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ABSTRACT 

The main objective of this article is to present the separation theorems, important 

consequences of the Hahn-Theorem theorem. These results are the fundamentals of the 

convex optimization mathematical approach. Along this work begin to consider vector 

spaces, in general, then normed spaces and posteriorly Hilbert spaces. It ends with the 

presentation of applications of these results in convex programming and in minimax 

theorem, two important tools in operations research, management and economics, for 

instance.    
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1.INTRODUCTION 

After a general overview on convex sets and convex functionals, the Hahn-Banach 

theorem is presented, with great generality, together with an important separation 

theorem. 

Then those results are particularized for normed spaces and then concretized for a 

subclass of these spaces: the Hilbert spaces. 

The fruitfulness of the results presented is emphasized in the last sections where it is 

shown that they permit to obtain results very important in the applications:  

 -First, the Kuhn-Tucker theorem, the main result of the complex programming so 

important in operations research, 

-Then the minimax theorem, an important result in game theory, which consideration in 

management and economic models is becoming greater and greater.   

2. CONVEX SETS AND FIELDS 

Be L a real vector space. 

Definition 2.1 

A set 𝐾 ⊂ 𝐿 is convex if and only if 

∀
𝑥, 𝑦 ∈ 𝐾

  
∀

𝜃 ∈ [0,1] 𝜃𝑥 + (1 − 𝜃)𝑦 ∈ 𝐾              (2.1). 
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Definition 2.2 

The nucleus of a set𝐸 ⊂ 𝐿, designated 𝐽(𝐸), is the set of points  𝑥 ∈ 𝐸 such that, given 

any 𝑦 ∈ 𝐿, it is possible to determine 𝜀 = 𝜀(𝑦) > 0 such that 𝑥 + 𝑡𝑦 ∈ 𝐸 since|𝑡| < 𝜀. 

 Definition 2.3 

 A convex set with non-empty nucleus is a convex field. 

Theorem 2.1 

The nucleus 𝐽(𝐾) of any convex set K is also a convex set. 

Dem.: Suppose that 𝑥, 𝑦 ∈ 𝐽(𝐾). Be 𝑧 =  𝜃𝑥 + (1 − 𝜃)𝑦, 0 ≤ 𝜃 ≤ 1. So, given any  𝑎 ∈

𝐿, it is possible to determine 𝜀1 > 0, 𝜀2 > 0  such that, for |𝑡1| < 𝜀1, |𝑡2| < 𝜀2 , the 

points 𝑥 + 𝑡1𝑎 and 𝑦 + 𝑡2𝑎 belong both to K. So, the point 𝜃(𝑥 + 𝑡𝑎) + (1 − 𝜃)(𝑦 +

𝑡𝑎) = 𝑧 + 𝑡𝑎 belongs to K for |𝑡| < 𝜀 = 𝑚𝑖𝑛{𝜀1, 𝜀2}, that is 𝑧 ∈ 𝐽(𝐾). □ 

Theorem 2.2 

The intersection of any family of convex sets is a convex set. 

Dem.: Be 𝐾 =
∩
𝛼

𝐾𝛼, being each 𝐾𝛼 a convex set. Consider any two points x and y from 

K. So 𝜃𝑥 + (1 − 𝜃)𝑦, 0 ≤ 𝜃 ≤ 1, belongs to every 𝐾𝛼and, in consequence, to K. So K is 

a convex set.□ 

Observation:  

-The intersection of convex fields, being a convex set, it is not necessarily a convex 

field. 

Definition 2.4 

Be A a part, anyone, of a vector space L. Among the convex sets that contain A there is a 

minimal set: the intersection of the whole convex sets that contain A -there is at least 

one convex set that contains A: the space L. This minimal set is the convex hull of A. 

3. HOMOGENEOUS CONVEX FUNCTIONALS 

Definition 3.1  

A functional p, defined in L is convex if and only if 

∀
𝑥, 𝑦 ∈ 𝐿

  
∀

𝜃 ∈ [0,1] 𝑝(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑝(𝑥) + (1 − 𝜃)𝑝(𝑦)             (3.1). 

Definition 3.2 

A functional p is positively homogeneous if and only if 

∀
𝑥 ∈ 𝐿

  
∀

𝛼 > 0
 𝑝(𝛼𝑥) = 𝛼𝑝(𝑥)             (3.2). 

Proposition 3.1 

For any convex positively homogeneous functional it is always fulfilled: 

                      i)𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦)    (3.3), 



                      ii)𝑝(0) = 0                                 (3.4), 

                      iii)𝑝(𝑥) + 𝑝(−𝑥) ≥ 0,
∀

𝑥 ∈ 𝐿
  (3.5), 

                      iv) 𝑝(𝛼𝑥) ≥ 𝛼𝑝(𝑥),
∀

𝛼 ∈ ℝ
      (3.6). 

