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AND ANATOLIJ K. PRYKARPATSKI

Abstract. Based on the vector fields on the complexified torus and the

related Lie-algebraic structures, we devise an approach to constructing
multidimensional dispersionless integrable systems, describing conformal

structure generating equations of mathematical physics. As examples,

we have analyzed Einstein–Weyl metric equation, the modified Einstein–
Weyl metric equation, the Dunajski heavenly equations, first and second

conformal structure generating equations, inverse first Shabat reduction

heavenly equation, first Plebański heavenly equation, modified Plebański
equation and

Husain heavenly equation.

1. Vector fields on the complexified torus TnC and the related

Lie-algebraic properties

It is well known [13] that the loop Lie algebra G̃ := d̃iff(Tn), consisting
of the set of smooth mappings {C1 ⊃ S1 −→ G = diff(Tn}, extended, re-
spectively, holomorphically from the circle S1 ⊂ C1 on the disc D1

+ of the
internal points λ ∈ D1 and on the disc D1

− of the external points λ ∈ C\D1,

can be centrally extended as Ĝ := (d̃iff(Tn);R1), where for elements (ã;α)

and (b̃;β) ∈ Ĝ the commutator

(1.1) [(ã;α), (b̃;β)] = ([ã, b̃];ω2(ã, b̃)) ∈ G̃
and the 2-cocycle ω2 : G̃ × G̃ → R1 satisfies the condition

(1.2) ω2([ã, b̃], c̃) + ω2([b̃, c̃], ã) + ω2([c̃, ã], b̃) = 0

for any ã, b̃ and c̃ ∈ G̃. For arbitrary n ∈ Z+ the cocycle ω2 : G̃ × G̃ → R1 can
be taken in the unique Cartan-Maurer form

(1.3) ω2(ã, b̃) = res
λ∈C

∫
Tn×S1

(< a(x, y;λ), ∂b(x, y;λ)/∂y > dxdy,

where have denoted by < ·, > the standard scalar product in the Euclidean

space En and parametrized the Lie algebra G̃ = d̃iff(Tn) by means of an
additional spatial parameter y ∈ S1. For the case n = 1 the cocycle (1.3)
above can be extended by means the Gelfand–Fuchs 2-cocycle [6]

(1.4) ω̃2(ã, b̃) = res
λ∈C

∫
T1×S1

λ−p
∂2a(x;λ)

∂x2

∂b(x;λ)

∂x
dxdy

for any vector fields ã = a(x, y;λ) ∂
∂x , b̃ = b(x, y;λ) ∂

∂x ∈ G̃ on T1, parameterized

by means of the spatial parameter y ∈ S1 and a fixed integer p ∈ Z.
Yet, the scheme, based on the central extension technique, does not allow

[7] to construct effectively commuting to each other spatially multidimensional
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linear differential expressions and, thereby, generate completely integrable non-
linear equations in partial derivatives. Taking into account this fact, we will
describe below a direct scheme of describing infinite hierarchies of commuting to
each other spatially multidimensional linear vector field equations, generating
completely integrable nonlinear Hamiltonian systems on functional manifolds,
many of which are important for applications in modern mathematical physics.

2. The Lie-algebraic structures and integrable Hamiltonian
systems

The integrable dynamical systems related to the central extension, men-
tioned above, were described in detail in [9]. Concerning a further gen-

eralization of the multi-dimensional case related to the loop group G̃ for
n ∈ Z+, one can proceed in the following [7] natural way: as the Lie alge-

bra G̃ = d̃iff(Tn) consists of the elements, depending additionally on the

“spectral” variable λ ∈ C1, one can extend the basic Lie structure on G̃ =

d̃iff(Tn) to the generalized Lie algebra Ḡ := diffhol(TnC) of vector fields
on the complexified torus TnC. This Lie algebra has elements representable

as ā(x;λ) :=< a(x;λ), ∂∂x >=
n∑
j=1

aj(x;λ) ∂
∂xj

+ a0(x;λ) ∂
∂λ ∈ Ḡ for some

holomorphic in λ ∈ D1
± vectors a(x;λ) ∈ E × En for all x ∈ Tn, where

∂
∂x := ( ∂

∂λ ,
∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)ᵀ is the generalized Euclidean vector gradient with

respect to the vector variable x := (λ, x) ∈ TnC.
It is now important to mention that the Lie algebra Ḡ also naturally splits

into the direct sum of two subalgebras:

