
EasyChair Preprint
№ 4051

Systematic Implementation of ASM (Asset
Management System)

Dwi Sari and Alex Elentukh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 17, 2020

Page # 1

Systematic Implementation of ASM
(Asset Management System)

Dwi Puspita Sari, Alex Elentukh
Metropolitan College, Boston University

755 Commonwealth Avenue
Boston, Massachusetts, 02215, United States of America

dsardiyo@bu.edu, elentukh@bu.edu

Abstract — Maintaining organizational assets is crucially
important for any business. Evaluation of a public company is
driven by the value of its assets. Additionally, effectiveness of a
company's operation depends on how well its assets are managed.
This paper reflects on the semester-long term project completed as
part of the graduate course [1] MET CS 633 of Boston University.
ASM (Asset Management System) has been implemented, while
following the prudent software development process, using Agile /
Scrum methodology.

Keywords—asset management system, agile methodology,
scrum software development, pedagogy

I. INTRODUCTION
The world of support management systems (such as

customer relationship management and IT management) is
focused, above everything else, on optimizing client
interactions. This observation made by our team concludes that
such lopsided and intense focus creates a potential market
opportunity. Namely, we could offer a comprehensive asset
management over optimized customer relations management. A
fitting example could be a company operating within the scope
of HVAC industry. In this scenario, it is far more important to
utilize a powerful asset management infrastructure, which
empowers technicians, over a relationship management system
designed to facilitate customer interactions.

This project is not about making a support management
system for a niche industry such as HVAC. Instead, our aim is
to empower companies to facilitate their very own asset
management. The scope of this project is to develop a web-based
IT Service Management infrastructure allowing customers to
create systems that will record, update, and share assets across
their respective organization.

The first word in the title of this paper is "Systematic".
Hence, it worth dwelling on the "system" by which this project,
as well as other projects, have been undertaken in the context of
a graduate course BU CS633. During past five years the course
is offered in its current format. Some fifty-six projects were
completed by students with a variety of professional interests
and backgrounds. The lecture track with theories and
methodologies - parallels the practical track with
implementation of an actual software system. After a completion
of each project, lessons-learned are fed back into theoretical
track to fuel changes to methodology. Each next project is able
to benefit from experience of previous projects. In fact, the focus
of the whole course has shifted. During initial year of running
the course, ninety percent of learning attributed to theoretical
track. This is contrary to the report from current students, who
confirmed that most significant part of their learning came from
a term project. Fifty-six completed projects (along with their
best and worst parts) represents an extensive body of knowledge
from which any student is able to learn. As an example of
learning from past misguidance, several projects spent far too
much time on definition of personas, while delaying the UI and

coding effort. Other projects did not allocate enough time for
final verification. In summary, software methodology cannot be
copied from somewhere just to be applied immediately.
Tailoring to project specifics and nurturing process is a must.

II. REQUIREMENTS AND PLANNING

A. System Development
All project activities had to be completed within the

timeframe of a single semester. Standard deliverables were
defined in a Configuration Items List, including the following,
scope definition, personas, RASCI, requirements in Pivotal,
estimation record, UML diagrams, ERD, use cases, wireframes,
and test case. Code was maintained in GitHub. During project,
estimation has always been considered a crucial activity. The
size of each deliverable, as well as the corresponding effort,
were carefully estimated, [2]. Estimation Record, see below,
shows the progress from Size to Effort for each project artifact.
It is natural for the 'implementation' to consume the largest part
of overall effort. At the end of the project, the column with
Actual Effort was added. This enabled the team to have a
meaningful conversation focusing on gaps between Estimated
versus Actual.