    Dem:        i) In fact, 𝑝(𝑥 + 𝑦) = 2𝑝 (
𝑥+𝑦

2
) ≤ 2 (𝑝 (

𝑥

2
) + 𝑝 (

𝑦

2
)) = 𝑝(𝑥) + 𝑝(𝑦). 

                     ii)𝑝(0) = 𝑝(𝛼0) = 𝛼𝑝(0),
∀

𝛼 > 0
. So 𝑝(0) = 0. 

                    iii)0 = 𝑝(0) = 𝑝(𝑥 + (−𝑥)) ≤ 𝑝(𝑥) + 𝑝(−𝑥),
∀

𝑥 ∈ 𝐿
. 

                   iv) The result is evident for  𝛼 ≥ 0. With  𝛼 < 0, 0 ≤ 𝑝(𝛼𝑥) + 𝑝(−𝛼𝑥) =

𝑝(𝑎𝑥) + 𝑝(|𝛼|𝑥) = 𝑝(𝛼𝑥) + |𝛼|𝑝(𝑥). So, 𝑝(𝛼𝑥) ≥ −|𝛼|𝑝(𝑥), that is 𝑝(𝛼𝑥) ≥

𝛼𝑝(𝑥). □ 

4. MINKOWSKY FUNCTIONALS 

Definition 4.1 

Be L any vector space and A a convex body in L which kernel contains 0. It is called 

Minkowsky functional of the convex body A, and called 𝑝𝐴(𝑥), the functional 

𝑝𝐴(𝑥) = 𝑖𝑛𝑓 {𝑟:
𝑥

𝑟
∈ 𝐴}            (4.1). 

Theorem 4.1 

A Minkowsky functional is convex positively homogeneous and assumes only positive 

values. Reciprocally, if p(x) is positively homogeneous functional, assuming only 

positive values, and K a positive number, so the set 

𝐴 = {𝑥: 𝑝(𝑥) ≤ 𝐾}               (4.2)  

is a convex body with kernel {𝑥: 𝑝(𝑥) < 𝐾}, which contains the point 0. If in (4.2) it is 

made 𝐾 = 1, the initial functional p(x) will be the Minkowsky functional of A. 

Dem: Given any element  𝑥 ∈ 𝐿, 
𝑥

𝑟
 belongs to A if r is great enough. So, the number 

𝑝𝐴(𝑥) defined by (4.1) is positive and finite. 

But, given 𝑡 > 0 and 𝑦 = 𝑡𝑥, 𝑝𝐴(𝑦) = 𝑖𝑛𝑓 {𝑟 > 0:
𝑦

𝑟
∈ 𝐴} = 𝑖𝑛𝑓 {𝑟 > 0:

𝑡𝑥

𝑟
∈ 𝐴} =

𝑖𝑛𝑓 {𝑡𝑟′ > 0:
𝑥

𝑟′ ∈ 𝐴} = 𝑡𝑖𝑛𝑓 {𝑟′ > 0:
𝑥

𝑟′ ∈ 𝐴} = 𝑡𝑝𝐴(𝑥). So,  

𝑝𝐴(𝑡𝑥) = 𝑡𝑝𝐴(𝑥),
∀

𝑡 > 0
  (4.3), 

and consequently 𝑝𝐴(𝑥) is positively homogeneous. 



Suppose now that 𝑥1, 𝑥2 ∈ 𝐿. Given any  𝜀 ∈ 𝐿, choose the numbers 𝑟𝑖, 𝑖 = 1,2 in order 

that 𝑝𝐴(𝑥𝑖) < 𝑟𝑖 < 𝑝𝐴(𝑥𝑖) + 𝜀. So 
𝑥𝑖

𝑟𝑖
∈ 𝐴. Making 𝑟 = 𝑟1 + 𝑟2, the point 

𝑥1+𝑥2

𝑟
=

𝑟

𝑟𝑟1
𝑥1+

𝑟2

𝑟𝑟2
𝑥2 will belong to the set of points 𝑆 = {𝑧: 𝑧 = 𝜃

𝑥1

𝑟1
+ (1 − 𝜃)

𝑥2

𝑟2
,

∀
𝜃 ∈ [0,1]}. 

As A is a convex set, 𝑆 ⊂ 𝐴 and , in particular, 
𝑥1+𝑥2

𝑟
∈ 𝐴. So, 𝑝𝐴(𝑥1 + 𝑥2) ≤ 𝑟 = 𝑟1 +

𝑟2 <  𝑝𝐴(𝑥1)+, 𝑝𝐴(𝑥2) + 2𝜀. As 𝜀 is arbitrary, 

𝑝𝐴(𝑥1 + 𝑥2) ≤ 𝑝𝐴(𝑥1) + 𝑝𝐴(𝑥2). 