(2.1) Ḡ = Ḡ+ ⊕ Ḡ−,
allowing to introduce on it the classical R-structure:

(2.2) [ā, b̄]R := [Rā, b̄] + [ā,Rb̄]
for any ā, b̄ ∈ Ḡ, where

(2.3) R := (P+ − P−)/2,

and

(2.4) P±Ḡ := Ḡ± ⊂ Ḡ.
The space Ḡ∗ ' Λ1(TnC), adjoint to the Lie algebra Ḡ of vector fields on TnC,
can be functionally identified with Ḡ subject to the metric

(2.5) (l̄, ā) =
1

2πi

∮
S1

dλ(l, a)H ,

for arbitrary l̄ :=< l(x;λ), dx >:=
∑

j=0,n

lj(x;λ)dxj ∈ Ḡ∗, ā :=<

a(x;λ), ∂/∂x >=<
∑

j=0,n

aj(x;λ), ∂
∂xj

∈ Ḡ, where (l, a)H =
∫
Tn

dx <

l(x;λ), a(x;λ) > .
Now for arbitrary f, g ∈ D(Ḡ∗), one can determine two Lie–Poisson type

brackets

(2.6) {f, g} := (l̄, [∇f(l̄),∇g(l̄)])

and

(2.7) {f, g}R := (l̄, [∇f(l̄),∇g(l̄)]R) ,

where at any seed element l̄ ∈ Ḡ∗ the gradient element ∇f(l̄) and ∇g(l̄) ∈ Ḡ
are calculated with respect to the metric (2.5).

Now let us assume that a smooth function γ ∈ I(Ḡ∗) is a Casimir invariant,
that is

(2.8) ad∗∇γ(l̄) l̄ = 0
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for a chosen seed element l̄ ∈ Ḡ∗. As the adjoint mapping ad∗∇f(l̄)
l̄ for any

f ∈ D(Ḡ∗) can be rewritten in the reduced form as

(2.9) ad∗∇f(l̄)(l̄) =

〈
∂

∂x
,∇f(l)

〉
l̄ +

n∑
j=1

〈〈
l,

∂

∂x
∇f(l)

〉
, dx

〉
,

where ∇f(l̄) :=< ∇f(l), ∂∂x > . For the Casimir function γ ∈ D(Ḡ∗) the condi-
tion (2.8) is then equivalent to the equation

(2.10) l

〈
∂

∂x
,∇γ(l)

〉
+

〈
∇γ(l),

∂

∂x

〉
l +

〈
l, (

∂

∂x
∇γ(l))

〉
= 0,

which should be solved analytically. In the case when an element l̄ ∈ Ḡ∗ is
singular as |λ| → ∞, one can consider the general asymptotic expansion

(2.11) ∇γ := ∇γ(p) ∼ λp
∑
j∈Z+

∇γ(p)
j λ−j

for some suitably chosen p ∈ Z+, and upon substituting (2.11) into the equation
(2.10), one can proceed to solving it recurrently.

Now let h(y), h(t) ∈ I(Ḡ∗) be such Casimir functions for which the Hamil-
tonian vector field generators

(2.12) ∇h(y)
+ (l) := ( ∇γ(py)(l))+, ∇h(t)

+ (l) := ( ∇h(pt)(l))+

are, respectively, defined for special integers py, pt ∈ Z+. These invariants gen-
erate, owing to the Lie–Poisson bracket (2.7), the following commuting flows:

(2.13) ∂l/∂t = −
〈
∂

∂x
,∇h(t)

+ (l)

〉
l −

〈
l, (

∂

∂x
∇h(t)

+ (l))

〉
and

(2.14) ∂l/∂y = −
〈
∂

∂x
,∇h(y)

+ (l)

〉
l −

〈
l, (

∂

∂x
∇h(y)

+ (l))

〉
>,

where y, t ∈ R are the corresponding evolution parameters. Since the invari-
ants h(y), h(t) ∈ I(Ḡ∗) commute with respect to the Lie–Poisson bracket (2.7),
the flows (2.13) and (2.14) also commute, implying that the corresponding
Hamiltonian vector field generators

(2.15) Ā∇h(t)
+

:=

〈
∂

∂x
,∇h(t)

+ (l)

〉
, Ā∇h(y)

