
EasyChair Preprint
№ 5095

Differential Analysis of X86-64 Instruction
Decoders

William Woodruff, Niki Carroll and Sebastiaan Peters

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 3, 2021

Differential analysis of x86-64 instruction decoders
William Woodruff§

Trail of Bits
New York, New York

william@trailofbits.com

Niki Carroll†
George Mason University

Fairfax, Virginia
ncarrol5@gmu.edu

Sebastiaan Peters†

Eindhoven University of Technology
Eindhoven, The Netherlands

s.peters2@student.tue.nl

Abstract—Differential fuzzing replaces traditional fuzzer or-
acles like crashes, hangs, unsound memory accesses with a
difference oracle, where an implementation of a specification
is said to be potentially erroneous if its behavior differs from
another implementation’s on the same input. Differential fuzzing
has been applied successfully to cryptography software and
complex application format parsers like PDF and ELF.

This paper describes the application of differential fuzzing
to x86-64 instruction decoders for bug discovery. It introduces
MISHEGOS, a novel differential fuzzer that discovers decoding
discrepancies between instruction decoders. We describe MISHE-
GOS’s architecture and approach to error discovery, as well as
the security implications of decoding errors and discrepancies.
We also describe a novel fuzzing strategy for instruction decoders
on variable-length architectures based on an over-approximated
model of machine instructions.

MISHEGOS produces hundreds of millions of decoder tests per
hour on modest hardware. We have used MISHEGOS to discover
hundreds of errors in popular x86-64 instruction decoders with-
out relying on a hardware decoder for ground truth. MISHEGOS
includes an extensible framework for analyzing the results of a
fuzzing campaign, allowing users to discover errors in a single
decoder or a variety of discrepancies between multiple decoders.
We provide access to MISHEGOS’s source code under a permissive
license.

Index Terms—differential testing, software testing, automatic
test generation

I. INTRODUCTION

Instruction decoding is the most basic phase in disassembly
and forms the bedrock of every decompilation and binary anal-
ysis workflow. Subsequent steps in these workflows rely on the
fidelity of the instruction decoder to perform accurate function
identification, code and data disambiguation, and control flow
graph recovery. Instruction decoders are also pervasive in
modern computing environments, with roles ranging from just-
in-time compilers (JITs) in web browsers [1] and operating
system kernels to the reverse engineer’s workbench [2].

The role of an instruction decoder is singular and hermetic:
it must decode individual machine code instructions into an
abstract representation suitable for analysis or pretty-printing
as assembly. Instruction decoders perform the software equiv-
alent of hardware decoders, which perform the initial phase
of program interpretation within physical CPUs. The latter
are the sole source of ground truth about a machine code
instruction’s true semantics on a particular machine. Conse-
quently, software decoder errors can result in discrepancies

§Proceedings author.
†Research contributor.

between sets of instructions accepted by the decoder and by
real hardware. The instruction decoder may over-accept inputs
that are not valid instructions, under-accept inputs that are
valid but with unusual or uncommon encodings, or mis-accept
inputs as valid but with incorrect semantics. Two separate
instruction decoders may, furthermore, incorrectly disagree or
agree on the validity or invalidity of a potential instruction.

Errors and discrepancies in and between individual in-
struction decoders (or instruction decoders and a particular
hardware decoder) have historically been treated as minor
problems, best left for manual resolution by the reverse engi-
neer at their workbench. We argue that recent developments in
programming practices challenge this treatment, and instead,
encourage the treatment of decoding bugs as potential sources
of vulnerabilities:

• Antivirus (AV) tools use binary analysis to detect ma-
licious program behavior [3] and deny execution to
malware, and are thus dependent on the accuracy of the
underlying instruction decoder. Errors in the instruction
decoder might result in false negatives, either through
“fail-safe” behavior when the AV detects instructions that
it cannot decode correctly, or through undetected mis-
decoding that obfuscates the presence of a malicious
payload [4], [5].

• Software sandbox frameworks [6] need accurate instruc-
tion decoding to determine the safety and soundness of
client code in the sandboxed environment. Differences
between the sandbox’s instruction decoder and the ground
truth of the hardware decoder can result in sandbox
escapes.

• JIT compilation is an established technique for improving
the performance of interpreted and domain-specific lan-
guages (DSLs) in both kernel [7], [8] and user space [9].
JITs depend on decoder-supplied semantics to emit safe
and correct machine code for untrusted inputs. Errors
in these semantics might cause emission of exploitable
machine code.

• Both static and dynamic binary translators, such as
Rosetta [10] and McSema [11], rely on the correctness
of the instruction decoder when translating machine code
to a target architecture or intermediate representation. We
speculate that errors in the translator’s instruction decoder
may allow an attacker to convert benign machine code
into exploitable machine code on the target architecture.

Fig. 1. An overapproximation of a “core” x86-64 instruction.

The challenges of accurate instruction decoding vary by
architecture, and can be divided into two tasks: correctly
accepting all hardware-accepted machine instructions and cor-
rectly denying all hardware-denied instructions. These two
tasks are occasionally in conflict: a instruction decoder might
exchange simplicity for over-accepting invalid instructions, or
under-accepting valid instructions that a compiler is unlikely
to emit.