So,     𝑝𝐴(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝑝𝐴(𝜃𝑥) + 𝑝𝐴((1 − 𝜃)𝑦) = 𝜃𝑝𝐴(𝑥) + (1 − 𝜃) 

𝑝𝐴(𝑦),
∀

𝑥, 𝑦 ∈ 𝐿
,

∀
𝜃 ∈ [0,1],  since it was already shown that 𝑝𝐴(𝑥) is positively 

homogeneous. 

Look now to the set defined by (4.2). If 𝑥, 𝑦 ∈ 𝐴 and  𝜃 ∈ [0,1], so  𝑝(𝜃𝑥 + (1 −

𝜃)𝑦) ≤ 𝜃𝑝(𝑥) + (1 − 𝜃)𝑝(𝑦) ≤ 𝐾. In consequence, A is a convex set. Suppose now 

that 𝑝(𝑥) < 𝐾, 𝑡 > 0 and 𝑦 ∈ 𝐿. Under these conditions, 𝑝(𝑥 ± 𝑡𝑦) ≤ 𝑝(𝑥) + 𝑡𝑝(±𝑦). 

If 𝑝(−𝑦) = 𝑝(𝑦) = 0, so 𝑥 ± 𝑡𝑦 ∈ 𝐴 for any t. If at least one of the numbers (positive) 

𝑝(𝑦), 𝑝(−𝑦) is not nul, so 𝑥 ± 𝑡𝑦 ∈ 𝐴 for 

𝑡 <
𝐾 − 𝑝(𝑥)

𝑚𝑎𝑥{𝑝(𝑦), 𝑝(−𝑦)}
. 

From the definitions it results that p is the Minkowsky functional of the set {𝑥: 𝑝(𝑥) ≤

1}. □ 

Observation:  

-Taking in account the Theorem 4.1, the Minkowsky functional allows to establish a 

correspondence between the positively homogeneous convex functionals, assuming 

only positive values, and the convex bodies to which kernels the origin belongs.  

5. THE HAHN-BANACH-THEOREM  

Definition 5.1  

Consider a vector space L and its subspace 𝐿0. Suppose that in 𝐿0 is defined a linear 

functional 𝑓0. A linear functional f defined in the whole space L is an extension of the 

functional 𝑓0 if and only if  

                                           f(x)= 𝑓
0
(𝑥),

∀

𝑥 ∈ 𝐿0
. 

The Hahn-Banach theorem is essential in the in the resolution of the problem of finding  

an extension of a linear functional. 

Theorem 5.1 (Hahn-Banach) 

Be p a positively homogeneous convex functional defined in a real vector space L and 

𝐿0 an L subspace. If 𝑓0 is a linear functional defined in   𝐿0, fulfilling the condition 



                                              𝑓0(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿0
   (5.1), 

so, there is an extension f of 𝑓0 defined in L, linear, and such that f(x)≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
. 

Dem: Begin showing that if 𝐿0 ≠ 𝐿, there is an extension of 𝑓0, 𝑓′, defined in a 

subspace 𝐿′ such that 𝐿 ⊂ 𝐿′, to fulfill the condition (5.1). 

Be z any element of L not belonging to 𝐿0; if 𝐿′is the subspace generated by 𝐿0 and z, 

each element of 𝐿′ is expressed in the form tz+x, being 𝑥 ∈ 𝐿0. If 𝑓′is an extension 

(linear) of the functional 𝑓0 to 𝐿′, it will happen that 𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑓′(𝑧) + 𝑓0(𝑥) or, 

making 𝑓′(𝑧) = 𝑐, 

𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑐 + 𝑓0(𝑥). 

Now choose c, fulfilling the condition (5.1) in 𝐿′ , that is: in order that the inequality 

𝑓0(𝑥) + 𝑡𝑐 ≤ 𝑝(𝑥 + 𝑡𝑧), for any 𝑥 ∈ 𝐿0 and any real number t, is accomplished. 

For 𝑡 > 0 this inequality is equivalent to the condition 𝑓0 (
𝑥

𝑡
) + 𝑐 ≤ 𝑝 (

𝑥

𝑡
+ 𝑧) or 

𝑐 ≤  𝑝 (
𝑥

𝑡
+ 𝑧) − 𝑓0 (

𝑥

𝑡
)         (5.2). 

For 𝑡 < 0 it is equivalent to the condition 𝑓0 (
𝑥

𝑡
) + 𝑐 ≥ −𝑝 (−

𝑥

𝑡
− 𝑧), or 

𝑐 ≥ − 𝑝 (−
𝑥

𝑡
− 𝑧) − 𝑓0 (

𝑥

𝑡
)        (5.3). 

Now it will be proved that there is always a number c satisfying simultaneously the 

conditions (5.2) and (5.3). 