TABLE I. ESTIMATION RECORD

Details Size
Measurement

Size Effort
(Hour)

Requirements

Definition of
Users (Personas) #Roles 10 1

Definition of
Scope #Requirements 10 1

Definition of
Requirements #Requirements 20 7

Configuration
Management

Configuration
Items List #CL Items 10 2

Estimation Estimation Record #Activities 10 2

Design
Use Cases #Use Cases 25 4
User Interface #Wire Frames 25 5
Database #ERD 10 4

Peer Review Issues from Peer
Reviews #Activities 20 15

Implementation
 Coding

Create Database #DevOpt 200 8
Create Database
Queries #DevOpt 50 5

Create Front-End #DevOpt 1000
0 5

Create Back-End #DevOpt 2000
0 5

Test Design
Test Database #Use Cases 5 1
Test Front-End #Use Cases 10 2
Test Back-End #Use Cases 10 3

Test Execution Bug Recording #Defects 5 3

B. Asset Management System
An "Asset" is commonly defined as a physical item owned

by an individual or an organization and used to run business on
a daily basis. Asset Management is a formalized approach to
maintain assets for the benefit of an organization or a

Page # 2

stakeholder [3]. Asset tracking includes monitoring activities to
enable a user capturing asset’s parameters. Most importantly,
asset management allows for various metrics tracking of assets'
and hence creates a foundation for logical decision-making [4][5].

Fig. 1. AidVanTech (AVT) Logo

The AidVanTech is an asset management system developed
by this team. It maintains the asset parameters for an
organization. One has to track physical assets for various
purposes, e.g. provisioning, maintenance, financial reporting,
etc.

III. METHODOLOGY
The traditional Systems Development Life Cycles (SDLC)

framework, such as waterfall model - is a plan-based software
development with several distinct phases, e.g. planning,
analysis, design, and implementation. Agile is a fundamentally
different methodology, as it ships incremental chunks of
functionality within short iterations. [6][7].

In this project, we thoroughly reviewed and agreed to adopt
the four main values of agile manifesto: individuals and
interaction over processes and tools, working software over
comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following
a plan [8]. Our team had two regular meetings. First, online
meeting during a weekend to review the project progress, and
second weekly meeting to clear any scope issues regarding
detailed deliverables.

This project used Scrum, an agile methodology that
emphasizes a team-based, collaborative approach and organizes
the work onto series of sprints for incremental delivery [9]. This
methodology covers three roles, three artifacts, and five key
activities. These three roles are: product owner, scrum master,
and development team. The three artifacts: product backlog,
sprint backlog, and potentially shippable product increment
(PSPI). The five activities include sprint planning, sprint
execution, daily scrum, sprint review, and sprint retrospective
[10]. During project, Pivotal Tracker was used as an agile project
management tool of choice supporting real-time, team-specific
collaboration. In addition, Slack was used as an effective
communication tool for meetings and individual asynchronous
chats.

IV. RESULT AND DISCUSSION

A. Analysis

In the very beginning, the team defined the product goal for
each persona (an archetype of a system’s user). Table II lists
requirements in canonical form for each persona.

TABLE II. Requirements and Personas (User Archetypes)
Requirements Persona

As a Customer at AidVanTech, I am responsible for
registering for service, purchasing a subscription for service,
and creating a “System Owner” account which can be used
to initiate the process of creating an AMS System.

Customer

As a System Owner at AidVanTech, I am responsible for
creating an AMS-User, initiating the process of creating an
AMS System, creating, updating and deleting tables and

System
Owner

Requirements Persona
columns from the management system data, adding or
removing as well as managing and maintaining all AMS-
Users who have access to the AMS System, and determining
data categories that defube data on the AMS System.
As AMS-User at AidVanTech, I am responsible for
updating and maintaining Asset Management System Data,
and running queries on Asset Management System data.

AMS-User

As a Database Administartor at AidVanTech, I am
responsible for updating and maintaining the database that
houses the Asset Management System, resolving the
customer database issue and updating the Support
Technician with the progress, and updating and maintaining
the database that houses the AMS.

Database
Admin

As a Supprt Technician at AidVanTech, I am responsible for
receiving any technical issues of an asset tracker
management system from customer, fixing the customer
technical issue and updating the customer with the progress,
and passing customer’s database issues to Database
Administrator.

Support
Technician

Based on the analysis, there are 5 different personas for
AidVanTech divided into two categories: internal members
(e.g. Database Admin) and external members (e.g. Customer,
System Owner, AMS-User) .