Among popular instruction sets, the x86-64 instruction
format is notoriously complex (Fig. 1) and difficult to decode
correctly. Its challenges include:

• Variadic instruction length: a valid x86-64 instruction
can range from 1 to 15 bytes. A decoder must always
calculate the correct instruction length; failure to do so
results in both an incorrect decoding for the current
instruction and incorrect decodings for any subsequent
instructions in the stream due to misalignment.

• Multiple internal instruction formats: x86-64 decoders
must handle “core,” x87, VEX/EVEX, and other for-
mats for different components of the instruction set
architecture (ISA). These internal formats increase the
complexity of the decoder and thus the likelihood of
misinterpretation.

• Host-relative validity: the validity and semantics of a
potential instruction are predicated on the host CPU’s
vendor (Intel, AMD, Cyrix, VIA), feature availability
(e.g., AVX512 and CET), operating mode (real, protected,
long), and virtualized context (AMD-V, VT-x, or not
virtualized).

• Alternative encodings: the “core” x86-64 instructions
include duplicate encodings for many register-to-register
operations [12], and SIMD instructions can be encoded
in either a “legacy” format or with VEX [13]. A decoder
must accept all duplicate forms and must not assume that
only one form occurs in a particular instruction stream.
Fig. 2 shows some duplicate encodings for identical

mov eax, ebx

89h D8h 8Bh C3h

shufps xmm0, xmm0, 0

0Fh C6h

C0h 00h

C5h F8h C6h

C0h 00h

Fig. 2. Instruction semantics and their alternative encodings.

instruction semantics.

These complexities make x86-64 instruction decoders
uniquely susceptible to implementation errors. Subsequent
sections will discuss automated discovery of decoder errors,
prior research efforts, and offer a rationale for the novel
approach that we take in MISHEGOS.

II. BACKGROUND AND PRIOR WORK

A. A taxonomy of decoding errors

We establish the following taxonomy for the purposes of
describing errors in instruction decoders. Errors in instruction
decoders fall into three categories: over-supporting, under-
supporting, and mis-supporting. Examples of all three are
given in Table I.

1) Over-supporting: An over-supporting error occurs in an
instruction decoder when an invalid instruction candidate is
accepted, resulting in a “successful” but incorrect decoding in
a case where a hardware decoder would fail.

2) Under-supporting: An under-supporting error occurs in
an instruction decoder when a valid instruction candidate is
rejected, resulting in a unsuccessful decoding in a case where
a hardware decoder would succeed.

3) Mis-supporting: A mis-supporting error occurs in an
instruction decoder when a valid instruction candidate is
accepted but incorrectly interpreted, resulting in a “successful”
but incorrect decoding where a hardware decoder would
succeed correctly.

B. Automatic testing of instruction decoders

Efforts to automate the testing of instruction encoders and
decoders have historically fallen into two general categories:
exhaustive search and fuzz strategies.

TABLE I
EXAMPLES OF DECODING ERRORS

Type of error Decoder Candidate Expected Actual
Over-support DynamoRIO 662e4d0f37 INVALID getsec

Under-support Capstone f30f38de18 aesenc256kl xmm3, zmmword ptr [rax] INVALID
Mis-support libopcodes 66650f85df03e6d2 jnz 0xffffffffd2e603e7 gs jne 0x3e5

1) Exhaustive search: The exhaustive approach to instruc-
tion decoding is the simplest approach, and is based on the
observation that most instruction formats are finite languages
over Σ = {0, 1, . . . , 255} of three possible input spaces:

L = ΣN (1)

L = Σ{N1,N2,...,Nn} (2)

L = Σ{1...N} (3)

where N is either the absolute (for fixed ISAs) or maximum
(for variadic ISAs) length of a valid instruction. (2) represents
a special case where the ISA is variadic, but only for a specific
subset of values in {1, . . . , N}. A concrete example of this is
ARM with Thumb, where N = 4 and instructions can be 2
(Thumb) or 4 (ARM) bytes long but never 1 or 3.

Algorithm 1 shows an exhaustive linear search of L, using
the hardware decoder as a source of ground truth. Paleari et
al. [14] and Domas [15] describe suitable implementations of
DECODE and DIFFER with a hardware decoder as ground truth
for Algorithm 1.

Algorithm 1 Exhaustive search with hardware truth.
1: procedure EXHAUSTIVE-SEARCH(L)

Require: L is the set of all possible instructions
2: H ← HARDWARE-DECODER()
3: S ← SOFTWARE-DECODER()
4: for l ∈ L do . Parallel factor M for M host cores
5: lh← H.DECODE(l)
6: ls← S.DECODE(l)
7: if DIFFER(lh, ls) then
8: RECORD(lh, ls) . Save discrepancy for triage
9: end if

10: end for
11: end procedure

Exhaustive search is feasible for small |L| on modest
hardware, is parallelizable across M host cores, and has been
applied successfully to the verification of the ARM encoder-
decoder used by LLVM [16], albeit with a vendor supplied
“golden” decoder for ground truth rather than a hardware
decoder.

Table II shows N and |L| for common ISAs, as well as a
time estimate (E) for a complete search using an optimistic
target of 1 million tests/second. At E, it would take us
approximately 2.54 ∗ 1024 years to analyze the entire input
space of a single x86-64 instruction decoder. As such, we

currently consider exhaustive search infeasible for x86-64
instruction decoders. Another approach is necessary.