Given any two elements𝑦 ′and 𝑦 ′′𝑏elonging to 𝐿0, 

 −𝑓0(𝑦′′) + 𝑝(𝑦′′ + 𝑧) ≥ −𝑓0(𝑦′) − 𝑝(−𝑦′ − 𝑧)             (5.4),  

since  𝑓0(𝑦′′) − 𝑓0(𝑦′) ≤ 𝑝(𝑦′′ − 𝑦′) = 𝑝((𝑦′′ + 𝑧) − (𝑦′ + 𝑧)) ≤ 𝑝(𝑦′′ + 𝑧) +

𝑝(−𝑦′ − 𝑧).  

Be 𝑐′′ =  inf
𝑦′′

(−𝑓0(𝑦′′) + 𝑝(𝑦′′ + 𝑧)) and 𝑐′ =  sup
𝑦′

(−𝑓0(𝑦′) − 𝑝(−𝑦′ − 𝑧)).  As  

𝑦′and 𝑦′′ are arbitrary, it results from (5.4) that  𝑐′′ ≥ 𝑐′. Choosing c in order that 𝑐′′ ≥

𝑐 ≥ 𝑐′, it is defined the functional  𝑓′ on 𝐿′ through the formula 

                                              𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑐 + 𝑓0(𝑥).   

This functional satisfies the condition (5.1). So, any functional 𝑓0 defined in a subspace 

𝐿0 ⊂ 𝐿 and subject in 𝐿0 to the condition (5.1), may be extended to a subspace 𝐿′. The 

extension 𝑓′ satisfies the condition 



𝑓′(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿′. 

 

If L has an algebraic numerable base (𝑥1, 𝑥2, … , 𝑥𝑛, … ) the functional in L is built by 

finite induction, considering the increasing sequence of subspaces 

𝐿(1) = (𝐿0, 𝑥1), 𝐿(2) = (𝐿(1), 𝑥2), … 

designating (𝐿(𝑘), 𝑥𝑘+1) the L subspace generated by 𝐿(𝑘) and 𝑥𝑘+1. In the general case, 

that is, when L has not an algebraic numerable base, it is mandatory to use a transfinite 

induction process, for instance the Haudsdorf maximal chain theorem. 

Call ℱ the set of the whole pairs(𝐿′, 𝑓′), at which 𝐿′ is a L subspace that contains 𝐿0 and 

𝑓′ is an extension of  𝑓0 to 𝐿′ that fulfills (5.1). Order partially ℱso that 

(𝐿′, 𝑓′) ≤ (𝐿′′, 𝑓′′) if and only if 𝐿′ ⊂ 𝐿′′and 𝑓|𝐿′
′′ = 𝑓′. 

By the Haudsdorf maximal chain theorem, there is a chain, that is: a subset of ℱ totally 

ordered, maximal, that is: not strictly contained in another chain. Call it Ω. Be Φ the 

family of the whole 𝐿′ such that (𝐿′, 𝑓′) ∈ Ω. Φ is totally ordered by the sets inclusion; 

so, the union Τ of the whole elements of Φ is a L subspace. If 𝑥 ∈  Τ then 𝑥 ∈ 𝐿′ for 

some  𝐿′ ∈  Φ ; define 𝑓(𝑥) = 𝑓′(𝑥), where 𝑓′is the extension of 𝑓0 that is in the pair 

(𝐿′, 𝑓′)- the definition of 𝑓 is obviously coherent. It is easy to check that Τ = 𝐿 and that 

𝑓 = 𝑓′ satisfies the condition (5.1).□ 

Now the Hahn-Banach theorem complex case, corresponding to the contribution of 

Hahn to the theorem, will be presented. But first: 

Definition 5.2 

A linear functional p, assuming only positive values, defined in a complex vector space 

L, is homogeneous convex if and only if, for any 𝑥, 𝑦 ∈ 𝐿 and any complex number 𝜆, 

𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦),

𝑝(𝜆𝑥) = |𝜆|𝑝(𝑥).
 

Theorem 5.2 (Hahn-Banach) 

Be p an homogeneous convex functional defined in a vector space L and 𝑓0 a linear 

functional, defined in a subspace 𝐿0 ⊂ 𝐿, fulfilling the condition 

|𝑓0(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿0. 

Then, there is a linear functional f defined in L, satisfying the conditions 

|𝑓(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿; 𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿0. 



Dem: Call 𝐿𝑅 and 𝐿0𝑅 the real vector spaces underlying, respectively, the spaces L and 

𝐿0 . As it is evident, p is a homogeneous convex functional in 𝐿𝑅 and  𝑓0𝑅 (𝑥) =

𝑅𝑒𝑓0(𝑥) a real linear functional in 𝐿0𝑅 fulfilling the condition |𝑓0𝑅 (𝑥)| ≤ 𝑝(𝑥) and so, 

𝑓0𝑅 (𝑥) ≤ 𝑝(𝑥). 