+
:=

〈
∂

∂x
,∇h(y)

+ (l)

〉
satisfy the Lax compatibility condition

(2.16)
∂

∂y
Ā∇h(t)

+
− ∂

∂t
Ā∇h(y)

+
= [Ā∇h(t)

+
, Ā∇h(y)

+
]

for all y, t ∈ R. On the other hand, the condition (2.16) is equivalent to the
compatibility condition of two linear equations

(2.17) (
∂

∂t
+ Ā∇h(t)

+
)ψ = 0, (

∂

∂y
+ Ā∇h(y)

+
)ψ = 0

for a function ψ ∈ C2(TnC;C) for all y, t ∈ R and any λ ∈ C.
The above can be formulated as the following key result:

Proposition 2.1. Let a seed vector field be l̄ ∈ Ḡ∗ and h(y), h(t) ∈ I(Ḡ∗) be
Casimir functions subject to the metric (·, ·) on the loop Lie algebra Ḡ and the
natural coadjoint action on the loop co-algebra Ḡ∗. Then the following dynamical
systems

(2.18) ∂l̄/∂y = −ad∗
∇h(y)

+ (l̄)
l̄, ∂l̄/∂t = −ad∗

∇h(t)
+ (l̄)

l̄

are commuting Hamiltonian flows for all y, t ∈ R. Moreover, the compatibility
condition of these flows is equivalent to the vector fields representation

(2.19) (∂/∂t+ Ā∇h(t)
+

)ψ = 0, (∂/∂y + Ā∇h(y)
+

)ψ = 0,
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where ψ ∈ C2(R2 × TnC;C) and the vector fields Ā∇h(y)
+
, Ā∇h(t)

+
∈ Ḡ are given

by the expressions (2.15) and (2.12).

Remark 2.2. As mentioned above, the expansion (2.11) is effective if a chosen
seed element l̄ ∈ Ḡ∗ is singular as |λ| → ∞. In the case when it is singular as
|λ| → 0, the expression (2.11) should be replaced by the expansion

(2.20) ∇γ(p)(l) ∼ λ−p
∑
j∈Z+

∇γ(p)
j (l)λj

for suitably chosen integers p ∈ Z+, and the reduced Casimir function
gradients then are given by the Hamiltonian vector field generators

∇h(y)
− (l) := λ(λ−py−1∇γ(py)(l))−,(2.21)

∇h(t)
− (l) := λ(λ−pt−1∇γ(pt)(l))−

for suitably chosen positive integers py, pt ∈ Z+ and the corresponding Hamil-
tonian flows are, respectively, written as ∂l̄/∂t = ad∗

Oh(t)
− (l̄)

l̄, ∂l̄/∂y =

ad∗
Oh(y)

− (l̄)
l̄.

It is also worth of mentioning that, following Ovsienko’s scheme [10, 11],
one can consider a wider class of integrable heavenly equations, realized as
compatible Hamiltonian flows on the semidirect product of the holomorphic
loop Lie algebra Ḡ of vector fields on the torus TnC and its regular co-adjoint
space Ḡ∗, supplemented with naturally related cocycles.

3. The Lax-Sato type integrable systems and related conformal
structure generating equations

3.1. Example: Einstein–Weyl metric equation. Define Ḡ∗ = diffhol(T1
C)

and take the seed element

l̃ = (uxλ− 2uxvx − uy) dx+
(
λ2 − vxλ+ vy + v2

x

)
dλ,

which generates with respect to the metric (2.5) the gradient of the Casimir
invariants h(pt), h(py) ∈ I(Ḡ∗) in the form

∇h(pt)(l) ∼ λ2(0, 1)ᵀ + (−ux, vx)ᵀλ + (uy, u− vy)ᵀ +O(λ−1),(3.1)

∇h(py)(l) ∼ λ(0, 1)ᵀ + (−ux, vx)ᵀ + (uy,−vy)ᵀλ−1 +O(λ−2)

as |λ| → ∞ at pt = 2, py = 1. For the gradients of the Casimir functions

h(t), h(y) ∈ I(Ḡ∗), determined by (2.12) one can easily obtain the corresponding
Hamiltonian vector field generators

Ã∇h(t)
+

=

〈
∇h(t)

+ (l),
∂

∂x

〉
= (λ2 + λvx + u− vy)

∂

∂x
+ (−λux + uy)