TABLE II
N , |L|, AND E FOR COMMON ISAS

ISA Variadic? N |L| E (days)
ARMv7 (no Thumb) No 4 4.29 ∗ 109 2.98

ARMv7 (Thumb) Yesa 4 4.29 ∗ 109 2.98
z/Architecture Yesb 6 2.81 ∗ 1014 1.95 ∗ 105

x86-64 Yes 15 1.33 ∗ 1036 9.27 ∗ 1026

IA-64 No 16c 3.40 ∗ 1038 2.36 ∗ 1029

aΣ{2,4}
bΣ{2,4,6}
cIA-64 bundles multiple instructions for decoding.

2) Fuzz strategies: Fuzzing [17] is a well-established tech-
nique for testing programs with input spaces that are either
difficult to model or impossible to test exhaustively. A fuzzer
(or fuzz tester) feeds generated inputs into a target program,
relying on an oracle [18] to determine whether a particular
input has caused an erroneous program state. Traditional
oracles include abnormal program terminations (“crashes”),
hangs, or unexpected memory accesses; triggering the oracle
causes the fuzzer to mark the input as the source of a bug
and retain it alongside other program state for subsequent
minimization, deduplication, and analysis (Fig. 3).

Instruction decoders are typically devoid of traditional
fuzzing oracles due to their constrained inputs and outputs.
Consequently, instruction decoder fuzzers are typically dif-
ferential fuzzers [19]. Differential fuzzers utilize a difference
oracle: the output of the decoder is compared to a reference
output; if they differ, then the input is considered the source
of a potential bug and retained. The reference can be a
static collection of known good results, a hardware decoder,
or an entirely different instruction decoder. Adding multiple
sources of reference diminishes the likelihood that all decoders
incorrectly accept or reject an input, which in turn decreases
the likelihood of missing erroneous inputs (Fig. 4).

Instruction decoder fuzzers fall into one of two categories:
“random” or “structured”. Each has strengths and weaknesses:
a “random” fuzzer ignores the documented instruction format
and is therefore well suited to discovery of undocumented or
mis-documented instructions [15], but is unlikely to discover
decoding bugs that arise from the internal complexities of the
instruction format. A “structured” fuzzer uses the instruction
format to guide input generation and is therefore more likely
to discover discrepancies between the specification and the de-

generate
inputmutation engine

run target

does the
target
crash?

discard
target state

save input
and target

state

no

yes

Fig. 3. A traditional fuzz lifecycle with a crash oracle.

generate
inputmutation engine

target 1 target . . . target N

do the
effects
differ?

discard
target states

save input
and target

states

no

yes

Fig. 4. A differential fuzz lifecycle with a difference oracle.

coder, but is unlikely to discover places where the instruction
decoder deviates significantly from the specification.

Two special sub-techniques of “structured” instruction de-
coder fuzzing have been the subject of prior research. The
first case is CPU-assisted fuzzing [14], which uses a hardware
decoder to generate instructions that are known to decode
correctly.

The second case is inferred structural fuzzing [20], wherein
initially valid inputs are used to seed the fuzzer. The inputs
are then mutated bit-by-bit and decoded, allowing the fuzzer
to label individual bits as field, reserved, unused, or structural.
These labelings are further refined to compensate for depen-
dencies between bits, allowing for valid instruction inference
without a hardware decoder.

Critically, both of these “structured” techniques focus on
discovering valid instructions that instruction decoders report
as invalid: they do not attempt to discover invalid instructions
that decoders report as valid. We judge the latter case to be
of equal research interest, particularly in light of the prolifer-
ation of binary translation and emulation techniques that are
fundamentally dependent on the fidelity of their underlying
decoders.

C. Differential fuzzing with multiple instruction decoders

Prior research efforts to fuzz instruction decoders have
primarily focused on a singular difference oracle: whether the
targeted instruction decoder differs from a single source of
ground truth. Under a singular difference oracle, the source of
ground truth is either a “golden” instruction decoder presumed
to be reliable [16], or a hardware decoder.

We judge the use of a “golden” decoder to be problematic
for x86-64: Intel’s XED, the closest thing to a reference
decoder, has a history of implementation errors resulting in
erroneous decodings. More generally, we regard difference
against a “golden” decoder to be less interesting (from the
attacker’s perspective) than difference against multiple de-
coders of unknown quality embedded throughout the software
lifecycle.

Prior work on fuzzing multiple x86-64 instruction decoders
with multiple difference oracles is limited. An important prior
multiple-oracle approach is described in Paleari, et al. [14],
where it is termed N-version disassembly. Despite their use
of multiple decoders, Paleari, et al., include a hardware
decoder (the N th in “N-version”) as the ultimate source of
ground truth in their approach. Consequently, the N-version
technique struggles to distinguish over-supported instructions
in individual decoders from instructions that are not supported
by a particular hardware decoder.

Another important approach is described in Jay & Miller
and implemented in FLEECE [20]. In FLEECE, multiple de-
coders are fed inputs generated by an inferred structure fuzzer;
each decoder’s result (in the form of pretty-printed assembly)
is subsequently reassembled and checked for discrepancies.
In practice, variations in pretty-printing between different
instruction decoders means that this approach requires FLEECE
to perform significant normalization of each decoder’s output

Fig. 5. A bird’s eye view of MISHEGOS’s architecture.

before attempting reassembly, introducing overhead to the
process of fuzzing additional decoders. FLEECE also relies
on the GNU Assembler [21] for reassembly, which uses one
of its decoder targets (libopcodes) internally.

