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Abstract—This work is devoted to the improvement of the 

automatic control system of helicopters turboshaft engines 

through the introduction of a block of signal adaptation of 

engine parameters into it using a modified method of searchless 

identification. The implementation of the proposed solutions is 

carried out using the NEWFF multilayer neural network, which 

made it possible to significantly reduce the maximum absolute 

error compared to the least squares method. 
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I. INTRODUCTION 

The development of modern helicopters turboshaft 
engines (TE) requires better and faster troubleshooting, for 
this it is necessary to continuously improve the monitoring 
and diagnostic systems for such engines. The functioning of 
such systems under the conditions of “non-factors”, 
combined with the high complexity of the processes 
occurring in the engine, makes it expedient to use intelligent 
methods to solve the problems of identifying gas turbine 
engines along with classical ones [1]. 

II. LITERATURE REVIEW 

There are a significant number of publications on the 
problem of TE identification with a detailed description of 
the methods and techniques that implement the solution of 
this problem [2, 3], including the use of neural network 
methods [4, 5]. Among the variety of identification methods, 
the most commonly used are: cross-correlation, stochastic 
approximation, maximum likelihood, maximization of a 
posteriori probability and least squares. Other methods are 
either a modification of the above, or have a narrow 
specialization and are applied selectively to a specific 
problem. Analysis of works shows that neural networks 
provide versatility in solving such problems. This is due to 
the possibility of their training and additional training as 
universal approximators [6, 7]. 

III. MATHEMATICAL DESCRIPTION OF THE NON-SEARCH 

IDENTIFICATION METHOD IN REAL TIME 

Non-search identification algorithm with an adaptive 
model, which is based on the method of Lyapunov functions, 
was developed by Stanislav Zemlyakov and Vladislav 
Rutkovsky, the scope of which is linear continuous objects 
with a description in the state space. As is known, finding 

Lyapunov functions for such a class of systems has no 
common formal methods, so the procedure remains heuristic. 
The simplest is the case of a linear object and model. 
Therefore, a modification of this method is the possibility of 
obtaining a linear model of a non-linear object (helicopter TE) 
in real time using the mathematical apparatus [8]. To do this, it 
is considered that at each moment of time the tuned model is a 
linear model corresponding to the current state of the nonlinear 
object, for this, at the initial moment of time, the parameters of 
the linear model must correspond to the nonlinear object. 

A generalized description of helicopter TE and its linear 
model in state spaces has the following form [9]: 

;= +x Ax Bg         (1) 

;= +
M M M M

x A x B g          (2) 

where x – helicopter TE engine state variables vector; xM – 
model state variables vector; g – reference signal vector, x  – 

helicopter TE derivative state variables vector; M
x  – 

derivative model state variables vector. 

 The corresponding vectors and matrices of helicopter TE 
engine and the model have the same dimensions, and their 
deviations are as follows: 

;= −
M

Δx x x ;= −
M

ΔA A A  .= −
M

ΔB B B      (3) 

It is believed that the vectors x, xM, g, x , M
x  are directly 

observable (measurable). Subtract (2) from (1), we find: 

;= + +
M

Δx ΔAx A Δx ΔBg         (4) 

where AM – matrix corresponding to the current model 
setting (assumed to be known); Δx and Δx  determined by 
the measured values. In this case, the observed residual 
signal is taken equal to: 

.= − = +
M

Δz Δx A Δx ΔAx ΔBg        (5) 

The elements of the matrices A, AM, B, BM are 
independent of each other. Thus, the identification process 
can be carried out in parallel along the rows of these 
matrices. Because of this, we write: 

;= +i i i
Δz ΔA x ΔB g 1, ;i n=        (6) 

where 
i

ΔA , 
i

ΔB  are i-th rows of matrices ΔA, ΔB. 



We will look for the Lyapunov function for the i-th 
channel in the form of a positive-definite quadratic form: 

( )1
;

2
= +

i iT T

i i i i i
V ΔA K ΔA ΔB D ΔB        (7) 

where 
i

K , 
i

D  – positive-definite diagonal matrices of 
given constant coefficients. For the function Vi, we write the 
time derivative in the following form: 
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then 

( )
2
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i i i

V ΔA x ΔB g       (10) 

The asymptotic convergence of the model tuning process 
is confirmed by expressions (7), (9) in the event that 
relations (9) are satisfied, and the discrepancy value (6) 

vanishes identically on the implementations ( ) ;x t X  

( )u t U  only when 0= =
i i

ΔA ΔB . Let us transform 

expressions (9) to the following form: 
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This algorithm for model tuning cannot be implemented 

exactly, because A  and B  are unknown. In cases where the 

gains forming the diagonal matrices ( )
1
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( )
1

*
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D D  are large enough or when the rate of change 

A is slow enough, members T

i
A , 

T

i
B  can be neglected. In 

this case, instead of (11), you can use the algorithm 

*

*

;

.