∂

∂λ
,

Ã∇h(y)
+

=

〈
∇h(y)

+ (l),
∂

∂x

〉
= (λ+ vx)

∂

∂x
− ux

∂

∂λ
,(3.2)

satisfying the compatibility condition (2.16), which is equivalent to the set of
equations

(3.3)

 uxt + uyy + (uux)x + vxuxy − vyuxx = 0,

vxt + vyy + uvxx + vxvxy − vyvxx = 0,

describing general integrable Einstein–Weyl metric equations [4].
As is well known [8], the invariant reduction of (3.3) at v = 0 gives rise to

the famous dispersionless Kadomtsev–Petviashvili equation

(3.4) (ut + uux)x + uyy = 0,
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for which the reduced vector field representation (2.17) follows from (3.2) and
is given by the vector fields

Ā∇h(t)
+

= (λ2 + u)
∂

∂x
+ (−λux + uy)

∂

∂λ
,(3.5)

Ā∇h(y)
+

= λ
∂

∂x
− ux

∂

∂λ
,

satisfying the compatibility condition (2.16), equivalent to the equation (3.4).
In particular, one derives from (2.17) and (3.5) the vector field compatibility
relationships

(3.6)

∂ψ
∂t + (λ2 + u)∂ψ∂x + (−λux + uy)∂ψ∂λ = 0

∂ψ
∂y + λ∂ψ∂x − ux

∂ψ
∂λ = 0,

satisfied for ψ ∈ C2(R2 × T1
C;C) and any y, t ∈ R, (x, λ) ∈ T1

C.

3.2. The modified Einstein–Weyl metric equation. This equation system
is

uxt = uyy + uxuy + u2
xwx + uuxy + uxywx + uxxa,(3.7)

wxt = uwxy + uywx + wxwxy + awxx − ay,

where ax := uxwx−wxy, and was recently derived in [14]. In this case we take

also Ḡ∗ = diffhol(T1
C), yet for a seed element l̃ ∈ Ḡ we choose the form

l̃ = [λ2ux + (2uxwx + uy + 3uux)λ+ 2ux∂
−1
x uxwx + 2ux∂

−1
x uy +(3.8)

+ 3uxwx
2 + 2uywx + 6uuxwx + 2uuy + 3u2ux − 2aux]dx+

+[λ2 + (wx + 3u)λ+ 2∂−1
x uxwx + 2∂−1

x uy + wx
2 + 3uwx + 3u2 − a]dλ,

which with respect to the metric (2.5) generates two Casimir invariants γ(j) ∈
I(Ḡ∗), j = 1, 2, whose gradients are

∇γ(2)(l) ∼ λ2[(ux,−1)ᵀ + (uux + uy,−u+ wx)ᵀλ−1 +(3.9)

+ (0, uwx − a)ᵀλ−2] +O(λ−1) ,

∇γ(1)(l) ∼ λ[(ux,−1)ᵀ + (0, wx)ᵀ λ−1] +O(λ−1),

as |λ| → ∞ at py = 1, pt = 2. The corresponding gradients of the Casimir

functions h(t), h(y) ∈ I(G∗), determined by (2.12), generate the Hamiltonian
vector field expressions

∇h(y)
+ := ∇γ(1)(l)|+ = (uxλ,−λ+ wx)ᵀ,

(3.10)

∇h(t)
2,+ = ∇γ(2)(l)|+ = (uxλ

2 + (uux + uy)λ,−λ2 + (wx − u)λ+ uwx − a)ᵀ.

Now one easily obtains from (3.10) the compatible Lax system of linear equa-
tions
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∂ψ

∂y
+ (−λ+ wx)

∂ψ

∂x
+ uxλ

∂ψ

∂λ
= 0,

(3.11)

∂ψ

∂t
+ (−λ2 + ( wx − u)λ+ uwx − a)

∂ψ

∂x
+ (uxλ

2 + (uux + uy)λ)
∂ψ

∂λ
= 0,

satisfied for ψ ∈ C2(R2 × T1
C;C) and any y, t ∈ R, (x, λ) ∈ T1

C.