III. MISHEGOS

We describe and justify MISHEGOS’s architecture, input
mutation strategies, and analysis framework below. Fig. 5
depicts the high level architecture.

A. Overview

MISHEGOS is a differential fuzzer for x86-64 instruction
decoders. Instead of relying on a “golden” decoder or hard-
ware decoder for ground truth within its difference oracle,
MISHEGOS runs multiple unreliable decoders in parallel on an
instruction candidate and uses their consensus or disagreement
to mark the input as likely erroneous.

As of writing, nine x86-64 instruction decoders written in
a variety of languages can be fuzzed by MISHEGOS:
• GNU libopcodes (C) [21]
• Capstone (C++) [22]
• DynamoRIO (C and C++) [2]
• fadec (C) [23]
• Udis86 (C) [24]
• Intel XED (C) [25]
• Zydis (C) [26]
• bddisasm (C) [27]
• Iced (Rust) [28]
MISHEGOS compensates for differences in performance

between each instruction decoder by implementing an asyn-
chronous input and output slot system: no decoder running
under MISHEGOS ever waits for its peers to finish decoding the
same instruction candidate. Each decoder’s results are emitted
asynchronously and are grouped into cohorts as all outputs
for an input become available, with cohorts representing the

most basic unit within MISHEGOS’s subsequent analyses. The
details of the slot and cohort mechanisms are hidden from
each decoder by the worker abstraction.

We discuss each component in detail below.

B. Mutation strategies

MISHEGOS addresses the problems identified above in the
“random” and “structured” strategies by implementing a novel
mutation strategy that we term the sliding strategy.

The sliding strategy is built around the observation in Fig 1:
no valid x86-64 instruction ever exceeds 15 bytes, but the
the x86-64 machine code structure allows us to construct an
overapproximation of a valid instruction, up to 26 bytes in
length. We term this overapproximated instruction the maximal
instruction candidate.

To generate the maximal instruction candidate, we combine
the “random” and “structured” strategies: the “structured”
strategy is used to produce plausible values for the prefixes
(both legacy and REX) and core opcode semantics of the
maximal candidate, while the “random” strategy is used to pro-
duce random values for the ModR/M, SIB, displacement, and
immediate fields of the candidate. We split the fields between
the internal strategies by observing their internal structure and
search spaces: the prefixes and opcodes are highly structured,
while ModR/M and SIB are both single-byte lookup tables and
the immediate and displacement are constant literals subject
to minimal interpretation by the instruction decoder. Of note
is our decision to not always produce a maximal candidate of
exactly 26 bytes: our strategy may produce shorter candidates
as part of selecting shorter individual fields, but the resulting
candidate will always be an overapproximation. Algorithm 2
shows the process for generating the maximal candidate;
the result is a maximal candidate. The STRUCTURED and
RANDOM procedures for each field are elided for brevity and
can be found in MISHEGOS’s mutator.c.

Algorithm 2 Maximal instruction candidate generation.
1: procedure MAXIMAL-CANDIDATE
2: C ← EMPTY-CANDIDATE()
3: C.PREFIXES ← STRUCTURED-PREFIXES()
4: C.REX ← STRUCTURED-REX-PREFIX()
5: C.OPCODE ← STRUCTURED-OPCODE()
6: C.MODRM ← RANDOM-MODRM()
7: C.SIB ← RANDOM-SIB()
8: C.IMMEDIATE ← RANDOM-IMMEDIATE()
9: C.DISPLACEMENT ← RANDOM-DISPLACEMENT()

10: return C
11: end procedure

Once a maximal instruction candidate has been generated,
we perform our sliding strategy to convert it into a series of
inputs suitable for feeding into each of MISHEGOS’s decoders.
Each input derived from the maximal candidate is termed a
sliding candidate.

To generate our sliding candidates, we start at the first byte
(index 0) of our maximal candidate and extract a slice of

N bytes (i.e., 15 bytes on x86-64) for our sliding candidate,
where N is our absolute or maximum ISA instruction length.
We then iterate moving rightwards, extracting further “win-
dows” until we’ve exhausted our maximal candidate’s ability
to produce sliding candidates of length N . Algorithm 3 shows
the process of generating sliding candidates from a maximal
candidate, and Fig. 6 visualizes the results of windowing.

Algorithm 3 Sliding instruction candidate generation.
1: procedure SLIDING-CANDIDATES(C, N)

Require: C is a candidate from MAXIMAL-CANDIDATE()
Require: N is the ISA’s maximum instruction length

2: W ← ∅
3: OFFSET ← 0
4: while OFFSET + N < C.LENGTH() do
5: I ← C.SLICE(OFFSET, N)
6: W ←W ∪ {I}
7: OFFSET ← OFFSET + 1
8: end while
9: return W

10: end procedure

This strategy of overapproximation and sliding produces
sequences of fuzzing inputs with properties from both the
“random” and “structured” strategies: the first sliding candi-
dates are generated according to the rough expected structure
of x86-64 instructions, while later sliding candidates become
increasingly random. Mishegos also implements the “random”
and “structured” strategies for the purposes of contrast; we
analyze all three in the results below.