 =


=

iT

iM i

iT

iM i

ΔA K Δz x

ΔB D Δz g
       (12) 

This model tuning algorithm is realizable. Assuming that 
* i

K , 
* i

D  do not depend on i, we rewrite (12): 
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*

*
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A Δz K x
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       (13) 

In accordance with equations (1), (2), (13) and the 

expression = −
M

Δz Δx A Δx , the block diagram of the non-

search identification algorithm with an adaptive model is 
modified, shown in fig. 1. 

Since the helicopter TE is an essentially non-linear 
object, we will simplify the task of identification in real time 
using knowledge of the engine operating modes. Let us add 
to the linear identifiable model (2) a nonlinear part, which 

includes simplified static characteristics. Simplified static 
characteristics are obtained by approximating the static 
characteristics of an object based on two points 
corresponding to the nominal mode and idling. Thus, during 
the identification process, an additional assessment will 

appear A  and B , which makes it possible to approximate 
the identification process to equation (1). The equation of 
the nonlinear model will take the form: 

 ( ) ( )( ) ( ) ( )( ) ( );t= + + + +
M M M M M

x A x A Δz x B x B Δz g f  (14) 

where АM(х), ВM(x) – matrices representing the assessment 
of the nonlinear part of the model based on the physical 
characteristics of the object; АM(Δz), ВM(Δz) – matrices of a 
linear identifiable model, changing in accordance with (13). 
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Fig. 1. Block diagram of real-time identification (developed by V. Bakhirev). 

This method provides high accuracy of identification in real 
time. The desired indicators of the quality of transient processes 
are provided using the method of dynamic compensation. The 
improved modified method of non-search identification makes 
it possible to build an algorithm for an adaptive control system 
with a custom model of helicopter TE based on it. 

When selecting parameters for the searchless 
identification algorithm, it should be noted that, depending 
on the type of turboshaft engine, the positive diagonal 
matrices D and K will differ. This is due to the fact that the 
stability of the searchless identification process is based on 
the Lyapunov function. Based on the experience of selecting 
matrices for various helicopters TE (GTE-350, TV2-117, 
TV3-117), the following recommendations were formed: 

1. The elements of the diagonal matrices D and K, 
corresponding to the state variable, must be increased if the 
duration of the transient process of the adjustable model 
variable is greater than the duration of the transition process 
of the corresponding object variable. 

2. The elements of the diagonal matrices D and K, 
corresponding to the state variable, must be reduced if 
oscillations appear in the transient process of the adjustable 
model variable, which are not present in the transient process 
of the corresponding plant variable. 

3. As the initial value, the elements of the diagonal matrices 
D and K, it is convenient to use the number 2.25 · 10-8. 

IV. HELICOPTERS TURBOSHAFT ENGINES AUTOMATIC 

CONTROL SYSTEM MODIFICATION 

Helicopters TE automatic control system (ACS) was 
developed in [10] (fig. 2), where TE – helicopter TE, TE 
Model – model of helicopter TE, LB – logical block, FMU – 
fuel metering unit, FMU model – model of fuel metering unit. 
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Fig. 2. Helicopters TE automatic control system [10]. 

The modification of the developed ACS for helicopters 
TE consists in supplementing with software modules that 
implement adaptive control methods, namely, in this work, 
with a signal adaptation module (fig. 3). The principle of 
operation of the signal adaptation module is described as 
follows. The input of the module receives: xM –state vector 
of the custom model and x – reduced state vector of the 
control object. The vector x is presented in the following 
form: x1 = nFT – free turbine speed, x2 = nTC – gas generator 
rotor r.p.m., x3 – gas metering regulator integrator, x4 – nFT 
regulator integrator. Based on the obtained data, the 
mismatch vector is calculated. After that, the weighted sum 
of the mismatch vector is calculated. Then the signal action 
z is calculated. The magnitude of the signal impact z is the 
output variable. The input data vector Y0 is supplemented 
with the free turbine speed parameter nFT and, accordingly, 

is converted to the form ( )0 0 0 *0, ,FT TC Gn n T=Y . 

Signal adaptation 

module

xм

x
z

 

Fig. 3. Block diagram of the input and output signals of the signal 
adaptation module. 

To create a signal adaptive ACS for helicopters TE, 
modules of a customizable model and signal adaptation are 
additionally included in the standard controller. The 
adaptation subsystem will work in accordance with the 
algorithm shown in fig. 4. 

