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Abstract—Radiomics has become a reference tool for the early
diagnosis of cancer in screening programs. Radiomics involves
the extraction of a large number of quantitative features from
medical scans. Such features define a representation space of
lesions that should capture the heterogeneity of tissue texture in
order to discriminate malignacy.

This work presents the process of generation and subsequent
study of a representation space of pulmonary nodules given by the
deep convolutional features of multiple texture images extracted
from computed tomography (CT). The objective of the study
is to assess whether this deep texture features have a positive
impact on the diagnosis of lung cancer compared to deep intensity
features. To do so, we have trained SVM models with different
data splits, evaluating the diagnostic performance using metrics
defined at, both, slice and nodule levels on an own data base
for early diagnosis of small (<3cm) pulmonary nodule. Results
show that deep texture features perform better than intensity
ones with a raise in specificity from 0.49 to 1 at slice level and
0 to 0.67 at nodule level.

Index Terms—Lung cancer screening, early diagnosis, ra-
diomics, representation space

I. INTRODUCTION

Early detection of lung cancer (LC) plays a crucial role in
improving treatment outcomes and patient prognosis. Studies
such as the National Lung Screening Trial (NLST) [1] and
NELSON [2] have demonstrated that annual screening with
low-dose computed tomography (LDCT) can effectively re-
duce mortality rates associated with LC [3]. Approximately
12-13% of LDCT scans yield positive results for the detection
of pulmonary nodules (PNs). Among these detected PNs,
around 60% necessitate follow-up with additional imaging,
and approximately 40% of them (which accounts for 5% of
the total LDCTs performed) require more intensive monitoring
and closer follow-up.

Radiomics involves the extraction of a large number of
quantitative features from medical images, such as computed
tomography (CT) scans, magnetic resonance imaging (MRI),
or positron emission tomography (PET). These features cap-
ture the heterogeneity and characteristics of lung tumors at
a microscopic level, enabling more precise diagnosis and
treatment planning. In a pilot study [4], image features ex-
tracted from NLST (National Lung Screening Trial) data
using radiomic techniques exhibited superior predictive value
compared to volumetric measurements alone and, later, the
authors in [5] developed a radiomic classifier incorporating
location variables, size, shape descriptors, and texture analysis.

Machine learning approaches [6] based on features like
Gabor, Local Binary Patterns (LBP), and SIFT descriptor in
combination with classifiers such as Support Vector Machine
(SVM) and Random Forest, have shown improved diagnostic
power with high sensitivity and specificity, achieving an AUC
of 0.97 and sensitivity of 96% with 95% specificity.

Recently, and motivated by its performance in other areas
of application, researchers have began to classify PN by using
CNNs. The early work of Shen et al. proposed to use a
multi-crop CNN [7] to make the model robust to scales of
nodules while keeping 2D input images. Results showed an
overall accuracy (including malign and benign cases) of 87%.
However, the authors did not report sensitivity for malignancy
detection and specificity for discarding benign nodules and,
thus, its true clinical value is uncertain.

Since nodules are 3D structures, some works have addressed
the problem using 3D CNNs. Yan et al. [8] explored 3D CNNs
for pulmonary nodule classification in comparison to a slice-
level 2D CNN and a nodule-level 2D CNN analysis. The
3D approach was the best performer with a 87% of overall
accuracy and similar specificity and sensitivity at the cost of



a significantly higher demand of computational resources and
annotated data. Zhu et al. [9] used 3D deep dual path networks
(DPNs) a 3D Faster Regions with Convolutional Neural Net
(R-CNN) designed for nodule detection with 3D dual path
blocks and a U-net-like encoder-decoder structure to effec-
tively learn nodule features. Despite the complex architecture
used, this approach could only achieve a 81% of sensitivity
and specificity was not reported. Jiang et al. [10] sequentially
deployed a contextual attention module and a spatial attention
module to 3D DPN to increase the representation ability. A
main novelty of this work is that it ensembles different model
variants to improve the prediction robustness. Results show
an increase of sensitivity to 90% while keeping a specificity
similar to [8].

GLCM (Gray-Level Co-occurrence Matrix) texture features,
have demonstrated effectiveness in cancer diagnosis across
various medical imaging modalities [11]. In a recent study
[12], researchers proposed a hybrid approach that combined
GLCM textural features with a neural network for nodule
characterization in CT scans. To ensure reproducibility with
limited training data, an embedding technique based on the
statistical significance of radiomic features was used. This
embedded representation served as the input for a neural
network, with its architecture and hyperparameters optimized
using custom-defined metrics. The best performing model
achieved a sensitivity of 100% and specificity of 83% (with
an AUC of 0.94) for malignancy detection when evaluated on
an independent patient set. This innovative approach shows
promise in improving the accuracy and reliability of lung
cancer screening by integrating radiomic features and deep
learning techniques, offering potential solutions to the chal-
lenges posed by false positives in current screening methods.