C. Worker architecture and ABI

MISHEGOS supports a broad range of instruction decoders,
written in a variety of languages and with a variety of resource
management patterns.

To ease the integration of diverse instruction decoder imple-
mentations, MISHEGOS provides the worker abstraction. Each
worker runs in its own process and handles input and output
slot management for the underlying decoder, allowing each
decoder to focus solely on the task of decoding.

Workers load their underlying decoders as shared objects,
communicating with them through a minimal C ABI (List-
ing 1). Within the ABI, only worker_name and try_decode are
required—workers may choose not to implement worker_ctor
and worker_dtor if they do not require special initialization
before attempting decoding.

The C ABI ensures compatibility with virtually all lan-
guages and runtime environments and reduces interactions
between each decoder and MISHEGOS to just four touchpoints.

The Capstone worker (capstone.c) illustrates the simplicity
of the decoder integration into MISHEGOS (Listing 2).

D. Automated analyses

A MISHEGOS fuzzing campaign produces volumes of co-
horts. Each cohort has K outputs for K decoders enabled

Listing 1
THE MISHEGOS WORKER ABI

/* a unique identifier for the worker,
* like "capstone"
*/
char *worker_name;

/* an optional constructor */
void worker_ctor();

/* try to decode one instruction,
* storing the results in result.
*/
void try_decode(decode_result *result,

uint8_t *raw_insn,
uint8_t length);

/* an optional destructor */
void worker_dtor();

Listing 2
THE CAPSTONE WORKER

#include <capstone/capstone.h>

#include "../worker.h"

static csh cs_hnd;

char *worker_name = "capstone";

void worker_ctor() {
if (cs_open(CS_ARCH_X86, CS_MODE_64, &cs_hnd)

!= CS_ERR_OK) {
errx(1, "cs_open");

}
}

void worker_dtor() {
cs_close(&cs_hnd);

}

void try_decode(decode_result *result,
uint8_t *raw_insn, uint8_t length) {

cs_insn *insn;
size_t count = cs_disasm(cs_hnd,

raw_insn,
length, 0, 1,
&insn);

if (count > 0) {
result->status = S_SUCCESS;
result->len =

snprintf(result->result,
MISHEGOS_DEC_MAXLEN,
"%s %s\n",
insn[0].mnemonic,
insn[0].op_str);

result->ndecoded = insn[0].size;

cs_free(insn, count);
} else {
result->status = S_FAILURE;

}
}

f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa
f0 f3 67 64 46 0f 3a 2d 39 2f f3 65 26 f2 5a c9 bd ea fd 7f 4c c4 0f df c7 fa

Fig. 6. Results of sliding candidate generation. The colors, in order, represent the legacy prefixes (blue), REX prefix (red), opcode bytes (green), ModR/M
(orange), SIB (brown), displacement (magenta), and immediate fields (purple); the bubbles represent each sliding candidate generated from the overarching
maximal candidate.

Listing 3
AN ANALYSIS SPECIFICATION

size-discrepancies:
- dedupe
- filter-all-failure
- filter-ndecoded-same
- filter-incomparable
- find-size-discrepancies
- minimize-input
- normalize

during the campaign. Every cohort is associated with its
instruction candidate.

The design of the MISHEGOS analysis framework mirrors
the design of the LLVM pass planner: analyses are described
as a sequence of passes, with individual passes being capable
of expressing their dependency on other passes. The analysis
framework loads a user-specified analysis, verifies that its in-
ternal passes form a directed acyclic graph, and runs the passes
in a pipeline to completion. Listing 3 shows a specification for
a single analysis, composed of multiple internal passes.

Individual passes within an analysis have two fundamental
actions available to them: they can either filter cohorts from the
results of a fuzzing campaign, or they can modify cohorts for
the purposes of normalization or augmentation with additional
metadata. We supply examples of each in Listing 4 and
Listing 5.

We compensate for the lack of a hardware or “golden”
instruction decoder by supplying analyses that target specific
decoders, using majority consensus among their peers as our
oracle for probable decoding errors. We also supply “generic”
analyses that target all decoders enabled during a campaign.
All analyses, whether generic or targeted, discover discrepan-
cies consistent with our taxonomy in §II-A:

1) Over-supporting and under-supporting: We define a
discrepancy between decoders to be the likely result of over-
supporting in a particular instruction decoder if a majority
of its peers agree that the instruction is invalid. Similarly, a
discrepancy between decoders is said to be the likely result
of under-supporting in a particular instruction decoder if a

Listing 4
A FILTERING ANALYSIS PASS

warn "[+] pass: filter-any-failure"

count = 0
$stdin.each_line do |line|
result = JSON.parse line, symbolize_names: true

if result[:outputs].any? { |o| o[:status][:name]
== "failure" }

count += 1
next

end

$stdout.puts result.to_json
end

warn "[+] pass: filter-any-failure done: #{count}
filtered"

Listing 5
A MODIFYING ANALYSIS PASS

warn "[+] pass: minimize-input"

$stdin.each_line do |line|
result = JSON.parse line, symbolize_names: true

max_ndecoded = result[:outputs].map { |o| o[:
ndecoded] }.max

result[:input] = \
result[:input][0, max_ndecoded * 2]

$stdout.puts result.to_json
end

warn "[+] pass: minimize-input done"

majority of its peers agree that the instruction is valid.
MISHEGOS supplies targeted analyses both over- and under-

supporting errors in specific decoders; xed-underaccept, for
example, discovers instructions that XED claims are invalid
but are marked as valid by a consensus of other “high-quality”
decoders, while xed-overaccept finds the inverse.

