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Abstract. The aim of the work is to estimate the probability weighting 

function, starting from the time series of the S&P 500 index. After an 

introduction to the Efficient Markets Hypothesis (EMH) and the empiri-

cal evidence against it, we have introduced the Prospect Theory (PT). 

Following the studies carried out by Gonzalez et al., we have analyzed 

w(p) and we have proposed a new estimation method with a two-param-

eters function. The OLS (Ordinary Least Squares) method provides the 

alpha and beta coefficients, which represent respectively the curvature 

and elevation of the weighting function. In the last part of the paper, w(p) 

has been implemented in the building of the portfolio with random 

weights. 

Keywords: Probability Weighting Function, Efficient Market Hypothesis, 

Behavioral Finance. 

1 Introduction 

1.1 Efficient Market Hypothesis 

The concept of efficient market is related to the one of randomness. In 1900 Louis 

Bachelier in his PhD thesis stated that the prices of market’s stocks followed a random 

behaviour and it was impossible to forecast their trend through time. From a mathemat-

ical point of view it can be affirmed that the price stocks’ variations, in discrete time, 

move as a random walk characterized from iid (independent and identically distributed) 

random variations. 

At the beginning of 60’s Fama adopted a mathematical/statistical approach to the study 

of financial markets. He identified three forms of informative efficiency: 

 

 weak form efficiency: prices observed on the market reflect the information con-

tained in their historical series 

                                                           
1probability weighting function. 
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 semi-strong efficiency: not only do prices reflect the information contained in time 

series, but any other public information as well. 

 strong efficiency: market’s prices reflect, beyond what previously said, any private 

information; it is not possible to set up a trading strategy with an expected efficiency 

superior to the one of the market basing on any private/favorite information. 

 

In his work Fama endorsed the fact that an efficient market behaved like a martingale 

belt, in other words,  the expected value conditioned by the informative set (filtration) 

was equal to the price of the stock at the time t, E(𝑆𝑡+1|Ϝ𝑡)= 𝑆𝑡. 

 

The miscalculation in the forecast can be defined as: 

                εt+1 = St+1 − Et(St+1),with  E(εt) = 0 and cov(εt;  Ϝ𝑡−1)=0                      

 

The last property is known as orthogonality and it indicates that the term of error is due 

to only unforecastable shocks of the market. From a mathematical point of view, a use-

ful instrument to model the wandering behavior of the market is the Brownian motion. 

It belongs to the processes of Levy, stochastic processes with stationary and independ-

ent increments. 

 

Brownian motion has certain characteristics that make him compatible with the Effi-

cient of markets’ hypothesis: 

 independent and stationary increments; 

 no differentiability; 

 martingale; 

 the increments are: W(𝑡2)-W(𝑡1) ~N(0, 𝑡2-𝑡1). 

 

Geometric Brownian motion is introduced to ensure the non-negativity of the assets’ 

prices. As matter of fact:  

 

                           St= 𝑆0*exp(µt+σW(t)); log[S(t)]= 𝑆0+log(µt+σW(t));                           (2) 

                                  log(µt+σW(t))=logS(t)-logS(0)=log
𝑆𝑡

𝑆0
                                         (3) 

Where: 

𝑆0 is the asset’s price at t=0, µ is the drift, σ is the diffusion coefficient, W(t) is the 

Brownian motion (Bm). 

 

Due to the “stylized facts”, see (Cont, Bianchi) in the financial markets, the literature 

introduced a new method to model St. The new approach is the “fractional Brownian 

motion” with Hurst exponent (0≤H≤1). 
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Fig. 1. Differences between empirical and theoretical volatility 

The black line is the empirical volatility (computes on the index SP500) while the red 

line is the volatility that we have estimated from a sample of random variables IID 

(returns) extracted from a Gaussian distribution that has the same mean value and the 

same variance of the SP500. The empirical observations are not independent variables, 

in fact the run test shows: 

Table 1. Run Test 

Run Test P-value 

Empirical series 0.0025 

Simulated series 0.75 
 

The figure 1 underlines the fractionality of the Brownian motion.  If the independence 

hypothesis of the observations is released, the volatility loses stationarity. 

1.2 Critics to the efficient markets and introduction to Behavioral 

Finance 

In an efficient market the price of an asset is evaluated from the current value of the 

expected dividends with a rate corrected by the risk (DDM). Many empirical researches 

demonstrated the quotations are far from the equilibrium (theoretical) and they fix just 

in the long period. 