In this work we present a strategy for malignancy detection
based on deep textural features extracted using texture images
and VGG16 (Section II), as well as, the validation protocol for
the assessment of its level of generalization (Section II-A).

II. STRATEGY FOR DIAGNOSIS OF MALIGNANCY

Our workflow consists of multiple steps, which are illus-
trated in Figure 1. First, we extract the nodule region of interest
(ROI) from CT scans using a predefined ROI. Subsequently,
in the generation of the representation space defining a visual
embedding of the nodule, we have the option to either pass
the ROI without any modifications or extract GLCM features
from it. These features are then fed into a pre-trained VGG16
network to obtain the final feature embeddings. We have
explored three different strategies for feature fusion to combine
these embeddings and train a model for predicting the axial
2D images of the nodule ROI. The final nodule diagnosis is
determined using a max-voting criteria.

The nodule ROIs are defined by a radiologist using the
software 3D-Slicer, which is a free, open-source software for
visualization and processing medical images. The ROI always
includes the intranodule region (the nodule itself), and the
perinodular region (the area around the nodule). Studies like
[13], [14] have emphasized the significance of incorporating

the perinodular region for precise classification of benign and
malignant nodules.

We use two methods, GLCM Textural Features and Gray
Level-Intensity, to generate the representation space. These
methods utilize the extracted nodule ROIs, as shown in
Figure 1. The goal of this feature embedding step is to derive
meaningful and discriminative representations of the nodules,
which can be further analyzed and used for classification tasks.

The GLCM textural features are calculated using the nodule
ROI. Additionally, for each nodule, we generate a fictitious
nodule mask where all voxel values are set to one. This mask
indicates that all voxels within the nodule ROI should be con-
sidered when computing the GLCM features. By employing
this nodule mask, we can generate 21 GLCM features (i.e., 21
volumes) for each nodule ROI, corresponding to the textural
features computed in [12]. GLCM features are statistical
descriptors computed from a gray-level co-occurrence matrix.
This matrix captures the frequency of occurrence of pixel pairs
with specific gray-level values and spatial relationships within
a defined neighborhood.

To generate the GLCM features, image intensity is dis-
cretized using the histogram of the original volume intensity
into n discrete bins. The width of these histogram bins de-
termines the level of granularity at which the GLCM features
describe the textural patterns. Smaller bin widths provide a
finer level of detail, while larger bin widths result in more
generalized information. Once the gray values are discretized,
the GLCM is constructed by examining the spatial relation-
ships between pixels within the neighborhood. Specifically,
for each pixel, the occurrence of gray-level pairs and their
spatial relationships with neighboring pixels are recorded in
the co-occurrence matrix. Based on the GLCM, a variety of
statistical measures (including contrast, correlation, energy,
homogeneity, and many others) are computed to extract tex-
tural information.

To extract deep features, we use the axial slices of the
original intensity volumes and the 21 GLCM textural volumes
as inputs, which are then passed through a pre-trained VGG16
model that was externally trained on ImageNet [15]. The
VGG16 architecture is composed of 13 convolutional layers,
5 max-pooling layers (2 × 2), and 3 fully-connected layers
(namely FC6, FC7 and FC8). The linear output layer utilizes
the softmax activation function. ReLU activation function is
applied to all the convolutional layers, while dropout reg-
ularization is employed in the fully connected layers. The
deep representation for both intensity and texture images is
derived from the features extracted from the FC6 layer, the
first fully connected layer in the VGG16 model, situated after
the convolutional layers.

For each image, the deep feature vector from the FC6 layer
has a dimensional size of 4096. In the case of intensity images,
this results in 4096 features. However, for the GLCM features
approach, which includes 21 GLCM volumes per nodule, the
resulting features have a dimension of (21, 4096). These 21
channels need to be combined to create an input vector for a
classifier. There are three options considered: concatenation,



Fig. 1. Workflow of the strategy for diagnosis of malignancy.

average, and none.
In the concatenation strategy, the features are flattened,

resulting in 86016 features. This means that the 21 channels
are concatenated to form a single long feature vector. In the
average strategy, the features are used to compute an average.
This results in a single feature vector with the same dimension
as each individual feature vector, i.e., (1, 4096). Lastly, for
the raw gray levels features, they result in features with a
dimension of (1, 4096), meaning that there is only one channel
in the feature vector.

Regardless of the chosen strategy for features fusion, we
proceed to apply a t-test to rank the features based on their
significance in correlating with nodule malignancy. This step
enables us to perform feature selection and identify the most
relevant features. For the VGG features, they are ranked
based on the p-value obtained from a t-test that measures the
difference in averages between malignant and benign slices.
The top 500 features with the lowest p-values are then selected
as input for the SVM classifier.