2) Mis-supporting: We define a discrepancy between de-
coders to be a likely result of mis-supporting in a particu-
lar instruction decoder when a majority of its peers agree
that the instruction’s length or semantics differ consistently
(i.e., all peers agree that it should be a different result,
and they agree on the different result). MISHEGOS supplies
two generic analyses for detecting mis-supported instructions:
size-discrepancies and status-discrepancies, as well as
several targeted analysis for individual decoders.

IV. EVALUATION

To evaluate MISHEGOS, we conducted a fuzzing campaign
with 7 of the 9 supported decoders: libopcodes, Capstone,
DynamoRIO, XED, Zydis, bddisasm, and Iced. The de-
coders were selected based on their popularity in debugging
tools (libopcodes), binary analysis (Capstone, DynamoRIO),
hardware vendor support (XED), and reputation for quality
and reliability (Zydis, bddisasm, Iced). The remaining two
decoders were excluded because of their lack of mainte-
nance (Udis86) and relative obscurity (fadec). Table III shows
version information for each worker’s decoder.

TABLE III
DECODER VERSIONS FOR EVALUATION

Worker Version
libopcodes Release 2.30

Capstone Commit 8984920
DynamoRIO Commit 568d7a6

XED Commit 93c0b83
Zydis Commit ba9431c

bddisasm Commit a0b3eee
Iced Commit 0a3f062

Our fuzzing campaign was conducted over a period of
4 hours on 8 dedicated physical cores from an Intel Xeon
Gold 6140, producing 130,574,092 cohorts (39,715,068 after
deduplication). Each cohort contained 7 results (one for each
worker’s decoder), meaning that MISHEGOS processed 228
million decoder outputs per hour of fuzzing.

To evaluate the analysis framework, we selected four
individual analyses to run on the results of the fuzzing
campaign: status-discrepancies, size-discrepancies, xed
-overaccept, and xed-underaccept. These analyses were se-
lected for their volumes at both ends of the spectrum (high for
status-discrepancies and size-discrepancies; low for xed
-overaccept and xed-underaccept). The raw cohort counts
from each analysis are shown in Table IV.

TABLE IV
EVALUATION ANALYSES

Analysis Results (# cohorts)
status-discrepancies 15,359,832
size-discrepancies 3,423,953

xed-overaccept 58,808
xed-underaccept 100

1) Status discrepancies: The status-discrepancies anal-
ysis discovered roughly 15 million cohorts where at least one
decoder disagreed with its peers on the validity of an instruc-
tion candidate. Examples of status discrepancies discovered by
this analysis are shown in Table V.

To determine the total number of status discrepancies, we
ran a count over each cohort: each decoder in the cohort’s
status was tested against a majority consensus of its peers,
with a consensus failure increasing the decoder’s discrepancy
count. The result was 17,503,244 unique discrepancies over
the original 15,359,832 cohorts, or 1.14 results per cohort.

Of the status discrepancies observed, the majority (57%)
occurred between libopcodes and the majority consensus.
Capstone and DynamoRIO were responsible for significant
minorities (22% and 19%, respectively) of the discrepan-
cies, and the remaining 2% of discrepancies were observed
across bddisasm (137,316), XED (48,933), Zydis (12,365), and
Iced (48,942).

2) Size discrepancies: The size-discrepancies analysis
discovered roughly 3.4 million cohorts where at least one
decoder disagreed with its peers on the size of an instruction
candidate. Examples of size discrepancies discovered by this
analysis are shown in Table VI.

To determine the total number of size discrepancies, we ran
the same count in §IV-1 but with each result’s decoded length
for the consensus oracle rather than status. The result was
6,108,755 discrepancies over the original 3,423,953 cohorts,
or 1.78 discrepancies per cohort.

Of the size discrepancies observed, the majority (54%) again
occurred between libopcodes and the majority consensus. A
significant minority (41%) occurred between DynamoRIO and
the consensus, and the remaining 5% of discrepancies were ob-
served across Capstone (328,527), bddisasm (3,461), XED (1),
and Iced (1). No size discrepancies were discovered for Zydis.
Upon manual analysis, the bddisasm, XED, and Iced size
discrepancies were all determined to be false positives caused
by over-supporting of nonexistent instructions in libopcodes.

3) Over- and under-support in XED: Our last two analyses
focused on Intel’s XED, typically considered the closest thing
to a publicly available reference decoder for x86-64. Although
xed-overaccept discovered nearly 60,000 discrepancies be-
tween XED and a consensus of other “high-quality” decoders
(bddisasm, Zydis, and Iced), none of them were errors in XED:
all belonged to multi-byte NOP ranges than only XED and
Iced were able to consistently decode.

xed-underaccept, by contrast, discovered 100 discrepan-
cies that, through manual review, were reduced to 3 mishan-
dled instructions: XSTORE (VIA), MONTMUL (VIA), and SPFLT

(Intel L10M/KNC). XED’s maintainers have acknowledged
all three discrepancies.

