
EasyChair Preprint

№ 591

Simulation of the Super-scalar Processor Core

Operation

Andrey Vishnekov and Elena Ivanova

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2018

Simulation of the Super-scalar Processor Core Operation

A V Vishnekov1 and E M Ivanova1

1National Research University Higher School of Economics, 34, Tallinskaya St.,

Moscow, 123458, Russia

emivanova@hse.ru

Abstract. The article considers the features of super-scalar processors, their way of performing

several operations on several pairs of operands simultaneously. The research focuses on the

organization of processor pipeline execution operation of several machine instructions in one

processor core. The simulating kit was developed for better understanding of a processor core

microarchitecture. It includes two parts: program and methodical recommendations with

multiple task options. The simulating kit demonstrates the pipeline architecture consisting of two

clusters: front-end and back-end and the principle of translating complex multi-cycle CISC-like

instructions into simpler RISC-like micro-operations. The main types of machine instructions

are considered: data transfer between registers and memory cells (four variations), data

processing of couple of operands from registers and memory cells (four variations), conditional

jump to the specified address. The program-simulator makes it possible to conduct a more

detailed simulation of one of the three mechanisms for calculations accelerating in the processor

core: multi-functional (super-scalar) processing, out-of-order processing, speculative

instructions execution after the branch prediction. The simulating kit is used in educational

process when training masters of Higher School of Economics National Research University.

1. Introduction

Modern super-scalar processors [1-4] can perform several operations on several pairs of operands

simultaneously. This is achieved by a variety of different technological and microarchitectural solutions

which parallelize calculations. The main method is the pipeline processing of machine instructions [5-

8]. Each processor may contain one or several cores. Each core contains one or more instruction

pipelines. In fact, the pipeline is the main part of the processor. Understanding it’s execution mechanism

gives an understanding of computing principles in modern computers. A huge number of scientific and

practical works are devoted to this issue, but the faster and more visual way to study the principle of

pipeline processing is the launch and study of the processor core simulation model.

The processor is very complex device, so the model cannot display every aspect of its functioning.

We focus only on some of them. We have built and investigated such a model that allows us to trace the

process of machine instructions executing by the processor core pipeline. Intel processor with

microarchitecture Nehalem [2] was chosen as a basis for the modeling, although the analyzed

mechanisms are inherent to other modern processors. The most interesting mechanisms, which are the

most complicated for understanding, are the following: multi-functional (super-scalar) processing [9],

out-of-order (OOO) processing [1, 10, 11], branch prediction [12, 13], speculative instructions execution

[14], pipeline reset after misprediction [2], the accelerated instructions fetch from L1i cache [15, 16],

origins of pipeline hazards and bubbles [5, 10, 11], principles of pipeline division into two clusters:

front-end and back-end [3, 4, 17, 18], exception of data re-reading from L1d cache [1, 11], etc. Nehalem

cores include all the mentioned technical solutions. Many scientific works and articles describe this

microarchitecture. So students will easy find any additional information on all theoretical issues.

2. The front-end and back-end clusters of pipeline

Two parts of the pipeline, front-end and back-end, allow to integrate advantages of two processors

architecture: convenience of the CISC program model and RISC high speed execution [18].

Figure 1. The simulated pipeline

The convenience is provided by the difficult instructions capable to process data from registers and

memory. This is implemented via the Front-end CPU cluster. High speed is provided by simple and

short operations. CISC-instructions are translated in simple RISC-like microoperations (MOPs) [15]

which are processed in the Back-end CPU cluster by a set of executive devices (Figure 1): ALU

(Processing), Load (Read data), Save (Write data). There is an instruction phase/ MOPs designation: F–

F–F–F–F (for five Front-end phases)–R–R–R–P–W (for Back-end phases) under the scheme.

3. The simulating kit description

Simulating kit includes the program and the methodical recommendations [19] – a manual with multiple

task options. Simulating kit demonstrates the pipeline architecture, which consists of two clusters: Front-

end and Back-end, and the principle of translating complex multi-cycle CISC-like instructions into

simpler RISC-like micro operations (MOPs). In addition, it is possible to conduct a more detailed

simulation of one of the three accelerating mechanisms in the processor core:

 L.R. №1 – multi-functional processing,

 L.R. №2 – out-of-order processing,

 L.R. №3 – speculative instructions execution after the branch prediction.