Start

Mismatch vector calculation

Weighted sum of the mismatch vector 

calculation

Sigmoid function value calculation

Signal impact value calculation

Finish
 

Fig. 4. Block diagram of the algorithm of the adaptation module with 
signal adaptation. 

V. IMPLEMENTATION OF A NON-SEARCH REAL-TIME 

IDENTIFICATION METHOD IN A NEURAL NETWORK BASIS  

According to the review of the use of neural networks in 
control problems, the NEWFF multilayer neural network with 
forward signal transmission and error backpropagation [11], a 
general view of which is shown in fig. 5, in which element z 
delays the signal by j steps. The control signal X(z) and n 
signal values from the output Y(z) are fed to the inputs of the 
neural network. The value of n is determined by the order of 
the differential equation, which describes the operation of a 
helicopter gas turbine engine. When solving the control 
problem, the operating mode of the neural network is used, 
which implements the input-output mapping. 

z -1

z -2

z -3

X(z)

Y(z)

 
Fig. 5. Multilayer neural network NEWFF structure. 

The neural network contains 16 neurons in the hidden layer 
with a tangential sigmoidal activation function and 1 output 
neuron with a linear activation function. On fig. 6 shows a 
neural network training scheme that minimizes the error: 

( ) ( ) ( );E t N t Y t= −        (15) 

where Y(t) and N(t) – output signals of the neural network and 
the helicopter TE engine, respectively. In this case, two 
elements of the input vector are used, the current Y(t) and the 
delayed output Y(t − 1). The procedure for identifying a 
helicopter TE consists in setting the weight coefficients and 
parameters of neurons. The adjustment is made on the basis of 
information about the error signal E(t) between the outputs of 
helicopter TE and the neural network. 
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Fig. 6. Neural network training diagram. 

According to fig. 6, instead of the real values of the 
output of the control object (helicopter TE engine) N, the 
model value Y is used and, accordingly, instead of the real 
value of the functional J, its estimate J*. 

 For generalized autonomous training of a neural network, 
the backpropagation signals between the output and hidden 
layers are expressed as 

;k k kR U Q= −        (16) 

where Uk – given (target) parameter of helicopter TE engine; 
Qk – actual output of the neural network; 

( ) ;i k ki

k

R f net R W=        (17) 

where ( )
1

1 net
f net

e−
 =

+
; Wki – weights of links; Rk – outputs. 

 The weights of links between the input and hidden layers 
are adjusted according to the expression 

( ) ( ) ( )1 2 31 1 ;ji j i ji jiW t g R Q g W t g W t + = +  +  −  (18) 

and between the hidden and output layers – according to the 
expression: 

( ) ( ) ( )1 2 31 1 ;kj k k kj kjW t g R Q g W t g W t + = +  +  −  (19) 

where g1 – training rate; g2 and g3 – instantaneous value and 
acceleration coefficients, respectively. Equations (18) and 
(19) are modified forms of the generalized delta rule [12]. 

 In operational training, the weights of the connections of 
the neural network are adjusted based on the error defined as 

( )
21
;

2
e IE P N= −        (20) 

where PI and N – specified and actual outputs of helicopter 
TE. Thus, the output signal can be expressed as follows: 

( ) ( )
;

cE E
c k

k c c c

k
k k

QE E

Qnet net


 
= − = − 

 
           (21) 

;c E E

k j ji

j

W =       (22) 

where c

kQ  and ( )
c

k
net  – input and output signals of neurons 

of the output layer. 

The error signal between the hidden and input layers is 

expressed by the following formula: 

( )1 ;c c c c c

j j j k kj

j

Q Q W = −         (23) 

where c

jQ  – output signal of neurons in the hidden layer. 

VI. RESULTS AND DISCUSSION 

The input data for training the neural network are the 
following parameters of the aircraft gas turbine engine of the 
helicopter, which are recorded on board the helicopter: nTC – 
rotor r.p.m.; nFT – frequency of free turbine rotation; TG – gas 
temperature in front of the compressor turbine. All values of 
these parameters are reduced to absolute values according to 
the theory of gas-dynamic similarity developed by professor 
Valery Avgustinovich (table 1). 