3.3. Example: The Dunajski heavenly equations. This equation, sug-
gested in [3], generalizes the corresponding anti-self-dual vacuum Einstein equa-
tion, which is related to the Plebański metric and the celebrated Plebański
[12, 5] second heavenly equation. To study the integrability of the Dunajski
equations

ux1t + uyx2
+ ux1x1

ux2x2
− u2

x1x2
− v = 0,(3.12)

vx1t + vx2y + ux1x1
vx2x2

− 2ux1x2
vx1x2

= 0,

where (u, v) ∈ C∞(R2 × T2;R2), (y, t;x1, x2) ∈ R2 × T2, we define Ḡ∗ :=
diff∗hol( T2

C) and take the following as a seed element l̄ ∈ Ḡ∗
(3.13)

l̃ = (λ+vx1
−ux1x1

+ux1x2
)dx1 +(λ+vx2

+ux2x2
−ux1x2

)dx2 +(λ−x1−x2)dλ.

With respect to the metric (2.5), the gradients of two functionally independent
Casimir invariants h(py), h(py) ∈ I(Ḡ∗) can be obtained as |λ| → ∞ in the
asymptotic form as

∇h(py) (l) ∼ λ(0, 1, 0)ᵀ + (−vx1
,−ux1x2

, ux1x1
)ᵀ +O(λ−1),(3.14)

∇h(pt) (l) ∼ λ(0, 0,−1)ᵀ + (vx2
, ux2x2

,−ux1x2
)ᵀ +O(λ−1)

at pt = 1 = py. Upon calculating the Hamiltonian vector field generators

∇h(y)
+ := ∇h(py) (l)|+ = (−vx1

, λ− ux1x2
, ux1x1

)ᵀ,(3.15)

∇h(t)
+ := ∇h(pt) (l)|+ = (vx2

, ux2x2
,−λ− ux1x2

)ᵀ,

following from the Casimir functions gradients (3.14), one easily obtains the
following vector fields

Ā∇h(t)
+

=< ∇h(t)
+ ,

∂

∂x
>= ux2x2

∂

∂x1
− (λ+ ux1x2)

∂

∂x2
+ vx2

∂

∂λ
,(3.16)

Ā∇h(y)
+

=< ∇h(y)
+ ,

∂

∂x
>= (λ− ux1x2

)
∂

∂x1
+ ux1x1

∂

∂x2
− vx1

∂

∂λ
,

satisfying the Lax compatibility condition (2.16), which is equivalent to the
vector field compatibility relationships

∂ψ

∂t
+ ux2x2

∂ψ

∂x1
− (λ+ ux1x2)

∂ψ

∂x2
+ vx2

∂ψ

∂λ
= 0,

(3.17)

∂ψ

∂y
+ (λ− ux1x2)

∂ψ

∂x1
+ ux1x1

∂ψ

∂x2
− vx1

∂ψ

∂λ
= 0,

satisfied for ψ ∈ C∞(R2×T2
C;C), any (y, t) ∈ R2 and all (x1, x2;λ) ∈ T2

C. As
was mentioned in [1], the Dunajski equations (3.12) generalize both the dis-
persionless Kadomtsev–Petviashvili and Plebański second heavenly equations,
and is also a Lax integrable Hamiltonian system.
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3.4. First conformal structure generating equation: uyy + uxtuy −
utuxy = 0. The seed element l̃ ∈ G̃∗ in the form

(3.18) l̃ = [u−2
t (1− λ)λ−1 + u−2

y λ(λ− 1)−1]dx,

where u ∈ C2(T1 × R2;R), x ∈ T1, λ ∈ C\{0, 1} and ”d” denotes the full
differential, generates two independent Casimir functionals γ(1) and γ(2) ∈
I(G̃∗), whose gradients have the following asymptotic expansions:

∇γ(1)(l) ' uy +O(µ2),

as |µ| → 0, µ := λ− 1, and

∇γ(2)(l) ' ut +O(λ2),

as |λ| → 0. The commutability condition

(3.19) [X(y), X(t)] = 0

of the vector fields

(3.20) X(y) := ∂/∂y +∇h(y)(l), X(t) = ∂/∂t+∇h(t)(l),

where

∇h(y)(l̃) := −(µ−1∇γ(1)(l̃))|− = − uy
λ− 1

∂

∂x
,(3.21)

∇h(t)(l̃) := −(λ−1∇γ(2)(l̃))|− = −ut
λ

∂

∂x
,

leads to the heavenly type equation

uyt + uxtuy − uxyut = 0.