During 50’s Herbert Simon was talking of partially rational economical agents: “It is 

not empirically evident that entrepreneurs and consumers follow the benefit maximiza-

tion principles required by marginalist models when taking a decision”. Many empirical 

researches have been conducted in time to verify the strength of theoretical hypothesis, 

especially the first two forms of efficiency. Keown and Pinkerton tested the hypothesis 

of semi strong efficiency (event study), observing what happens when news about the 

acquisition and merging of companies diffuse. Assets’ price does not grow steadily, it 

begins with a slow increase in the days before the announcement and the not reaches 

the maximum in the day when the news is published. Market’s returns and other indi-

cators, as P/E ratio, show a high volatility not justifiable by the fundamentals of com-

panies and the arrival of new information. In the real world, the resolution of complex 
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individual choices is made through mental rules known as: heuristics. Given the con-

straints, in which the individuals operate, the heuristics determine a solution (the solu-

tion can be different from the optimum choice).  

Kahneman and Tversky have shown that individuals in the choices of information are 

influenced by the ease with which they can be recalled in the mind. The authors argue 

that when an individual faces his mental processes, he will unbalance probability judg-

ment in favor of easier cases that can represented and he distort chances even when it 

is easier to recall family situations. 

Representative heuristics foresees that the operator is based on stereotypes or on famil-

iar situations for the formulation of probability judgments. When the realization of a 

random phenomenon is considered representative, sometimes it can produce paradoxi-

cal consequences. 

1.3 The Prospect Theory 

In the Prospect Theory, as we previously observed, individuals do not use linearly the 

probability (unlike the Expected Utility Theory or EUT). EUT is a special case in which 

w(p)=p, the model is: 

                                  v(U,p)=∑ pi
n
i=1 ∗ U(xi); where: U(xi) ϵ R+ 2                                   (4)  

 

In the Prospect Theory, w(p) acts as a subjective filter putting emphasis upon two as-

pects:  

 the lowest probabilities are overestimated; 

 high probabilities are underestimated. 

 

The classic version is: 

                                                v(x,p)=∑ w(pi
n
i=1 ) ∗ V(xi);                                              (5) 

where:                 

 w(pi) is the weighting function; 

 V(xi) is the value function. 

 

w(pi) is a function that: 

 overweight low probability; 

 underweight high probabilities. 

 

While, V(xi) is: 

                                                           
2  The biggest difference with the value function V(xi). 
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V(x)={
𝑥𝛼𝑤𝑖𝑡ℎ 𝑥 > 0

−β(−xα) with x < 0
; where β is the loss aversion coefficient.                           (6) 

 

 

        

 

Fig. 2. Probability weighting function           Fig. 3. Value function 

 

The function 𝜋(𝑝) was introduced late by Kahneman end Tversky, in fact the first ver-

sion of the PT ∑ 𝑤(𝑝𝑖) ∗ 𝑉(𝑥𝑖)
𝑛
𝑖=1  violated the stochastic dominance, first order, (see 

Quigging). 

 

Fig. 4.  Introduction of rank 

 

A variant of PT is defined by Rieger and Wang (2008), the function form of v(x,p) is: 
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                                             v(x,p)= 
∑ 𝑤(𝑝𝑖)∗𝑉(𝑥𝑖)𝑛

𝑖=1

∑ 𝑤(𝑝𝑖
𝑛
𝑖=1 )

                                                    (7) 

2 The Probability Weighting Function w(p) 

2.1 The interpretation of w(p)  

In the literature, there is specific interest in weighting functions that are initially con-

cave, related to low probabilities in an interval (0, δ), for 0 < δ < 1, and convex for 

medium and large probabilities, on (δ, 1). We call these functions inverse - S shaped 

weighting functions, reflecting the shape of the corresponding mapping. Related to the 

curvature of weighting functions is the notion of probabilistic risk aversion. A convex 

weighting function characterizes probabilistic risk aversion (or pessimism) whereas a 

concave weighting function characterizes risk proneness (or optimism). A linear 

weighting function is characterized by probabilistic risk neutrality. 

The concept of diminishing sensitivity is linked to the notion of discriminability The 

function w1 shows greater discriminability than w2 when: 

                

                                             w1(p+ε) - w1(p)> w2(p+ε) - w2(p)                                   (8) 

  

with p ϵ [0,1], and ε ϵ R+. 

 

This means that changes that occur in w1 are bigger than changes w2.  

The notion, which Tversky and Kahneman called diminishing sensitivity, is very sim-

ple: people become less sensitive to changes in probability as they move away from a 

reference point. It stated that when people step further away from a reference point, 

they tend to become less sensitive to changes in probability. In the odds domain, the 

two endpoints 0 and 1 serve as reference points in the sense that 0 represents “certainly 

will not happen” and 1 represents “certainly will happen”.  

