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Abstract. The article considers the features of super-scalar processors, their way of performing 

several operations on several pairs of operands simultaneously. The research focuses on the 

organization of processor pipeline execution operation of several machine instructions in one 

processor core. The simulating kit was developed for better understanding of a processor core 

microarchitecture. It includes two parts: program and methodical recommendations with 

multiple task options. The simulating kit demonstrates the pipeline architecture consisting of two 

clusters: front-end and back-end and the principle of translating complex multi-cycle CISC-like 

instructions into simpler RISC-like micro-operations. The main types of machine instructions 

are considered: data transfer between registers and memory cells (four variations), data 

processing of couple of operands from registers and memory cells (four variations), conditional 

jump to the specified address. The program-simulator makes it possible to conduct a more 

detailed simulation of one of the three mechanisms for calculations accelerating in the processor 

core: multi-functional (super-scalar) processing, out-of-order processing, speculative 

instructions execution after the branch prediction. The simulating kit is used in educational 

process when training masters of Higher School of Economics National Research University. 

1.  Introduction 

Modern super-scalar processors [1-4] can perform several operations on several pairs of operands 

simultaneously. This is achieved by a variety of different technological and microarchitectural solutions 

which parallelize calculations. The main method is the pipeline processing of machine instructions [5-

8]. Each processor may contain one or several cores. Each core contains one or more instruction 

pipelines. In fact, the pipeline is the main part of the processor. Understanding it’s execution mechanism 

gives an understanding of computing principles in modern computers. A huge number of scientific and 

practical works are devoted to this issue, but the faster and more visual way to study the principle of 

pipeline processing is the launch and study of the processor core simulation model. 

The processor is very complex device, so the model cannot display every aspect of its functioning. 

We focus only on some of them. We have built and investigated such a model that allows us to trace the 

process of machine instructions executing by the processor core pipeline. Intel processor with 

microarchitecture Nehalem [2] was chosen as a basis for the modeling, although the analyzed 

mechanisms are inherent to other modern processors. The most interesting mechanisms, which are the 

most complicated for understanding, are the following: multi-functional (super-scalar) processing [9], 

out-of-order (OOO) processing [1, 10, 11], branch prediction [12, 13], speculative instructions execution 

[14], pipeline reset after misprediction [2], the accelerated instructions fetch from L1i cache [15, 16], 

origins of pipeline hazards and bubbles [5, 10, 11], principles of pipeline division into two clusters: 



 

 

 

 

 

 

front-end and back-end [3, 4, 17, 18], exception of data re-reading from L1d cache [1, 11], etc. Nehalem 

cores include all the mentioned technical solutions. Many scientific works and articles describe this 

microarchitecture. So students will easy find any additional information on all theoretical issues. 

2.  The front-end and back-end clusters of pipeline 

Two parts of the pipeline, front-end and back-end, allow to integrate advantages of two processors 

architecture: convenience of the CISC program model and RISC high speed execution [18].  

 

Figure 1. The simulated pipeline 

The convenience is provided by the difficult instructions capable to process data from registers and 

memory. This is implemented via the Front-end CPU cluster. High speed is provided by simple and 

short operations. CISC-instructions are translated in simple RISC-like microoperations (MOPs) [15] 

which are processed in the Back-end CPU cluster by a set of executive devices (Figure 1): ALU 

(Processing), Load (Read data), Save (Write data). There is an instruction phase/ MOPs designation: F–

F–F–F–F (for five Front-end phases)–R–R–R–P–W (for Back-end phases) under the scheme.   

3.  The simulating kit description 

Simulating kit includes the program and the methodical recommendations [19] – a manual with multiple 

task options. Simulating kit demonstrates the pipeline architecture, which consists of two clusters: Front-

end and Back-end, and the principle of translating complex multi-cycle CISC-like instructions into 

simpler RISC-like micro operations (MOPs). In addition, it is possible to conduct a more detailed 

simulation of one of the three accelerating mechanisms in the processor core:  

 

 L.R. №1 – multi-functional processing,  

 L.R. №2 – out-of-order processing,  

 L.R. №3 – speculative instructions execution after the branch prediction.  

 

The simulating program includes four windows of the model, which reflect the input parameters and 

simulation results. The computer simulator considers a code fragment written in a simplified Assembler 

as an initial data. The simulation program automatically generates a new version of the code fragment 

at startup or at the user's request. The "Task" window looks as shown in Figure 2. To study the pipeline 

executing principles, the following parameters of the pipeline and of the program code are additionally 

supposed to specify: the number of store/load devices, the number of ALU (Executive devices), and the 

percentage of operations with memory cells (Figure 2).  

Program provides the following options as a result of the simulation:  

 

 to explore the principle of translation of instructions in micro-operation ("MOPs" window), 

shown in Figure 3, 
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 to study the employment cycles of main back-end pipeline cluster when executing the given 

instructions ("Pipeline" window), shown in Figure 4, 

 to examine the time diagram of instructions execution sequence from a given code fragment 

("Diagram" window), shown in Figure 5.  

