end.
This contribution shows that, when using the two approaches in settings fitting their underlying assump-
tions, very satisfactory detection rates can be achieved. Furthermore, the limits of the methods are dis-
cussed explicitly, also in respect to one another. In addition, it is examined how the picture changes when,
instead of operating on data from multibody simulations, data from hardware experiments is employed.
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