Then, from Theorem 5.1, there is a real linear functional 𝑓𝑅, defined in the whole 𝐿𝑅 

space, that satisfies the conditions 

𝑓𝑅(𝑥) ≤  𝑝(𝑥), 𝑥 ∈ 𝐿𝑅;  𝑓𝑅(𝑥) = 𝑓0𝑅 (𝑥), 𝑥 ∈ 𝐿0𝑅 . 

But, −𝑓𝑅(𝑥) = 𝑓𝑅(−𝑥) ≤ 𝑝(−𝑥) = 𝑝(𝑥), and 

                                      |𝑓𝑅 (𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿𝑅                   (5.5). 

Define in L the functional f making  

𝑓(𝑥) = 𝑓𝑅 (𝑥) − 𝑖𝑓𝑅 (𝑖𝑥). 

It is immediate that f is a complex linear functional in L such that 𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈

𝐿0; 𝑅𝑒𝑓(𝑥) = 𝑓𝑅 (𝑥), 𝑥 ∈ 𝐿. It only misses to show that |𝑓(𝑥)| ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
: 

Proceed by absurd. Suppose that there is 𝑥0 ∈ 𝐿 such that |𝑓(𝑥0)| > 𝑝(𝑥0). So, 𝑓(𝑥0) =

𝜌𝑒𝑖𝜑, 𝜌 > 0, and making 𝑦0 = 𝑒−𝑖𝜑𝑥0, it would happen that 𝑓𝑅 (𝑦0) =

𝑅𝑒[𝑒−𝑖𝜑𝑓(𝑥0  )] = 𝜌 > 𝑝(𝑥0) = 𝑝(𝑦0) that is contrary to (5.5).□  

6. SEPARATION OF THE VECTOR SPACE CONVEX PARTS 

The next theorem, very useful, consequence of the Hahn-Banach theorem, is about the 

separation of the vector space convex parts. Beginning with 

Definition 6.1 

Be M and N two subsets of a real vector space L. A linear functional f defined in L 

separates M and N if and only if there is a number c such that 𝑓(𝑥) ≥ 𝑐, for 𝑥 ∈

𝑀 and 𝑓(𝑥) ≤ 𝑐, for 𝑥 ∈ 𝑁 that is, if inf
𝑥∈𝑀

𝑓(𝑥) ≥ sup
𝑥∈𝑁

𝑓(𝑥). A functional f separates 

strictly the sets M and N if and only if inf
𝑥∈𝑀

𝑓(𝑥) > sup
𝑥∈𝑁

𝑓(𝑥). 

Theorem 6.1 (Separation)  

Suppose that M and N are two convex subsets of a vector space L such that the kernel of 

at least one of them, for instance the one of M , is non-empty and does not intersect the 

other set; So, there is a linear functional non-null on L that separates M and N. 

 Dem: Less than on translation, it is supposable that the point 0 belongs to the kernel of 

M, which is designated �̇�. So, given 𝑦0 ∈ 𝑁, −𝑦0 belongs to the kernel of  𝑀 − 𝑁 and 

0 to the kernel of 𝑀 − 𝑁 + 𝑦0. As �̇� ∩ 𝑁 = ∅, by hypothesis, 0 does not belong to the 

kernel of  𝑀 − 𝑁 and 𝑦0 does not belong to the one of 𝑀 − 𝑁 + 𝑦0. Put 𝐾 =  𝑀 − 𝑁 +

𝑦0 and be p the Minkovsky functional of 𝐾.̇  So 𝑝(𝑦0) ≥ 1, since 𝑦0 ∉ 𝐾.̇  Define, now, 

the linear functional 



𝑓0(𝛼𝑦0) = 𝛼𝑝(𝑦0). 

Note that 𝑓0 is defined in a space with dimension, constituted by elements 𝛼𝑦0, and it is 

such that  

𝑓0(𝛼𝑦0) ≤ 𝑝(𝛼𝑦0). 

In fact, 𝑝(𝛼𝑦0) =  𝛼𝑝(𝑦0), when  𝛼 ≥ 0 and 𝑓0(𝛼𝑦0) = 𝛼𝑓0(𝑦0) < 0 < 𝑝(𝛼𝑦0),  when 

𝛼 > 0. Under these conditions, after the Hahn-Banach theorem, it is possible to state the 

existence of linear functional f , defined in L, that extends 𝑓0, and such that 𝑓(𝑦) ≤

𝑝(𝑦),
∀

𝑦 ∈ 𝐿
. 

Then it results 

𝑓(𝑦) ≤ 1,
∀

𝑦 ∈ 𝐾
   and   𝑓(𝑦0) ≥ 1. 