 

Under the principle of diminishing sensitivity, increments near the end points of the 

probability scale loom larger than increments near the middle of the scale. Attractive-

ness can be defined as a person finds chance domain 1 more attractive than chance 

domain 2 if w1(p) > w2(p) for all p ϵ [0,1] see (Gonzalez). Elevation has also an inter-

esting interpretation as a measure of relative optimism (see Abdellaoui et al.). 

2.2 The form of w(p) 

Many different parametric functional forms have been proposed in the literature. In this 

section, we analyze some families of w(p) in which a single parameter determines the 

nature and the magnitude of the discrepancy between the transformed probabilities, 
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w(p), and the original ones, p, by capturing features such as the curvature and the ele-

vation of the function and the position of the fixed point (w(p) = p). Karmarkar pro-

posed (one parameter function):  

                                       𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
=𝛽 𝑙𝑜𝑔

𝑝

1−𝑝
; with β ϵ R+                                   (9) 

 

In 1979, Kahneman and Tverky used a generalization of one parameter function: 

                               w(p)= 
𝑝ϒ

(𝑝ϒ+(1−𝑝)ϒ)1/ϒ ; with ϒ>0.278.                                       (10) 

 

The form of w(p) with two parameters 

There are two parameters in the w(p) estimation that drive the function form, the cur-

vature and the elevation, in the Gonzalez paper we have the following form: 

 

                             𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
=𝛼 + 𝛽 𝑙𝑜𝑔

𝑝

1−𝑝
                                                        (11) 

where: 

- 𝛼 controls the elevation (intercept); 

- 𝛽 controls the curvature (slope). 

 

This model is linear in the log-odds,  

                                  in fact w(p)= 
𝜆𝑝𝛽

𝜆𝑝𝛽+(1−𝑝)𝛽 ; where λ= exp(α)                               (12) 

 

Another two-parameter weighting function that also varies curvature and elevation sep-

arately was proposed by Prelec (1998). The functional form is: 

 w(0) =0 

 w(1) =1 

                                           w(p)=exp(-λ(-log(p))β)                                                    (13) 

see al-Nowaihiy and Dhami (2010) for further information. 

 

Note that a probability weighting function by itself, is not a theory of risk. It needs to 

be embedded within other theories, such as RDU, PT, for it to have significant predic-

tive content in concrete economic situations. We use w(p) in portfolio model to com-

pute the expected value and the volatility (σ), through the building of portfolio frontiers 

with random weights. 
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3 Estimation of w(p) 

3.1 The model 

The aim of this paper is the estimation of 𝑤(𝑝) on the financial markets, in particular 

on USA stock market, through a statistical approach, generally the function is estimate 

in an experiment see (Prelec at al.). The phases of this method are: 

 the objective probabilities (p) are extracted from a Gaussian distribution  N(μ,  𝜎2). 

As previously stated (EMH), the price variation follows a Normal distribution or 

Log-Normal; 

 the practical probabilities (𝑤(𝑝)) are extracted from an empirical distribution esti-

mated through Kernel Density Estimation; 

 integration of distribution for small intervals (Riemann integral); 

 find the relationship between empirical and theoretical probabilities. 

 

The financial time series is the S&P500 from 01/01/2016 to 01/01/2017, we calculate 

the logarithmic returns as: 𝑟𝑖 = ln (
𝐴𝑑𝑡+1

𝐴𝑑𝑡
); where  𝐴𝑑 is the adjusted daily price. Fur-

thermore, we estimate the empirical density distribution through the Kernel Density 

Estimation. 

The (KDE) is a non-parametric way to estimate the probability density function of 

a random variable.  

Its kernel density estimator is 𝑓ℎ(x)=
∑ 𝐾ℎ(𝑥−𝑥𝑖)𝑛

𝑖=1

𝑛
 ; where:  

 K is the kernel (a non-negative function that integrates to one); 

  h > 0 is a smoothing parameter called the bandwidth. In this case, the optimal 

choice is ≈1.06σ𝑛−1/5. 

 

In the second step, we fit the Gaussian density distribution with μ equal to the logarithm 

returns average (μ): 
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1  and σ =√∑

(𝑟𝑖−𝜇)2

𝑛

𝑛
𝑖=1 . 

 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Kernel_(statistics)#In_non-parametric_statistics
https://en.wikipedia.org/wiki/Smoothing
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. 