 

Figure 2. Simulator interface, "Task" window 

The code fragment consists of about twenty instructions. Three main types of machine instructions 

[20] are considered: data transfer between registers and memory cells (four variations), data processing 

from registers and memory cells (four variations) and conditional jump to the specified address. These 

instructions differ from each other in a set of the MOPs which are carried out after decoding (Figure 3). 

The 16-byte block of program code (which includes several instructions with a total length up to 16 

bytes) is read from the L1i cache to Prefetch Buffer during each CPU clock cycle. Each window displays 

the executable code fragment. "MOPs" window shows relative instruction number (first column), 

instruction mnemonics (second column), instruction length (third column), prefetching register names 

(fourth column), and the columns 5-9 show us the executable MOPs in CPU Back-end cluster devices 

(Address Generation – GA, Searching data in Cache L1d – SC, Fetching data from cache into Buffer – 

FB, data Processing – P, Saving data in Register – SR or Saving data in Memory – SM). Sequentially 

fetching blocks of program code are depicted by alternating light and dark lines. Here one can explore 

the exception of data re-reading from L1d cache. For example, instruction 6 must decode into eight 

MOPs (Table 1). But it’s both operands (mem3, mem4) were already read by previous instruction0 

(mem3) and instruction1 (mem4). Six MOPs are cancelled. CPU performs fewer operations. Program 

code executes faster.  

Table 1. Theoretically possible and actually executed MOPs for instruction 6 (proc mem4,mem3). 

Theoretically possible MOPs (with re-reading) Removed MOPs Actually executed MOPs (without re-reading) 

1) mem4 address generation (6GA),  

2) searching mem4 in cache (6SC), 

3) load mem4 from cache into buffer (6FB), 

4) mem3 address generation (6GA),  

5) searching mem3 in cache (6SC), 

6) load mem3 from cache into buffer (6FB), 

7) data processing (6P), 

8) saving result in memory (6SM) 

1) 6GA, 

2) 6SC, 

3) 6FB, 

4) 6GA,  

5) 6SC, 

6) 6FB 

 

7) data processing (6P), 

8) saving result in memory (6SM) 

Task 



 

 

 

 

 

 

 

Figure 3. Simulator interface, "MOPs" window 

Figure 4 displays the "Pipeline" window: relative number of CPU clock cycles (first column), block 

of instructions (second column) and the columns 3-9 show us the the employment cycles of named CPU 

Back-end cluster devices (Read0…2, ALU0...1, SM, SR). Empty cells mean the halt of specified device 

in specified cycle. Each MOP has a number of the appropriate instruction. 

 

Figure 4. Simulator interface, "Pipeline" window 

One can study the parallel cycle-by-cycle MOPs execution. Out-of-order MOPs processing can be 

tracked according to the number of the executed MOPs on each clock cycle. For example, five MOPs 

are executed simultaneously on a cycle number 4: loading data from cache L1d in buffer for instruction 

4 (4FB), address generation for instruction 6 (6GA), data processing for instruction 0 (0P), data 



 

 

 

 

 

 

processing for instruction 9 (9P), saving data in register for instruction 1 (1SR). MOP 9P is processed 

out of order.  

"Diagram" window allows one to examine the sequence and duration of instructions execution from 

given code fragment. Figure 5 (big picture) illustrates the diagram of the twenty instructions execution 

sequence: a relative instruction number (first column), instruction mnemonic (second column) and the 

CPU clock cycles from 0 to 16 (3-19 columns) show us the MOPs of instruction execution phase (F-

fetch, R-read from memory, P-processing, W-result writing/saving). In the same Figure (small picture) 

one can see instructions execution sequence for a case of pipeline reset after misprediction for both 

front-end (F-F-F-F-F) and back-end (R-R-R-P-W) cluster. The situation of pipeline reset is represented 

by crossing out of the cancelled phases/MOPs (red colour letters).  

 

Figure 5. Simulator interface, two variants "Diagram" window: multi-functional processing (big 

picture) and pipeline reset after misprediction (small picture)    

The sequence in-order recovering for instructions results saving after OOO execution is shown in 

two lines in the bottom of the diagram. Recovering is executed in two steps: fin (wait in the queue) and 

release. Diagram makes it easy to realize how common data and devices are used by instructions. One 

can easily trace the instruction halt. 

4.  Conclusion 

The offered simulation of the super-scalar processor core allows to study the CPU core execution in 

dynamics cycle-by-cycle. This Simulating kit is useful for studying computer architecture. 

Understanding the features of the processor is useful for both system developers and programmers. 

Improving the style of writing programs will let the computer speed up their execution. The Simulating 

kit is used when teaching the discipline "Computing systems" in Higher School of Economics [20]. 
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