In consequence: 

-f separates the sets K and {𝑦0}, that is 

- f separates the sets M-N and {𝑦0}, that is 

-f separates the sets M and N.□  

7. THE HAHN-BANACH THEOREM FOR NORMED SPACES 

A vector space L with a norm is a normed space. The norm of an element 𝑥 ∈ 𝐿 is 

usually denoted ‖𝑥‖. Every normed space is a metric space with the distance 𝑑(𝑥, 𝑦) =

‖𝑥 − 𝑦‖.  

Definition 7.1 

Consider a continuous linear functional f in a normed space E. It is called f norm, and 

designated ‖𝑓‖: 

 ‖𝑓‖ = sup
||𝑥||≤1

|𝑓(𝑥)| 

that is: the supreme of the values assumed by |𝑓(𝑥)| in the E unitary ball.  

Observation: 

-The class of the continuous linear functionals, with the norm above defined, is a 

normed vector space, called the E dual space, designated 𝐸′. 

Theorem 5.1 is as follows, in normed spaces: 

Theorem 7.1 (Hahn-Banach) 

Name L a subspace of a real normed space E and 𝑓0 a bounded linear functional in L. 

So, there is a linear functional defined in E, extension of 𝑓0, such that 

‖𝑓0‖𝐿, = ‖𝑓‖𝐸, . 



Dem: It is enough to think in the functional 𝐾‖𝑥‖ at which 𝐾 = ‖𝑓0‖𝐿,. As it is convex 

and positively homogeneous, it is possible to put 𝑝(𝑥) = 𝐾‖𝑥‖ and to apply Theorem 

4.1.□ 

Observation: 

-To see an interesting geometric interpretation of this theorem, consider the equation 

‖𝑓0(𝑥)‖ = 1. It defines, in L, an hiperplane at distance   
1

‖𝑓0‖
 𝑜𝑓 0. Considering the 

extension f of 𝑓0 , with norm conservation, it is obtained an  hiperplane in E, that 

contains the hiperplane considered behind in L, and that at the same distance from the 

origin. 

The version for normed spaces of Theorem 5.2 is: 

Theorem 7.2 (Hahn-Banach) 

 Be E a complex normed space and 𝑓0 a bounded linear functional defined in a subspace 

𝐿 ⊂ 𝐸. So, there is a bounded linear functional f, defined in E, such that 

𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿; ‖𝑓‖𝐸, = ‖𝑓0‖𝐿, . 

To end this section, two separation theorems, important consequences of the Hahn-

Banach theorem, applied to the normed vector spaces, will be presented: 

Theorem 7.3 (Separation) 

Consider two convex sets A and B in a normed space E. If one of them, for instance A, 

has at least on interior point and (𝑖𝑛𝑡𝐴) ∩ 𝐵 = ∅, there is a continuous linear functional 

non-null that separates the sets A and B.Escreva uma equação aqui. 

Theorem 7.4 (Separation) 

Consider a closed convex set A, in a normed space E, and a point 𝑥0 ∈ 𝐸, not belonging 

to A. So, there is a continuous linear functional, non-null, that separates strictly {𝑥0} and 

A. 

8. SEPARATION THEOREMS FOR HILBERT SPACES  

Definition 8.1 

A Hilbert space, designated H or I, is a complex vector space with inner product that, as 

a metric space, is complete. 

Definition 8.2  

An inner product, in a complex vector space H , is a sesquilinear hermitian functional, 

strictly positive on H. 

Observation: 

-Working with real vector spaces, “sesquilinear hermitian” must be replaced by 

“bilinear symmetric”, 

 -The inner product of two vectors x and y of H , by this order is designated  

-The norm of a vector x will be ‖𝑥‖ = √[𝑥, 𝑥]. 



An important theorem, about the representation of continuous linear functionals by 

elements of the space is the Riesz representation theorem: 

Theorem 8.1 (Riesz representation) 

Every continuous linear functional 𝑓(∙) may be represented in the form 𝑓(𝑥) = [𝑥, �̃�] 

where 

�̃� =
𝑓(𝑞)̅̅ ̅̅ ̅̅

[𝑞, 𝑞]
𝑞. 

From now on, only real Hilbert spaces will be considered. 

Note that the separation theorems, seen in the former section, are valid in Hilbert 

spaces. But, due to the Riesz representation theorem, they may be stated in the 

following way: 

Theorem 8.2 (Separation) 

Consider two convex sets A and B in a Hilbert space H. If one of them, for instance A, 

has at least on interior point and (𝑖𝑛𝑡𝐴) ∩ 𝐵 = ∅, there is a non-null vector v such that 

sup
𝑥∈𝐴

[𝑣, 𝑥] ≤ inf
𝑦∈𝐵

[𝑣, 𝑦]. 