TABLE I.  FRAGMENT OF THE TRAINING SAMPLE – INPUT DATA (ON 

THE EXAMPLE OF TV3-117 TURBOSHAFT ENGINE) 

Number TG nTC nFT 

1 0.932 0.929 0.943 

2 0.964 0.933 0.982 

3 0.917 0.952 0.962 

4 0.908 0.988 0.987 

5 0.899 0.991 0.972 

6 0.915 0.997 0.963 

7 0.922 0.968 0.962 

8 0.989 0.962 0.969 

9 0.954 0.954 0.947 

10 0.977 0.961 0.953 

11 0.962 0.966 0.955 

… … … … 

256 0.953 0.973 0.981 

 

 The neural network was trained for 600 epochs, the 
training accuracy characteristic is shown in fig. 7, a, while 
the steady-state root-mean-square error (RMS) is ∼1.99794. 
According to fig. 7, b, the number of neurons in the hidden 
layer that provide the smallest training error is 16 neurons. 

 
                           a                           b 

Fig. 7. Results of training the neural network: a – characteristic of the 

accuracy of training the neural network; b – dependence of training error on 

the complexity of the neural network. 

The resulting 3–16–1 architecture neural network was 
also trained by other known training algorithms (table 2). 
The results of the comparative analysis confirmed the 
feasibility of using the proposed training method, since it 
achieves the smallest training error, uses the smallest number 
of epochs to achieve the smallest training error, and also the 
smallest number of neurons in the hidden layer is sufficient 
to achieve the smallest training error [11]. 



TABLE II.  RESULTS OF NEURAL NETWORK TRAINING BY VARIOUS 

ALGORITHMS 

Training 

Algorithm 

Root-mean-

square error  

Number of 

training 

epochs 

Number of 

neurons in the 

hidden layer 

Proposed algorithm 1.99794 600 16 

Back propagation 2.38061 650 18 

Conjugate gradient 4.35773 830 36 

Quick propagation 4.14182 790 32 

Quasi-Newton 3.14325 750 20 

Lewenberg-Marquardt 3.07164 720 20 

Delta bar delta 3.23218 770 26 

Resilient propagation 3.43016 850 24 

Genetic Algorithm 2.19735 630 18 

 

Let us consider the process of signal adaptation with a 
tuned model (14) without dynamic compensation for a 
nonlinear model of TV3-117 TE (first verification). At the 
initial moment of time, the state vectors of the linear 
adjustable model and the nonlinear model of TV3-117 TE 
are equal. The transient process at the initial moment of time 
is due to the mismatch of the initial conditions, together with 
a change in the load power, which is a complex mode of 
operation and is similar to a load change during the transient 
process. Fig. 8, 9 are shows transient processes, where: 1 – 
tuning model (using a neural network); 2 – system with 
alarm setting; 3 – system with a standard regulator. 

 
                                a       b 

Fig. 8. Diagram of change: a – frequency of free turbine rotation; b – gas 

generator rotor r.p.m. 

 
                                a       b 

Fig. 9. Diagram of change of regulator integrator: a – meter; b – free turbine 

As follows from fig. 8, 9, the improvement in the quality 
indicators of transient processes using the tuned model of the 
TV3-117 TE based on a neural network is more significant 
compared to the model with a standard controller. This is due 
to the fact that dynamic compensation was not applied due to 
the fact that the order of the models is the same and the 
adjusted model demonstrates quality indicators better than 
the object, despite the change in parameters during the 
transient process. The results of maximizing performance 
improvement during transients are shown in tables 3 and 4. 

TABLE III.  QUALITY INDICATORS FOR NFT OF A CUSTOM MODEL 

(BASED ON A NEURAL NETWORK) WITH A SIGNAL CONTROLLER  

Regulator type 
Maximum 

deviation, rev/min 

Transient 

time, s 

Number of 

vibrations 

Regular 1380 10.1 1 

Adaptive 1000 7.5 1 

TABLE IV.  IMPROVEMENT OF QUALITY INDICATORS FOR NFT OF A 

CUSTOM MODEL (BASED ON A NEURAL NETWORK) WITH A SIGNAL 

REGULATOR 

Improvement, % 26.37 26.51 27.17 

Section of the transition 

process, s 
0…20 0…20 0…20 

 

 Let us conduct an experiment of secondary verification of 
signal adaptation with a customizable model (14) for an 
element-by-element dynamic model of TV3-117 TE. At the 
initial moment of time, the tuned model corresponds to the 
nominal operating mode of the engine, since the element-by-
element model is much more complicated than the tuned 
model, large parametric disturbances arise in the 
identification process, so dynamic compensation of the tuned 
model is applied. Fig. 10, 11 are shows transient processes, 
where: 1 – system with a standard controller, 2 – tuning 
model (using a neural network). 

   
                                a       b 

Fig. 10. Diagram of change: a – frequency of free turbine rotation; b – gas 

generator rotor r.p.m. 