V. CONCLUSIONS

MISHEGOS’s novel sliding strategy and analysis frame-
work successfully discover a large number and variety of
errors in individual instruction decoders, as well as potentially
exploitable discrepancies between decoders during relatively

TA
B

L
E

V
S

TA
T

U
S

D
IS

C
R

E
PA

N
C

IE
S

D
ec

od
er

In
pu

t
C

on
se

ns
us

R
es

ul
t

l
i
b
o
p
c
o
d
e
s

3
6
f
2
f
0
2
e
c
b

IN
V

A
L

ID
s
s

r
e
p
n
z

l
o
c
k

c
s

r
e
t
f

l
i
b
o
p
c
o
d
e
s

6
6
6
5
6
5
f
2
0
f
b
d
b
6
3
3
c
2
2
0
6
4

b
s
r

s
i
,

g
s
:
[
r
s
i
+
0
x
6
4
2
0
C
2
3
3
]

IN
V

A
L

ID

C
ap

st
on

e
f
0
f
2
2
e
7
7
0
f

IN
V

A
L

ID
b
n
d

j
a

0
x
1
4

C
ap

st
on

e
f
2
6
4
f
3
0
f
0
d
0
2

p
r
e
f
e
t
c
h

b
y
t
e

p
t
r

f
s
:
[
r
d
x
]

IN
V

A
L

ID

D
yn

am
oR

IO
6
5
6
6
6
5
f
3
0
f
3
8
2
4
4
6
d
0

IN
V

A
L

ID
p
m
o
v
s
x
w
q

x
m
m
0
,

o
w
o
r
d

p
t
r

[
g
s
:
r
s
i
-
0
x
3
0
]

D
yn

am
oR

IO
f
2
4
9
0
f
3
8
f
8
4
7
5
4

e
n
q
c
m
d

r
a
x
,

z
m
m
w
o
r
d

p
t
r

[
r
1
5
+
0
x
5
4
]

IN
V

A
L

ID

X
E

D
f
2
6
7
4
7
0
f
a
7
c
0

IN
V

A
L

ID
a

r
e
p
n
z

x
s
t
o
r
e

X
E

D
f
3
4
4
0
f
a
6
c
0

r
e
p

m
o
n
t
m
u
l

IN
V

A
L

ID

Z
yd

is
6
4
2
e
2
6
6
2
d
1
6
8
b
0
5
c
3
8

IN
V

A
L

ID
v
s
u
b
p
s

z
m
m
7
,

z
m
m
1
8
,

f
s
:
[
r
8
]

{
f
l
o
a
t
1
6
}

{
c
d
a
b
}

Z
yd

is
f
3
6
6
4
0
0
f
3
8
d
c
6
0
3
5

a
e
s
e
n
c
1
2
8
k
l

x
m
m
4
,

p
t
r

[
r
a
x
+
0
x
3
5
]

IN
V

A
L

ID

bd
di

sa
sm

6
7
3
6
2
6
6
6
0
f
0
1
c
c

IN
V

A
L

ID
b

t
d
c
a
l
l

bd
di

sa
sm

6
6
f
3
3
6
6
5
0
f
a
e
6
5
1
6

p
t
w
r
i
t
e

d
w
o
r
d

p
t
r

g
s
:
[
r
b
p
+
0
x
1
6
]

IN
V

A
L

ID

Ic
ed

f
3
2
6
4
3
0
f
0
1
c
2

IN
V

A
L

ID
v
m
l
a
u
n
c
h
c

Ic
ed

3
e
f
3
6
4
6
6
4
5
0
f
a
6
e
8

r
e
p

c
c
s
_
h
a
s
h

IN
V

A
L

ID

a
,c

Sp
lit

co
ns

en
su

s.
b

E
rr

on
eo

us
co

ns
en

su
s.

brief fuzzing campaigns. We believe that these properties
make MISHEGOS a strong foundation for future research into
instruction decoder fuzzing.

MISHEGOS is available on GitHub under a per-
missive (Apache-2.0) license: https://github.com/trailofbits/
mishegos.

A. Future work and research
We have identified areas of particular interest, both for

MISHEGOS and instruction decoder fuzzing more generally.
1) Mutation refinements: MISHEGOS’s sliding strategy is

effective at producing large volumes of decoding errors and
discrepancies, but also produces large volumes of nearly
identical results that vary only in operands and immediates.
These nearly identical results are difficult to automatically
deduplicate, meaning that human analysis still forms an es-
sential part of the MISHEGOS workflow.

We posit that the quality of the sliding strategy’s inputs
could be further improved by a partial adaptation of Jay &
Miller’s inferred structural fuzzing technique [20].

2) Automated regression detection: MISHEGOS currently
evaluates distinct instruction decoders for discrepancies, but
could just as easily evaluate different versions of the same
decoder. We posit that work in this direction, combined with
a guided novel mutation strategy, could enable MISHEGOS
to serve in an assurance capacity for individual instruction
decoders.

3) Generation of schizophrenic binaries: Previous re-
search [15] has shown that errors in instruction decoders
can be used to craft real binaries that malicious behavior
on real hardware but benign behavior when emulated. These
binaries are a form of so-called format schizophrenia [29],
and are more challenging to mitigate than traditional emulator
detection in a malicious program.