The fused features (none, concatenation, and average) are
used to train an SVM classifier for making slice-by-slice
predictions. In order to optimize the SVM parameters, we

perform a grid search method where multiple combinations of
the parameters C, kernel, and gamma are tested. After training
the SVM, the nodule diagnosis is determined by max-voting
of the slice predictions.

A. Levels of Generalization

We split the data into three different levels of generalization
to study the impact of the new representation space. Each level
uses a distinct experimental sampling unit (either nodule or
slice) to split data into training and test folds.

1) Nodule k-folds. In this approach, the sampling unit for
data splitting is the nodule, this way the k-fold cross-
validation assesses the performance of our model when
predicting unseen data. This is consequence of having
slices in the test set that are completely independent
from the ones used in training, as they belong to different
nodules. The capability for reproducing results in new
unseen data can be assessed by computing statistical
ranges from metrics computed for the test folds.

2) Leave-1-Nodule-Out This approach represents a partic-
ular implementation of a k-fold cross-validation, with k
set to the maximum number of nodules in the dataset.



The nodule serves as the experimental unit for data
splitting, but unlike a k-fold splitting only average
metrics can be computed. Therefore the capability for
generalising can not be statistically assessed.

3) Slice k-folds. In this approach (followed by the majority
of SoA methods), the sampling unit for data splitting
is the nodule slices without stratifing by nodule. This
implies that slices from the same nodule can be present
in, both, the training and test data. Therefore the test
set is not independent from the one used for training
and, consequently, the statistical ranges computed ac-
cross test folds are over-optimistic and do not ensure
reproducibility of results on new unseen data.

III. EXPERIMENTS

This study utilizes our database1, which comprises patients
recruited from the Germans Trias i Pujol University Hospital
(HUGTiP) in Barcelona, Spain. The database includes images
and clinical/demographic data collected between December
2019 and November 2022. A total of 92 patients with a single
PN with diameter between 8 to 30 mm were included in this
study. All patients underwent low-dose CT-chest scans and had
pulmonary nodules (PN) that required surgical intervention.

The minimum size of a nodule region of interest (ROI)
is 42x42 pixels (width and height), as imposed by the pre-
trained VGG16 network. For the computation of the 21 GLCM
features [16], we used PyRadiomics [17] (version 3.01) with
a (3 × 3 × 3) kernel and the image values discretized into
128 bins. The number of features selected by the t-test is 500.

Regarding data spliting described in Section II-A, we have
used 5 folds for, both, spliting at nodule and slice levels using
the python StratifiedGroupKFold function to ensure the same
proportion of classes in, both, train and test. Besides, for the
slice split, 25 (≈ 30%) nodules of the dataset were randomly
selected as a independent set (Holdout) of test patients to
assess the reproducibility of the ranges computed in a slice
split. We have used precision, recall and the F1-score as quality
metrics.

The results obtained for the optimal configurations are
summarized (mean ± standard deviation) in Table I. We notice
that the Intensity domain has the lowest score among all
domains. When using slice folds for splitting, both GLCM-
Concatenation and GLCM-Average domains exhibit high re-
call for both benign and malignant nodules. The recall range
for GLCM-Concatenation is (1, 1) for malignant cases and
(0.84, 1) for benign cases. However, when splitting at the nod-
ule level, the GLCM-Average domain experiences a significant
drop in benign recall, almost reaching 0. On the other hand,
for the GLCM-Concatenation domain, while the malignancy
recall score falls within the range of (0.88, 1), the recall
range for benign cases is (0.37, 1). It is worth noting that the
high standard deviation (around 30%) indicates considerable
variability across folds for the GLCM-Concatenation domain.

1The URL to download our database will be made available in the camera’s
ready stage.

This variability is attributed to the limited number of benign
samples (3 at most) of the test set.

IV. CONCLUSIONS

The domain with the lowest performance is the Intensity,
which can be attributed to the fact that VGG16 was trained
on ImageNet and, thus, may not effectively capture the texture
details characteristic of cancer tumor lesions. On the other
hand, GLCM demonstrates higher discrimination power as it
can represent the texture details of the nodules. Regardless of
the representation space, the data split at the slice level yields
the least reproducible results with over optimistic metrics.
In particular we achieve average sensitivity of 0.98 with 1.0
of specificity, which are comparable to those achieved by
state-of-the-art methods. The interval predictions obtained by
splitting the data at the nodule level are less optimistic but
more realistic as they include the hold-out metric results.

These observations highlight the challenges and limitations
in achieving consistent and reliable results in lung cancer
screening. The findings underscore the need for further re-
search and development to address issues related to dataset
size, imbalance and reproducibility, ultimately improving the
accuracy and reliability of screening methods.
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