Each persona is detailed in Table III. Definition of Personas
for AVT, see below. Note that a persona could be both human
and non-human, e.g. AMS - Asset Management System (API).

TABLE III. DEFINITION OF PERSONAS

Persona Description

Customer
Any person interested in purchasing a subscription to our
service.

System Owner

A paying customer with the ability to creation an Asset
Management System (AMS) as well as the ability to
manage and maintain the subscription, the AMS System
itself and any users associated with that AMS system.

AMS-User A customer created user account designed for the purpose
of managing and maintaing the AMS Data.

Database
Administrator

An internal member who is responsible for managing and
maintaining the health of the Database that houses all
AMS Customers.

Support
Technician

An internal member of our team, who is responsible for
providing support to Customers, System Owners and
Database Administrators.

RASCI (Responsible, Accountable, Supporting, Consulted,
Informed) Matrix was used to further define the responsibilities
and assignments for each user engaged with ASM. Table IV.
RASCI Chart below has a summary of all high-level tasks. Note
that tasks in RASCI are much more broad than stated
requirements.

TABLE IV. RASCI CHART

Task C SO AU DA ST AMS
Register for service R - - I I I
Purchase subscription R - - I I I
Create system owner
account R -

- I I
I

Create AMS via AMS
creating tool I R - C C S

Create AMS-User I R I C C S
Adds and/or remove tables
and columns from
management system data

I R I C C S

Determine data types the
system will manage I R I C C S

Determine data categories
that define data I R I C C S

Update and maintain asset
management system data I C R C C S

Update and maintain the
database that houses the
asset management systems

I I

I

R S
I

Run query on asset
management systems data I A

R C C
S

Page # 3

C = Customer
SO = System Owner
AU = AMS-User
DA = Database Administrator
ST = Support Technician
AMS = Asset Management Systems (API)
R = Responsible: Owns the task
A = Accountable: Whoever responsible accounts to
S = Supporting: supports the task
C = Consulted: Has the capability to complete the task
I = Informed: Must be notified of the results

B. Design
An Entity Relationship Diagram (ERD) below describes the

AVT’s data model and the detailed relation between one entity
and another. The AVT’s ERD diagram is shown below in
Figure 2. ERD Interface.

Fig. 2. ERD interface

Design process utilized UML to prototype the system. Each
Use Case is based primarily on RASCI role definition, with
references to ERD database schema, as well original
requirements. These Use Case diagrams summarize the logic of
the application in relation to the underlying database for
specific usage scenarios. To help with understanding the logic
each Use Case is accompanied by a description.

Fig. 3. Use Case #1 Activation Process

Use Case #1 addresses activating the System-Owner
Account and mirrors the users involved with the corresponding
RASCI task. This use case diagram references the roles each
persona will have in this particular use case and how their
involvement aligns with the state transitions of the application’s
logic. In this case the customer interacts the app to submit a
request to activate their account via the AMS-API. The
Database admin either will approve or deny this request leading

to either System Owner account activation or request
cancellation.

Fig. 4. Use Case #2 AMS-User Creation

Use Case #2 addresses the creation of an AMS-User
account, where the System Owner submits a creation request
via the AMS-API, which is either approved or denied by the
Database Admin. Upon approval, the AMS-User and
Customers associated with the request will receive a notice
from the API system.

Fig. 5. Use Case #3 Creation and Modification of AMS Tables

Use Case #3 addresses the creation and modification
(modification includes deletion) of AMS tables within the
database. The System Owner submits a table update, which
would then be verified against the AMS-Table Permissions and
AMS-User Permissions database fields. If permissions match,
then the table creation/update will be completed with the
notification to relevant users; if not the system will return an
invalid request error.