Theorem 8.3 (Separation) 

Consider a closed convex set A, in a Hilbert space H, and a point 𝑥0 ∈ 𝐻, not belonging 

to A. So, there is a non-null vector v, such that 

                                                            [𝑣, 𝑥0] < inf
𝑥∈𝐴

[𝑣, 𝑥].  

Another separation theorem: 

Theorem 8.4 (Separation) 

Two closed convex subsets A and B, of a Hilbert space, in a finite distance from each 

other, that is: such that: 

inf
𝑥∈𝐴,𝑦∈𝐵

‖𝑥 − 𝑦‖ = 𝑑 > 0 

may be strictly separated, that is: 

inf
𝑥∈𝐴

[𝑣, 𝑥] > sup
𝑦∈𝐵

[𝑣, 𝑦]. 

It is also possible to demonstrate that: 

Theorem 8.5 (Separation)  

Being H a finite dimension Hilbert space, if A and B are disjoint and non-empty convex 

sets they always may be separated. 

 

 



 9. APPLICATION IN CONVEX PROGRAMMING 

As application of separation theorems for convex sets, will be considered a class of 

convex programming problems, at which it is intended to minimize convex functionals 

subject to convex inequalities.  

Begin by presenting a basic result that characterizes the minimum point of a convex 

functional subject to convex inequalities. Note that it is not necessary to impose any 

continuity conditions. 

Theorem 9.1 (Kuhn-Tucker) 

Be f(x), 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛, convex functionals defined in a convex subset C of a Hilbert 

space. 

Consider the problem: 

min
𝑥∈𝐶

𝑓(𝑥),

𝑠𝑢𝑏. : 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑛.  
 

Be 𝑥0 a point where the minimum, supposed finite, is reached. Also suppose that for 

each vector u in 𝐸𝑛, Euclidean space with dimension n, non-null and such that 𝑢𝑘 ≥ 0, 

there is a point x in C such that ∑ 𝑢𝑘𝑓𝑘(𝑥) < 0,1 designating 𝑢𝑘 the components of u. 

So, 

i) There is a vector v, with non-negative components {𝑣𝑘}, such that  

min
𝑥∈𝐶

{𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

} = 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) = 𝑓(𝑥0)              (9.1)

𝑛

1

, 

 

 

ii) For every vector u in 𝐸𝑛 with non-negative components, that is: belonging to 

the positive cone of 𝐸𝑛 , 

𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

≥ 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) ≥ 𝑓(𝑥0) + ∑ 𝑢𝑘𝑓𝑘(𝑥0)   

𝑛

1

(9.2).

𝑛

1

 

Corollary 9.1 (Lagrange duality) 

In the conditions of Theorem 9.1  

𝑓(𝑥0) = sup
𝑢≥0

inf
𝑥∈𝐶

𝑓(𝑥) + ∑ 𝑢𝑘𝑓𝑘(𝑥).   

𝑛

1

 

 

 

 



Observation: 

-This corollary has the utility of supplying a process to determine the problem optimal 

solution, 

-If the whole 𝑣𝑘 in expression (9.2) are positive, 𝑥0 is a point that belongs to the border 

of the convex set defined by the inequalities, 

 -If the whole 𝑣𝑘 are zero, the inequalities do not influence the problem, that is: the 

minimum is equal to the one of the free problem-without the inequality restrictions. 

Considering non-finite inequalities:  

Theorem 9.2 (Kuhn-Tucker in infinite dimension) 

Be C a convex subset of a Hilbert space H and f (x) a real convex functional defined in 

C. Be I a Hilbert space with a closed convex cone 𝓅, with non-empty interior, and F(x) 

a convex transformation from H to I (convex in relation to the order introduced by cone 

𝓅: if 𝑥, 𝑦 ∈ 𝓅, 𝑥 ≥ 𝑦 𝑖𝑓 𝑥 − 𝑦 ∈ 𝓅). Be 𝑥0 a f (x) minimizing in C subjected to the 

inequality 𝐹(𝑥) ≤ 0. 

                        Consider 𝓅∗ = {𝑥: [𝑥, 𝑝] ≥ 0,
∀

𝑥 ∈ 𝓅} – Dual cone. 

Admit that given any 𝑢 ∈ 𝓅∗ it is possible to determine x in C such that [𝑢, 𝐹(𝑥)] < 0. 

So, there is an element v in the dual cone 𝓅∗, such that for x in C 

𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑓(𝑥0) + [𝑣, 𝐹(𝑥0)] ≥ 𝑓(𝑥0) + [𝑢, 𝐹(𝑥0)], 

being u any element of 𝓅∗. 

Corollary 9.2 (Lagrange duality in infinite dimension)  

In the conditions of Theorem 9.2  

𝑓(𝑥0) = sup
𝑣∈𝓅∗

inf
𝑥∈𝐶

( 𝑓(𝑥) + [𝑣, 𝐹(𝑥)]). 