 

Fig. 5. Empirical density function vs Gaussian 

To compute the probabilities, we integrate both the density functions in small intervals, 

we know that: 

∫ 𝑓(𝑥)𝑑𝑥 = 1
+∞

−∞
 and  f(x)>0, where f(x) is a generic density function, ∫ 𝑓(𝑥)

𝑟𝑖+1

𝑟𝑖
, we 

obtaine a probability range. 

                                   If  [𝑟𝑖 , 𝑟𝑖+1]→0; ∫ 𝑓(𝑥)
𝑟𝑖+1

𝑟𝑖
≈ p                                            (14) 

3.2 Relationship between w(p) and p 

We estimate the model through the OLS (ordinary least square). The function (regres-

sion curve) should minimize the sum of squares of the distances between the theoretical 

values and the ones observed.  

f(β0, β1) = min ∑ [n
i=1 yi − (β0 + β1xi)]2 = Min ∑ [yi − yî]

2n
i=1                                 (15) 

 yi are observed values; 

 yîare theoretical values. 

We use the “linear in log odds”, the OLS is a valid method because the linearity is on 

the coefficients not on the variables. The model is: 

                                          𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
=𝛼 + 𝛽 𝑙𝑜𝑔

𝑝

1−𝑝
+ϵ                                            (16) 

 𝛼 is the intercpet; 

 𝑏𝑒𝑡𝑎 is the slope; 
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 𝜖 is a gaussian WN~ (0,𝜎2). 

 

Fig. 6. Relationship between w(p) and p 

 

 

The linearity is: 

                  E(𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
|𝑙𝑜𝑔

𝑝

1−𝑝
)=𝛼 + 𝛽 𝑙𝑜𝑔

𝑝

1−𝑝
                                                    (17) 

where 𝛼 =-0.86; 𝛽=0.84 

1. w (0) =0 

2. w (1) = 1 

3. 𝑅2= 0.84 shows a good fit of the model. 

 

                       𝑤(𝑝) =
𝜆𝑝𝛽

𝜆𝑝𝛽+(1−𝑝)𝛽; 𝑤(𝑝) =
0.42∗𝑝0.84

0.42𝑝0.84+(1−𝑝)0.84; λ= exp(𝛼)                  (18) 

 

The figure 8 shows a good fit of the model to the data. The green line is the empirical 

relationship, while the red line is the theoretical values. 



11 

  

 

Fig. 7. The w(p) on the SP&500                     Fig. 8. Fitting regression 

    

Following Gonzales paper, we show that the parameters β and λ control influence the 

curvature (discriminability) and the elevation (attractiveness). The figure 9 shows the 

w(p) function for 0.2 ≤β≤ 1.8 and fixed λ (0.43), while fig.10 displays the w(p) function 

for fixed β (0.84) and 0.2≤λ≤1.8. Note that the red line is the w(p) with OLS parameters. 

              

 

Fig. 9. Changes in curvature                                Fig. 10. Changes in elevation 

 

3.3 Financial Application 

In order to incorporate w(p) in a financial theory, we use the portfolio theory. According 

to Markowitz and  supposed that the probability law of the 𝑆𝑡  is recognized, we build 

two portfolios with random weights: 𝑥𝑖 (uniformly distributed random variable) and (1-

𝑥𝑖).  

 

The first frontier is given by: 
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                                       μp=xi ∗ μa + (1 − xi) ∗ μb                                                 (19) 

where: 

                         μ= ∑ pi
n
i=1 *ri and σ2= ∑ (𝑟𝑖 − 𝜇)2𝑛

𝑖=1 ∗ pi                                           (20) 

 

                        σp
2=xi

2 ∗ σa
2 + (1 − xi)

2 ∗ σb
2 + 2 ∗ xi ∗ (1 − xi) ∗ σrarb

                       (21) 

where:  

 σa
2and σb

2  are the variance of assets a and b; 

 σrarb
 is the covariance. 

 

The second frontier is given by: 

                                          μw(p) = xi ∗ μc + (1 − xi) ∗ μd                                            (22) 

where: 

                                              μ = ∑ w(pi)
n
i=1 * ri                                                       (23) 

and    

                                             σ2= ∑ (𝑟𝑖 − 𝜇)2𝑛
𝑖=1 ∗ w(pi)                                                  (24) 

                            σw
2 =xi

2 ∗ σc
2 + (1 − xi)

2 ∗ σd
2 + 2 ∗ xi ∗ (1 − xi) ∗ σrcrd

                 (25)  



13 

 

                      Fig.11. Portfolio Frontiers 

 

Further application 

 

The probability weighting function w(p) can be applied in other financial models in 

particular it could be used to estimate the views vector (Q) in the Black and Litterman 

model. 
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