The simulating program includes four windows of the model, which reflect the input parameters and

simulation results. The computer simulator considers a code fragment written in a simplified Assembler

as an initial data. The simulation program automatically generates a new version of the code fragment

at startup or at the user's request. The "Task" window looks as shown in Figure 2. To study the pipeline

executing principles, the following parameters of the pipeline and of the program code are additionally

supposed to specify: the number of store/load devices, the number of ALU (Executive devices), and the

percentage of operations with memory cells (Figure 2).

Program provides the following options as a result of the simulation:

 to explore the principle of translation of instructions in micro-operation ("MOPs" window),

shown in Figure 3,

Back-End
(R–R–R–P–W)

Front-End
(F–F–F–F–F)

Instructions

Prefetch and

Decode

Reorder Buffer

(MOPs Queue)

ALU
ALU

ALU

ALU
ALU

Load Data

Save Data

 to study the employment cycles of main back-end pipeline cluster when executing the given

instructions ("Pipeline" window), shown in Figure 4,

 to examine the time diagram of instructions execution sequence from a given code fragment

("Diagram" window), shown in Figure 5.

Figure 2. Simulator interface, "Task" window

The code fragment consists of about twenty instructions. Three main types of machine instructions

[20] are considered: data transfer between registers and memory cells (four variations), data processing

from registers and memory cells (four variations) and conditional jump to the specified address. These

instructions differ from each other in a set of the MOPs which are carried out after decoding (Figure 3).

The 16-byte block of program code (which includes several instructions with a total length up to 16

bytes) is read from the L1i cache to Prefetch Buffer during each CPU clock cycle. Each window displays

the executable code fragment. "MOPs" window shows relative instruction number (first column),

instruction mnemonics (second column), instruction length (third column), prefetching register names

(fourth column), and the columns 5-9 show us the executable MOPs in CPU Back-end cluster devices

(Address Generation – GA, Searching data in Cache L1d – SC, Fetching data from cache into Buffer –

FB, data Processing – P, Saving data in Register – SR or Saving data in Memory – SM). Sequentially

fetching blocks of program code are depicted by alternating light and dark lines. Here one can explore

the exception of data re-reading from L1d cache. For example, instruction 6 must decode into eight

MOPs (Table 1). But it’s both operands (mem3, mem4) were already read by previous instruction0

(mem3) and instruction1 (mem4). Six MOPs are cancelled. CPU performs fewer operations. Program

code executes faster.

Table 1. Theoretically possible and actually executed MOPs for instruction 6 (proc mem4,mem3).

Theoretically possible MOPs (with re-reading) Removed MOPs Actually executed MOPs (without re-reading)

1) mem4 address generation (6GA),

2) searching mem4 in cache (6SC),

3) load mem4 from cache into buffer (6FB),

4) mem3 address generation (6GA),

5) searching mem3 in cache (6SC),

6) load mem3 from cache into buffer (6FB),

7) data processing (6P),

8) saving result in memory (6SM)

1) 6GA,

2) 6SC,

3) 6FB,

4) 6GA,

5) 6SC,

6) 6FB

7) data processing (6P),

8) saving result in memory (6SM)

Task

Figure 3. Simulator interface, "MOPs" window

Figure 4 displays the "Pipeline" window: relative number of CPU clock cycles (first column), block

of instructions (second column) and the columns 3-9 show us the the employment cycles of named CPU

Back-end cluster devices (Read0…2, ALU0...1, SM, SR). Empty cells mean the halt of specified device

in specified cycle. Each MOP has a number of the appropriate instruction.

Figure 4. Simulator interface, "Pipeline" window

One can study the parallel cycle-by-cycle MOPs execution. Out-of-order MOPs processing can be

tracked according to the number of the executed MOPs on each clock cycle. For example, five MOPs

are executed simultaneously on a cycle number 4: loading data from cache L1d in buffer for instruction

4 (4FB), address generation for instruction 6 (6GA), data processing for instruction 0 (0P), data

processing for instruction 9 (9P), saving data in register for instruction 1 (1SR). MOP 9P is processed

out of order.

"Diagram" window allows one to examine the sequence and duration of instructions execution from

given code fragment. Figure 5 (big picture) illustrates the diagram of the twenty instructions execution

sequence: a relative instruction number (first column), instruction mnemonic (second column) and the

CPU clock cycles from 0 to 16 (3-19 columns) show us the MOPs of instruction execution phase (F-

fetch, R-read from memory, P-processing, W-result writing/saving). In the same Figure (small picture)

one can see instructions execution sequence for a case of pipeline reset after misprediction for both

front-end (F-F-F-F-F) and back-end (R-R-R-P-W) cluster. The situation of pipeline reset is represented

by crossing out of the cancelled phases/MOPs (red colour letters).