10. APPLICATION IN GAME THEORY 

Now it will be seen how the result of convex sets strict separation permits to obtain a 

fundamental result of game theory: The minimax theorem. 

Consider two players games with null sum: 

-Be Φ(𝑥, 𝑦) a real function of two variables 𝑥, 𝑦 ∈ 𝐻. 

-Be A and B convex sets in H. 

-One of the players chooses strategies (points) in A in order to maximize Φ(𝑥, 𝑦) (or 

minimize −Φ(𝑥, 𝑦)): it is the maximizing player. 

-The other player chooses strategies (points) in B to minimize Φ(𝑥, 𝑦) (or maximize 

−Φ(𝑥, 𝑦)): it is the minimizing player. 



The function Φ(𝑥, 𝑦) is the payoff function. Φ(𝑥0, 𝑦0) represents, simultaneously, the 

win of the maximizing player and the loss of the minimizing player in a move at which 

they chose, respectively the strategies 𝑥0 and 𝑦0. So, the win of one of the players is 

equal to the loss of the other. That is why the game is a null sum game. 

A game in these conditions has value c if 

               sup
𝑥∈𝐴

inf
𝑦∈𝐵

Φ(𝑥, 𝑦) = 𝑐 = inf
𝑦∈𝐵

sup
𝑥∈𝐴

Φ(𝑥, 𝑦)            (10.1). 

If, for any (𝑥0, 𝑦0), Φ(𝑥0, 𝑦0) = 𝑐, (𝑥0, 𝑦0) is a pair of optimal strategies. There will be 

a saddle point if also 

               Φ(𝑥, 𝑦0) ≤  Φ(𝑥0, 𝑦0) ≤ Φ(𝑥0, 𝑦), x∈ 𝐴, 𝑦 ∈ 𝐵                      (10.2). 

Theorem 10.1 

Consider A and B convex sets closed in H, being A bounded. Be  Φ(𝑥, 𝑦)a real 

functional defined for x in A and y in B fulfilling: 

 

-Φ(𝑥, (1 − 𝜃)𝑦1 + 𝜃𝑦2) ≤ (1 − 𝜃)Φ(𝑥, 𝑦1) + 𝜃Φ(𝑥, 𝑦2) for x in A and 𝑦1, 𝑦2 in B, 0 ≤

𝜃 ≤ 1 (that is: Φ(𝑥, 𝑦) is convex in y for each x), 

- Φ((1 − 𝜃)𝑥1 + 𝜃𝑥2, 𝑦) ≥ (1 − 𝜃)Φ(𝑥1,, 𝑦) + 𝜃Φ(𝑥2, 𝑦) for y in B and 𝑥1, 𝑥2 in A, 

0 ≤ 𝜃 ≤ 1 (that is: Φ(𝑥, 𝑦) is concave in x for each y), 

- Φ(𝑥, 𝑦) is continuous in x for each y, 

so (9.1) holds, that is: the game has a value.  

The next corollary follows from the Theorem 10.1 hypothesis strengthen: 

Corollary 10.1(Minimax) 

Suppose that the functional Φ(𝑥, 𝑦) of Theorem 10.1 is continuous in both variables, 

separately, and that B is also bounded. Then, there is an optimal pair of strategies, with 

the property of being a saddle point.  

11. CONCLUSIONS 

In the beginning of this paper, a general and relatively detailed overview on convex sets 

and convex functionals, with the study of the Minkowsky functional, determinant to the 

sequence of this work, was performed. 

Then the Hahn-Banach theorem was presented with great generality, real and complex 

version, followed by an important separation theorem. 

These results were particularized for normed spaces and then concretized for a subclass 

of these spaces: the Hilbert spaces. Better saying, they were reformulated for Hilbert 

spaces using the Riesz representation theorem. 



The fruitfulness of the results presented is patent in the last sections where it is shown 

that they permit to obtain results important in the applications. Now the structures 

considered were the real Hilbert spaces. 

The problems studied were convex optimization problems in which, it is well known, 

the separation theorems are a key tool. 

First, the Kuhn-Tucker theorem, the main result of the complex programming so 

important in operations research. 

Then the minimax theorem, an important result in game theory, which consideration in 

management and economic problems resolution is greater and greater. 

Note that the problem studied in section 9 may be considered a game with one player 

only that chooses strategies (points) in a convex set in order to minimize a 

function(convex) subject to restrictions(convex). In this situation it makes no sense to 

consider the restriction of null sum: there is not a player losing to another one. 

As for the problem studied in section 10, it is what may be called a hybrid problem. In 

fact, one tries to maximize a set of minimums or to minimize a set of maximums. 
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