We posit the feasibility of semi-automatic generation of
schizophrenic binaries, with MISHEGOS as the underlying
“gadget” discovery component. We further posit the discovery
of schizophrenic gadgets that have a multiplicity of behaviors
across multiple instruction decoders.

ACKNOWLEDGMENTS

The authors would like to thank Trent Brunson and Evan
Sultanik (both Trail of Bits) for their guidance and review.

REFERENCES

[1] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis, “The devil is in the constants: Bypassing defenses in
browser JIT engines.” in Proceedings of the Network and Distributed
System Security Symposium, 2015.

[2] D. L. Bruening and S. Amarasinghe, “Efficient, transparent, and compre-
hensive runtime code manipulation,” Ph.D. dissertation, Massachusetts
Institute of Technology, USA, 2004.

[3] M. Novitchi, “Anti-malware emulation systems and methods,” U.S.
Patent 8 151 352B1, 2006.

[4] C. Jämthagen, P. Lantz, and M. Hell, “A new instruction overlapping
technique for anti-disassembly and obfuscation of x86 binaries,” in 2013
Workshop on Anti-malware Testing Research. IEEE, 2013, pp. 1–9.

[5] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
conference on Computer and communications security, 2003, pp. 290–
299.

TABLE VI
SIZE DISCREPANCIES

Decoder Input Consensus (length) Result (length)
libopcodes 26f3660f8ff801f910 jnle 0x10f90201 (9) es repz jg 0x00000000000001ff (7)
libopcodes 474ac3 ret (3) ret.RXB (1)

Capstone 66e80f38ee9c call 0xffffffff9cee3815 (6) call 0x3813 (4)
Capstone 6665653e4fc29322ca95 ret 0x2293 (8) ret 0x2293 (10)

DynamoRIO 0fb9accfe498d5b8 ud1 ebp, [rdi+rcx*8-0x472A671C] (8) ud2b (2)
DynamoRIO f3f26664460f78fb5126 insertq xmm15, xmm3, 0x51, 0x26 (10) vmread ebx, r15d (8)

[6] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in 2009 30th IEEE Symposium on
Security and Privacy, 2009, pp. 79–93.

[7] J. Corbet. (2011) A JIT for packet filters. [Online]. Available:
https://lwn.net/Articles/437981/

[8] S. Scannell. (2020) Fuzzing for eBPF JIT bugs in
the Linux kernel. [Online]. Available: https://scannell.me/
fuzzing-for-ebpf-jit-bugs-in-the-linux-kernel/

[9] The v8 Authors, “v8,” https://github.com/v8/v8, 2021.
[10] Apple Inc., “About the Rosetta Translation Environment,” 2021.

[Online]. Available: https://developer.apple.com/documentation/apple
silicon/about the rosetta translation environment

[11] A. Dinaburg and A. Ruef, “McSema: Static translation of x86 instruc-
tions to LLVM,” in Proceedings of the ReCon Conference, 2014.

[12] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding information in pro-
gram binaries,” in Information and Communications Security, J. Lopez,
S. Qing, and E. Okamoto, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 187–199.

[13] A. Fog, “Optimizing subroutines in assembly language,” 2020. [Online].
Available: https://www.agner.org/optimize/optimizing assembly.pdf

[14] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “N-Version
disassembly: Differential testing of x86 disassemblers,” in Proceedings
of the 19th International Symposium on Software Testing and Analysis,
ser. ISSTA ’10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 265–274.

[15] C. Domas, “Breaking the x86 ISA,” Black Hat, 2017.
[16] R. Barton, “Guaranteeing the Correctness of MC for ARM,”

2012. [Online]. Available: https://llvm.org/devmtg/2012-04-12/Slides/
Richard Barton.pdf

[28] 0xd4d, “Iced,” 2021. [Online]. Available: https://github.com/0xd4d/iced

[17] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp. 32–44, Dec. 1990.

[18] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: the state
of the art,” DEFENCE SCIENCE AND TECHNOLOGY ORGANISA-
TION EDINBURGH (AUSTRALIA), Tech. Rep., 2012.

[19] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[20] N. Jay and B. P. Miller, “Structured random differential testing of in-
struction decoders,” in Proceedings of the 25th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 84–94.

[21] The GNU Project, “GNU Binutils,” 2021. [Online]. Available:
https://www.gnu.org/software/binutils/

[22] N. A. Quynh. (2021) Capstone. [Online]. Available: http://www.
capstone-engine.org/

[23] A. Engelke, “Fadec—Fast Decoder for x86-32 and x86-64 and Encoder
for x86-64,” 2021. [Online]. Available: https://github.com/aengelke/
fadec

[24] V. Thampi, “Udis86,” 2021. [Online]. Available: https://github.com/
vmt/udis86

[25] Intel Corporation. (2021) The X86 Encoder Decoder. [Online].
Available: https://intelxed.github.io/

[26] Zyantific, Inc., “Zydis,” 2021. [Online]. Available: https://github.com/
zyantific/zydis

[27] Bitdefender, Inc., “bddisasm,” 2021. [Online]. Available: https:
//github.com/bitdefender/bddisasm

[29] A. Albertini, “Abusing file formats; or, Corkami, the novella,” The
International Journal of Proof of Concept or GTFO, no. 0x07, March
2015.