  
                                a       b 

Fig. 11. Diagram of change of regulator integrator: a – meter; b – free turbine 

 The results of maximizing performance improvement 
during transients are shown in tables 5 and 6. 

TABLE V.  QUALITY INDICATORS FOR NFT OF A CUSTOM MODEL 

(BASED ON A NEURAL NETWORK) WITH A SIGNAL CONTROLLER  

Regulator type 
Maximum 

deviation, rev/min 

Transient 

time, s 

Number of 

vibrations 

Regular 350 10.8 0 

Adaptive 230 7.7 1 

TABLE VI.  IMPROVEMENT OF QUALITY INDICATORS FOR NFT OF A 

CUSTOM MODEL (BASED ON A NEURAL NETWORK) WITH A SIGNAL 

REGULATOR 

Improvement, % 29.14 31.32 33.03 

Section of the transition 

process, s 
30…45 30…45 10…20 



 As a comparative analysis of the accuracy of the neural 
network (NEWFF multilayer neural network) and classical 
(least squares method) implementations of the searchless 
identification algorithm for helicopters TE, it was found that 
the maximum absolute identification error when using the 
NEWFF multilayer neural network is 2.94 times less than for 
the polynomial eighth order regression model built using the 
least squares method. At the same time, the NEWFF 
multilayer neural network provides an identification error not 
exceeding 0.78 %. 

 The results of a comparative analysis of the accuracy of 
the implementation of the algorithm for searchless 
identification of helicopters TE of neural network and 
classical methods for each of the parameters of the engine 
model are given in table 7. 

TABLE VII.  COMPARATIVE ANALYSIS OF THE ACCURACY OF NEURAL 

NETWORK AND CLASSICAL IMPLEMENTATION METHODS OF THE 

SEARCHLESS IDENTIFICATION ALGORITHM 

Model 

Absolute error, % 

Frequency 

of free 

turbine 

rotation 

Gas 

generator 

rotor 

r.p.m. 

Meter 

regulator 

integrator 

Free 

turbine 

regulator 

integrator 

Classical 2.29 2.31 2.33 2.39 

Neural Network 0.75 0.76 0.74 0.78 

 

 In order to analyze the stability of neural networks to 
changes in input data (table 1), additive noise was added to 
them in relation to the current value of each of the 
parameters in the form of white noise with zero mathematical 
expectation and σi = 0.025, that is, 2.5 % in relation to the 
maximum value. 

 The results of a comparative analysis of the accuracy of 
the implementation of the algorithm for searchless 
identification of helicopters TE of neural network and 
classical methods for each of the parameters of the engine 
model in noise environment are given in table 8. 

TABLE VIII.  COMPARATIVE ANALYSIS OF THE ACCURACY OF NEURAL 

NETWORK AND CLASSICAL IMPLEMENTATION METHODS OF THE 

SEARCHLESS IDENTIFICATION ALGORITHM 

Model 

Absolute error, % 

Frequency 

of free 

turbine 

rotation 

Gas 

generator 

rotor 

r.p.m. 

Meter 

regulator 

integrator 

Free 

turbine 

regulator 

integrator 

Classical 3.46 3.52 3.59 3.67 

Neural Network 1.18 1.23 1.27 1.32 

 

 Table 8 analysis shows that the identification error under 
the conditions of the specified noise does not exceed: when 
using the NEWFF multilayer neural network – 1.32 %, the 
least squares method – 3.67 %. 

CONCLUSIONS 

The modified method of signal adaptive control was 
further developed, which, due to the searchless identification 
algorithm, implemented in the neural network basis, made it 
possible to improve the control system of helicopters TE. 

It has been established that neural networks solve the 
problem of implementing the searchless identification 
algorithm for helicopter TE more accurately than classical 
methods: the identification error at the output of the NEWFF 
multilayer neural network is 2.94 times less than that of the 
regression model obtained using the least squares method for 
the considered engine parameters, namely: frequency of free 
turbine rotation, gas generator rotor r.p.m., meter regulator 
integrator, free turbine regulator integrator. 

It is shown that the error in the implementation of the 
searchless identification algorithm for helicopter TE using 
the NEWFF multilayer neural network when calculating 
individual engine parameters did not exceed 0.78 %, while 
for the classical method it is about 2.39 % for the considered 
engine parameters. 

A comparative analysis of neural network and classical 
methods for implementing the searchless identification 
algorithm for aircraft gas turbine engines under noise 
conditions shows that neural network methods are more 
robust to external disturbances: for a noise level σi = 0.025, 
the maximum absolute error when using the NEWFF 
multilayer neural network increases from 0.78 to 1.32 %, and 
least squares method – from 2.39 to 3.67 %. 
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