Fig. 6. Use Case #4 Verification Permissions Process

In Use Case #4 we see the modification/creation of asset
information within the AMS. The AMS-User begins by
verifying their permissions against the AD database tables.
Once verified the AMS-User submits a query for a particular
AMS-Asset; and this asset is either found or not found. If found,
the AMS-User will be asked to modify data; if asset is not
found, the AMS-User will be asked to create an asset table
entry. Once one of these is selected, the modification/creation
will be completed triggering notifications to be sent to the
Database Admin, System Owner, and Support Tech through the
AMS-API.

Page # 4

Fig. 7. Use Case #5 Account Holder Assigning Process

Use Case #5, the scenario is that of the Customer becoming
the Account Holder and/or the System Owner. The Customer
initiates new account creation and the AMS-API prompts the
Customer to become an Account Holder. If confirmed, the new
data is added to the Account User table. Once this is complete,
or if the Customer elects not to become an Account Holder, the
Customer will be prompted to become a System Owner. If
confirmed the System-Owner database table will be updated
with the new information. If not, the proper System Owner will
receive a notification that there is a new Account Holder.

C. Human Interface Design
Key wireframes focusing on basic functionality and user

process-flow are shown below. They demonstrate the process
for signing up a new customer, AMS-User, or System Owner.
They also show the email invitations received by a user and the
location of the wizard to enter their specific asset information.
The system can be customized for whatever information a user
needs to track. In this case, the system owner has full control of
the data asset management activities. He/she is able to add
assets, users, and permissions, as well as, customize the system
for a specific user needs. See below, Figure 8 called Dashboard
Interface Design for AMS-System. However, system owner has
no authorization to set permissions or add other users to the
system.

Fig. 8. Dashboard Interface Design for AMS-System

Figure 9. Input and Update Directory for AMS-System
shows that both AMS-User and System Owner are able to
examine their asset system and edit directly the asset, any
specific way each user needs.

Fig. 9. Input and Update Directory for AMS-System

During project retrospective, it was important to examine
how wireframes were morphed into actual system screenshots.
Wireframes in BalsamIQ use no color and have yellow sticky
notes to explain functionality. The layout for AVT System
homepage is shown in Figure 10.

Fig. 10. The Layout Design for AVT System Homepage

The layout design for AVT System Dashboard Menu is
shown in Figure 11.

Fig. 11. The AVT System Dashboard Menu

The layout design for AVT System Page Directory for
AMS-System is shown in Figure 12.

Fig. 12. Monitoring Page Directory for AMS-System

D. Implementation (Coding)
The design of AVT System (elaborated in previous

sections) was implemented as a set of programs using PHP
programming language. In addition, there are several tools were
used to develop the system including: MySQL.

E. System Testing and Verification
Table V. Test Cases, see below, lists several key test case

that have been documented and executed.

TABLE II. TEST CASES

Test Case ID Test Description
AVT-001 Verify customer can signup

AVT-002 Verify customer can invite use to create a system
owner account

AVT-003 Verify system owner can create an AMS user
account

AVT-004 Verify system owner can create an asset table
AVT-005 Verify AMS-User can create an asset

Page # 5

During the testing phase, this group followed the black-box
testing method of software verification, where the testing was
fully focused on the functionality of the AVT System.

Before shipping the product for each sprint, the test was
conducted. Testing was performed to improve reliability of the
program by finding and removing errors. This phase started
with the fundamental assumption that program contained errors
and the main purpose of this phase was to find as many errors
as possible [10]. The AVT-001 test case is elaborated in the Table
VI. Test Cases Details below.

TABLE III. TEST CASES DETAILS

AVT-001
General Information
Test Type: Functional - Positive
Test Type: AVT-001 Test Date: 12/06/2017
Test Case Description: Verify customer can signup.
Expected Results: User successfully registers.
Requirements to be Tested: As a customer at AidVanTech, I am
responsible for registering for service.
Setup and Constraints:Computer with internet access is available
to the user, user is not registered.
Input: User information
Procedural Steps:
1. Navigate to AidVanTech website
2. Click “Signup”
3. Input “Full Name, Email Address, Username, Password”, then
Click Submit
Expected Results:
1. AidVanTech website loads
2. User signup form should display
3. User is registered and subscription selection page is displayed
Actual Results:
1. AidVanTech website loads
2. User sigup form should display
3. User is registered and subscription selection page is displayed

V. CONCLUSION
The capability for a business organization to keep track of

their assets is vital for resources provisioning and planning.
During the project, the team learned the importance of
systematic development of any asset management system.