Its Lax-Sato representation is the compatibility condition for the first order
partial differential equations

∂ψ

∂y
− uy
λ− 1

∂ψ

∂x
= 0,(3.22)

∂ψ

∂t
− ut
λ

∂ψ

∂x
= 0,

where ψ ∈ C2(T1 × R2;R).

3.5. Second conformal structure generating equation: uxt + uxuyy −
uyuxy = 0. For a seed element l̃ ∈ G̃∗ in the form

(3.23) l̃ = [u2
x + 2u2

x(uy + α)λ−1 + u2
x(3u2

y + 4αuy + β)λ−2]dx,

where u ∈ C2(T1 × R2;R), x ∈ T1, λ ∈ C \ {0},and α, β ∈ R, there a one

independent Casimir functional γ
(1) ∈ I(G̃∗) with the following asymptotic as

|λ| → 0 expansion of its functional gradient:

∇γ(1)(l) ' c0u−1
x + (−c0uy + c1)u−1

x λ+ (−c1uy + c2)u−1
x λ2 +O(λ3),

where cr ∈ R, r = 1, 2. If one assumes that c0 = 1, c1 = 0 and c2 = 0, then we
obtain two functionally independent gradient elements

∇h(y)(l̃) := −(λ−1∇γ(1)(l̃))|− = − 1

λux

∂

∂x
,(3.24)

∇h(t)(l̃) := (λ−2∇γ(1)(l̃))|− =

(
1

λ2ux
− uy
λux

)
∂

∂x
.

The corresponding commutability condition (3.19) of the vector fields (3.20)
give rise to the following heavenly type equation:

(3.25) uxt + uxuyy − uyuxy = 0,
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whose linearized Lax-Sato representation is given given by the first order system

∂ψ

∂y
− 1

λux

∂ψ

∂x
= 0,(3.26)

∂ψ

∂t
+

(
1

λ2ux
− uy
λux

)
∂ψ

∂x
= 0

of linear vector field equations on a function ψ ∈ C2(T1 × R2;R).

3.6. Inverse first Shabat reduction heavenly equation. A seed element
l̃ ∈ G̃∗ in the form

(3.27) l̃ = (a0u
−2
y u2

x(λ+ 1)−1 + a1u
2
x + a1u

2
xλ)dx,

where u ∈ C2(T1×R2;R), x ∈ T1, λ ∈ C\{−1}, and a0, a1 ∈ R, generates two

independent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗), whose gradients have
the following asymptotic expansions:

(3.28) ∇γ(1)(l) ' uyu−1
x − uyu−1

x µ+O(µ2),

as |µ| → 0, µ := λ+ 1, and

(3.29) ∇γ(2)(l) ' u−1
x +O(λ−2),

as |λ| → ∞. If wu put, by definition,

∇h(y)(l̃) := (µ−1∇γ(1)(l̃))|− = − λ

λ+ 1

uy
ux

∂

∂x
,(3.30)

∇h(t)(l̃) := (λ∇γ(2)(l̃))|+ =
λ

ux

∂

∂x
,

the commutability condition (3.19) of the vector fields (3.20) leads to the heav-
enly equation

(3.31) uxy + uyutx − utyux = 0,

which can be obtained as a result of the simultaneous changing of independent
variables R 3x � t ∈ R, R 3y � x ∈ R and R 3t � y ∈ R in the first Shabat
reduction heavenly equation. The corersponding Lax-Sato representation is
given by the compatibility condition for the first order vector field equations
equations

∂ψ

∂y
− λ

λ+ 1

uy
ux

∂ψ

∂x
= 0,(3.32)

∂ψ

∂t
+

λ

ux

∂ψ

∂x
= 0,

where ψ ∈ C2(T1 × R2;R).

3.7. First Plebański heavenly equation. The seed element l̃ ∈ G̃∗ in the
form

(3.33) l̃ = λ−1(uyx1
dx1 + uyx2

dx2) = λ−1duy,

where u ∈ C2(T2 × R2;R), (x1, x2) ∈ T2, λ ∈ C\{0} and ”d” designates a
full differential, generates two independent Casimir functionals γ(1) and γ(2) ∈
I(G̃∗), whose gradients have the following asymptotic expansions:

∇γ(1)(l) ∼ (−uyx2 , uyx1 , )
> +O(λ),

∇γ(2)(l) ∼ (−utx2
, utx1

)> +O(λ),(3.34)

as |λ| → 0. The commutability condition

(3.35) [∂/∂y +∇h(y)
− (l), ∂/∂t+∇h(t)