Figure 5. Simulator interface, two variants "Diagram" window: multi-functional processing (big

picture) and pipeline reset after misprediction (small picture)

The sequence in-order recovering for instructions results saving after OOO execution is shown in

two lines in the bottom of the diagram. Recovering is executed in two steps: fin (wait in the queue) and

release. Diagram makes it easy to realize how common data and devices are used by instructions. One

can easily trace the instruction halt.

4. Conclusion

The offered simulation of the super-scalar processor core allows to study the CPU core execution in

dynamics cycle-by-cycle. This Simulating kit is useful for studying computer architecture.

Understanding the features of the processor is useful for both system developers and programmers.

Improving the style of writing programs will let the computer speed up their execution. The Simulating

kit is used when teaching the discipline "Computing systems" in Higher School of Economics [20].

5. Acknowledgments

Authors thank the HSE student Lazutov A.N. for help in creation of the kit program part.

6. References

[1] Intel® 64 and IA-32 Architectures Optimization Reference Manual

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-optimization-manual.pdf

[2] Korogod Sergey New in the Silvermont architecture of Intel Atom Z3xxx Processors. 2013.

http://www.ixbt.com/portopc/atom-clover5.shtml

[3] Swinburne Richard. Feature - Intel Core i7 - Nehalem Architecture Dive. bit-tech. 2008.

http://www.bit-tech.net/reviews/tech/cpus/intel-core-i7-nehalem-architecture-dive/5/

[4] Ozerov Sergei. CPU architecture. Computerra. 2005, 37(609).

http://www.kinnet.ru/cterra/609/233266.html

[5] Kanter David. Intel's Sandy Bridge Microarchitecture. Website Real World Tech. 2010.

https://www.realworldtech.com/sandy-bridge/10/

[6] Patterson David A., Hennessy John L. Computer Architecture: A Quantitative Approach, 5th

Edition. — Morgan Kaufmann, 2011.

[7] Tanenbaum A.S., Austin T. Structured Computer Organization. Prentice Hall, 2012.

[8] Tullsen D.M., Eggers S.J., Levy H.M. "Simultaneous multithreading: Maximizing on-chip

parallelism". 22nd Annual International Symposium on Computer Architecture. IEEE.

1995: 392–403.

[9] Abeydeera Maleen, Subramanian Suvinay, Jeffrey Mark C., Emer Joel, Sanchez Daniel, "SAM:

Optimizing Multithreaded Cores for Speculative Parallelism", Parallel Architectures and

Compilation Techniques (PACT) 2017 26th International Conference. 2017: 64-78.

[10] Intel Sandy Bridge microarchitecture overview. Out-of-Order Cluster. https://hw-lab.com/intel-

sandy-bridge-cpu-microarchitecture.html/4

[11] Rappoport Lihu. Intel Core Microarchitecture.
https://moodle.technion.ac.il/enrol/index.php?id=5916

[12] Coursera. Branch Prediction Introduction https://www.coursera.org/lecture/comparch/branch-

prediction-introduction-BF58C

[13] Branch Prediction Review

https://courses.cs.washington.edu/courses/csep548/06au/lectures/branchPred.pdf

[14] Intel Analysis of Speculative Execution Side Channels. White Paper. 2018.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-analysis-of-

speculative-execution-side-channels-paper.html?wapkw=speculative+execution

[15] Polyvyalov Alexander. In anticipation of the Willamette — the history of the IA-32 architecture

and the way the P6 family processors work. 2000. https://www.ixbt.com/cpu/pentium4-1.html

[16] Garmatyuk Stanislav. The "new old" Core i7 architecture: what's more-similarities or differences?

Website ixbt.com/PC Platform. 2008. https://www.ixbt.com/cpu/intel-ci7-theory.shtml

[17] Nechai Oleg. Selection of author’s articles

http://www.libma.ru/kompyutery_i_internet/cifrovoi_zhurnal_kompyuterra_74/p2.php

[18] Hinton Glenn, Sager Dave, Upton Mike, etc. The Microarchitecture of the Pentium4 Processor.

Intel Technology Journal Q1, 2001

http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

[19] Ivanova E. M. Core superscalar CPU simulation. Methodical recommendations on "Computer

systems" for the direction 09.04.01. "Computer science and engineering" master's degree. M.:

HSE, 2018. https://publications.hse.ru/en/books/214154058

[20] Intel 64 and IA-32 Architectures Software Developer’s Manual.

http://www.intel.ie/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-

software-developer-manual-325462.pdf