An important aspect of this project is collaboration among
team members. As a point of fact, this paper is being presented
in Inna Prat, while reflecting the effort undertaken in Boston,
which is a fifteen thousand kilometers away. Software
development has become a global affair. One has to prepare for
a collaboration, as it takes a certain learning to appreciate and
improve effectiveness of team dynamics.

Much like the software methodology has improved
dramatically over five years of running this university course.
Any software organization has to strive toward its razor-sharp
goals. Agile methodology cannot be copied from somewhere
just to be applied immediately. Tailoring to project specifics and
nurturing of software process is a must.

ACKNOWLEDGMENT
We would like to share our gratitude to LPDP (Indonesian

Endowment Fund for Education) Scholarship funding,
Indonesia Ministry of Finance.

We would like to acknowledge the contribution of all team
members of MET CS633 (Software Quality and Security
Management Course Fall 2017).

Should note that seven members of this project team have
had a variety of backgrounds. Although the Scrum Guide [12]
defines three roles only for a team. As a starting point, each team
member naturally gravitated to those tasks that he / she is most
familiar with. Such assignment of tasks, according to a personal
preference - is a part of the process tailoring that is unavoidable.
Jeff Sutherlad, the author of Scrum Guide, calls it "situational
adaptation". We treated Scrum Guide as a common vocabulary
to map our specific activities, as follows.

- Dwi Puspita Sari and Isaque Rezende - (Product Owner)
maintaining requirements in Pivotal Tracker, icebox / backlog

- David Fortin - (Scrum Master) bringing the team together,
alleviating impediments, tracking actions

- Andrew Guinther - UML prototyping and analysis
- Andreal Leak - UI Design, wireframing, BalsamIQ
- Muhammad Kamran - coding, PHP, MySQL, GitHub
- Alok Asoor - test cases development and execution, system

verification
- Alex Elentukh - (Agile Coach) university professor teaching

the class, responding to questions, clarifying deliverables,
providing feedback

REFERENCES
[1] BU MET CS 633 "Software Quality and Security Management", Alex

Elentukh, https://www.bu.edu/csmet/cs633/
[2] Steve McConnell, Software Estimation, Washington, United States of

America: Microsoft Press, 2006.
[3] R. Davis, An Introduction to Asset Management, United Kingdom: The

Institute of Asset Management, 2008.
[4] D.P. Sari, S.J. Putra, and E. Rustamaji, “The development of project

monitoring information system (Case study: PT Tetapundi Prima
Kelola),” IEEE Conference, pp. 39-43, 16 February 2015 [The 3rd
International Conference on Information Technology for Cyber and IT
Service Management (CITSM 2014)].

[5] World Shelter People, Monitoring Information System, retrieved 15
March 2018,
http://www.fukuoka.unhabitat.org/docs/publications/pdf/peoples_
process/ChapterVII-Monitoring_Information_System.pdf.

[6] A. Dennis, B.H. Wixom, and R.M. Roth, System Analysis and Design
(Fourth Edition), United States of America: John Wiley & Sons, Inc,
2012.  

[7] Cockburn, A, Agile Software Development, Boston: Addison-Wesley, 2001.
[8] Agile Alliance, Manifesto for Agile Software Development, retrieved 15

March 2018, https://www.agilealliance.org/agile101/the-agile-
manifesto/.

[9] Tycho Press, Scrum Basics, Berkeley, California: Tycho Press, 2015.
[10] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular

Agile Process, United States of America: Pearson Education, Inc., 2013.
[11] G. J. Myers, The Art of Software Testing, United States of America:

John Wiley & Sons, Inc., 1979
[12] Jeff Sutherland and Ken Schweber, Scrum Guide, November 2017