− (l)] = 0
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of the vector fields ∂/∂y +∇h(y)
− (l) and X(t) = ∂/∂t+∇h(t)

− (l), where

∇h(y)
− (l̃) := (λ−1∇γ(1)(l̃))|− = −uyx2

λ

∂

∂x1
+
uyx1

λ

∂

∂x2
,(3.36)

∇h(t)
− (l̃) := (λ−1∇γ(2)(l̃))|− = −utx2

λ

∂

∂x1
+

utx1

λ

∂

∂x2
,

leads to the first Plebański heavenly equation [2]

(3.37) uyx1
utx2
− uyx2

utx1
= 1.

Its Lax-Sato representation (3.35) entails the compatibility condition for the
first order partial differential equations

∂ψ

∂y
− uyx2

λ

∂ψ

∂x1
+
uyx1

λ

∂ψ

∂x2
= 0,

∂ψ

∂t
− utx2

λ

∂ψ

∂x1
+

utx1

λ

∂ψ

∂x2
= 0,

where ψ ∈ C∞(T2 × R2;C).
Remark 1. Taking into account that the condition for Casimir invariants is

equivalent to the system of nonhomogeneous linear first order partial differential
equations for the vector-function l = (l1, l2)ᵀ, the corresponding seed-element
can be chosen in another forms. The asymptotic expansions (3.34) are also
true for such seed-elements as

l̃ = λ−1dut,

and

l̃ = λ−1(duy + dut).

The above described scheme can be easily generalized for all m = 2n, where
m ∈ N and n > 2. In this case one has 2n independent Casimir functionals
γ(j) ∈ I(G̃∗), where j = 1, 2n, with the following asymptotic expansions for
their gradients:

∇γ(1)(l) ∼ (−uyx2 , uyx1 , 0, . . . , 0︸ ︷︷ ︸
2n−2

)> +O(λ),

∇γ(2)(l) ∼ (−utx2
, utx1

, 0, . . . , 0︸ ︷︷ ︸
2n−2

)> +O(λ),

∇γ(3)(l) ∼ (0, 0,−uyx4
, uyx3

, 0, . . . , 0︸ ︷︷ ︸
2n−4

)> +O(λ),

∇γ(4)(l) ∼ (0, 0,−utx4 , utx3 , 0, . . . , 0︸ ︷︷ ︸
2n−4

)> +O(λ),

. . . ,

∇γ(2k−1)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2n−2

,−uyx2k
, uyx2n−1

)> +O(λ),

∇γ(2k)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2n−2

,−utx2k
, utx2n−1

)> +O(λ).

If we put

∇h(y)
− (l̃) := (λ−1(∇γ(1)(l̃) + . . .+∇γ(2k−1)(l̃)))|− =

= −uyx2

λ

∂

∂x1
+
uyx1

λ

∂

∂x2
+ . . .− uyx2k

λ

∂

∂x2k−1
+
uyx2k−1

λ

∂

∂x2k
,

∇h(t)
− (l̃) := (λ−1(∇γ(2)(l̃) + . . .+∇γ(2k)(l̃)))|− =

= −utx2

λ

∂

∂x1
+
utx1

λ

∂

∂x2
+ . . .− utx2k

λ

∂

∂x2k−1
+
utx2k−1

λ

∂

∂x2k
,
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the commutability condition (3.35) of the vector fields (3.35) leads to the cor-
responding multi-dimensional analogs of the first Plebański heavenly equation:

n∑
j=1

(uyx2j−1
utx2j

− uyx2j
utx2j−1

) = 1.

3.8. Modified Plebański equation. For the seed element l̃ ∈ G̃∗ in the form

l̃ = (λ−1ux1y + ux1x1
− ux1x2

+ λ)dx1 +

+ (λ−1ux2y + ux1x2
− ux2x2

+ λ)dx2 =(3.38)

= d(λ−1uy + ux1 − ux2 + λx1 + λx2).

where u ∈ C2(T2 × R2;R), (x1, x2) ∈ T2, λ ∈ C \ {0}, there exist two inde-

pendent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗) with the following gradient
asymptotic expansions:

∇γ(1)(l) ∼ (uyx2 ,−uyx1)> +O(λ),

as |λ| → 0, and

∇γ(2)(l) ∼ (0,−1)> + (−ux2x2
, ux1x2

)>λ−1 +O(λ−2),

as |λ| → ∞. In the case, when

∇h(y)
− (l̃) := (λ−1∇γ(1)(l̃))|− =

uyx2

λ

∂

∂x1
− uyx1

λ

∂

∂x2
,

∇h(t)
− (l̃) := (λ∇γ(2)(l̃))|+ = −ux2x2

∂

∂x1
+ (ux1x2 − λ)

∂

∂x2
,

the commutability condition of the vector fields ∂/∂y +∇h(y)
− (l̃) and ∂/∂t +

∇h(t)
− (l̃) leads to the modified Plebański heavenly equation [2]:

uyt − uyx1ux2x2 + uyx2ux1x2 = 0,

with the Lax-Sato representation given by the first order partial differential
equations

∂ψ

∂y
− uyx2

λ

∂ψ

∂x1
+
uyx1

λ

∂ψ

∂x2
= 0,

∂ψ

∂t
− ux2x2

∂ψ

∂x1
+ (ux1x2 − λ)

∂ψ

∂x2
= 0

for functions ψ ∈ C2(T2 × R2;C).

3.9. Husain heavenly equation. The seed element l̃ ∈ G̃∗ in the form

(3.39) l̃ =
d(uy + iut)

λ− i
+
d(uy − iut)

λ+ i
=

2(λduy − dut)
λ2 + 1

, i2 = −1,

where u ∈ C2(T2 × R2;R), (x1, x2) ∈ T2, λ ∈ C\{−i; i}, generates two inde-

pendent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗), with the following gradient
asymptotic expansions:

∇γ(1)(l) ∼ 1

2
(−uyx2

− iutx2
, uyx1

+ iutx1
)> +O(µ), µ := λ− i,

as |µ| → 0, and

∇γ(2)(l) ∼ 1

2
(−uyx2 + iutx2 , uyx1 − iutx1)> +O(ξ), ξ := λ+ i,
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as |ξ| → 0. In the case, when

∇h(y)
− (l̃) := (µ−1∇γ(1)(l̃) + ξ−1∇γ(2)(l̃))|− =

=
1

2µ

(
(−uyx2

− iutx2
)
∂

∂x1
+ (uyx1

+ iutx1
)
∂

∂x2

)
+

+
1

2ξ

(
(−uyx2 + iutx2)

∂

∂x1
+ (uyx1 − iutx1)

∂

∂x2

)
=

=
utx2
− λuyx2

λ2 + 1

∂

∂x1
+
λuyx1

− utx1

λ2 + 1

∂

∂x2
,

∇h(t)
− (l̃) := (−µ−1i∇γ(1)(l̃) + ξ−1i∇γ(2)(l̃))|− =

=
1

2µ

(
(−utx2

+ iuyx2
)
∂

∂x1
+ (utx1

− iuyx1
)
∂

∂x2

)
+

+
1

2ξ

(
−(utx2

+ iuyx2
)
∂

∂x1
+ (utx1

+ iuyx1
)
∂

∂x2

)
=

= −uyx2
+ λutx2

λ2 + 1

∂

∂x1
+

uyx1
+ λutx1

λ2 + 1

∂

∂x2
,

the commutability condition (3.35) of the vector fields ∂/∂y + ∇h(y)
− (l̃) and

∂/∂t+∇h(t)
− (l̃) leads to the Husain heavenly equation [2]:

uyy + utt + uyx1
utx2
− uyx2

utx1
= 0,

with the Lax-Sato representation given by the first order partial differential
equations

∂ψ

∂y
+
utx2
− λuyx2

λ2 + 1

∂ψ

∂x1
+
λuyx1

− utx1

λ2 + 1

∂ψ

∂x2
= 0,

∂ψ

∂t
− uyx2

+ λutx2

λ2 + 1

∂ψ

∂x1
+

uyx1
+ λutx1

λ2 + 1

∂ψ

∂x2
= 0,

where ψ ∈ C2(T2 × R2;C).

4. Conclusion

We succeeded in applying the Lie-algebraic approach to studying vector
fields on the complexified n-dimensional torus and the related Lie-algebraic
structures, which made it possible to construct a wide class of multidimen-
sional dispersionless integrable systems, describing conformal structure gener-
ating equations of modern mathematical physics.
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