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Abstract—Traditional Risk Matrices are usually considered as
applicable method for risk assessment. However, such techniques,
mainly analyzing in the likelihood and consequence of danger,
are often limited. Thus, this method can not be simply used with
facing multidimensional data set. Therefor, this paper proposes
an approach to solve the problem by combining Risk Matrix with
Factor Analysis. It will be based on data of oilfield operation risk,
on Factor analysis and on Risk Matrix providing an Optimal
Risk Matrix. In order to prove the effect of the approach, both
graphical analysis of traditional and optimal risk matrix are
clearly depicted. Finally, some views and perspectives of this
approach are proposed.

Index Terms—optimal risk matrix; factor analysis; data anal-
ysis; risk assessment; oilfield management.

I. INTRODUCTION

Risk matrices, an important decision-making tool, have
unique advantages in risk analysis. Its main purpose is to
ensure that managers can find potential risk factors and
avoid accidents as much as possible. Currently, this method
is commonly used because of its uncomplicated theory and
graphic depictions. The earliest definition and usage of a risk
matrix was in the late 1990s by the US Air force and the
MITRE Corporation. The risk matrix what we are talking
about currently, is also known as a probability consequence
diagram (Cox, 2008; Ale, 2015) [1], [2]. Generally, it con-
sists of two broad categories, probability or likelihood and
consequence or severity. The likelihood indicates the like-
lihood of occurrence of accident in different conditions. And
consequence indicates the influence of accident in different
situations. Therefore, the risk matrix is an evaluation tool
concerning the two aspects of one accident.

At present, there are 3 kinds of articles on the risk matrix.
The first type of article is mainly about the use of the risk
matrix. Applications, besides injury control [3]–[6], range over
landslide and loss assessment [7], [8],agriculture planning [9],
[10], tunneling [11], air traffic [12]–[14],and much besides.

Besides the impact on diverse field, the second one mainly
concerned with the improvement and research of the risk
matrix itself. Based on theoretical research, these articles are
good at putting forward some possible problems in using risk
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matrix. There is inevitably tangible and intangible factor in
constructing the risk matrix. The reliability and utility of risk
matrices had been amply discussed [15]. Industry-generated
risk matrix data, revealed evidence of human cognitive biases
in the judgment of likelihood and consequence, could improve
risk matrix based risk analysis prevalent in industry [16].

Considering the calculation process of risk matrix, Ni (2010)
proposed diverse risk index in arithmetic pattern for risk
matrices [17]. Furthermore, in order to enhance the arithmetic
applicability of risk matrix, a exponential continuous risk
index was proposed to manage the resolution of conventional
risk matrices [18], [19].

Combining risk matrices with other theory, the last type
of article also promoted effective and creative combination.
A bow-tie model, comprised of a fault tree and event tree,
is widely applied in risk analysis, including probability cal-
culation [20], [21]. In Lu’s paper, combination of the bow-
tie model and risk matrix creates an effective method for the
comprehensive risk evaluation including pipeline management
and risk factors reduction [22]. Analytic hierarchy Process,
a structured technique for organizing and analyzing complex
decisions, can also be combined with risk matrix [13]. Hsu
proposed this revised risk matrix with continuous scale was
also useful for assessing risk factors.

In recent years, the remarkable and effective fuzzy theory
can also be applied to risk matrix. The concept of the fuzzy
risk matrix, proposed by Markowski and Mannan(2008) [23],
was used for analysis of distillation column unit. It was also
referenced in Khaleghi et al. (2013), Shapiro (2013), Ataallahi
and Shadizadeh (2015), Liu et al. (2016),and Skorupski (2016)
[14], [24]–[27].

In summary , the application of a risk matrix requires a
valid and effective system and applicable data sets; namely,
the 2-dimensional data sets. In fact, data sets may have some
different characteristics, one of which is multidimensional in
practical problem. A large quantity of data is valuable for
risk analysis, so how to deal with the various dimensions of
data sets is a considerable question. Flage and Røed (2012)
[28] mentioned multidimensional data sets that concerning
manageability, uncertainty, and criticality three aspects. So
the application of traditional risk matrix is influenced by
multidimensional limitation problem.



To solve the problem, improve the approach, and implement
risk management, this paper proposes an optimal risk matrix.
The optimal risk matrix is based on risk matrix and factor
analysis. We haven’t changed much in the framework of risk
matrix; namely, it is similar to the traditional risk matrix.
But the factor analysis plays a crucial role in this paper.
The usage of factor analysis makes it possible to use the
multidimensional data set in risk matrix. And the usage of
coordination transformation breaks the limitation of original
interval after factor analysis. And the results of optimal risk
matrix is more significant than traditional risk matrix.

The subsequent parts of this paper cover the following
section. Section II introduces the basic theory such as risk
matrix, factor analysis and optimal risk matrix. Section III il-
lustrates the approach of optimal risk matrix and its limitation.
Section IV presents the experimental procedure and discusses
the results. Section V concludes this works.

II. METHODS

In this section, we will respectively introduce the basic
methods of risk matrix, factor analysis. In the subsection
of Risk Matrix, the structure and meaning of different
components will be introduced. And in the subsection of
Factor Analysis, the meaning of parameter and operational
procedures of the factor analysis will be introduced.

A. Risk Matrix

The risk matrix is a classic analytical method that researches
the probability and consequence of risk events. The basic idea
of this semi-quantitative analysis method is to evaluate both
the likelihood level and the consequence level of diverse risk
accidents by locating them in different colored matrix cells.
Generally, the vertical and horizontal axes of one risk matrix
are consequence level and likelihood level respectively. The
scales of probability and severity usually range from very low
to very high. The different combinations decide the different
colors, ranging from green to red (Cox, 2008) [1]. Fig. 1 shows
a risk matrix diagram, and C represents the consequence level
and L represents the likelihood level. In that risk matrix, the
risk levels are divided into three categories, and the different
colors represent different risk levels. Details of the risk matrix
of case study design will be illustrated in Section IV.

L
C

Very low Low Medium High Very high

Critical M M H H H

Serious M M M H H

Moderate L M M M H

Minor L L M M M

Negligible L L L M M

Fig. 1: 5× 5 risk matrix

B. Factor Analysis

Factor analysis is a multivariate statistical technique used for
extracting the main information of a large number of variables

and evaluating their contribution to the total variation by com-
mon factors. This method enables the number of dimensions
of the data sets to be reduced. The main information of the
data sets changes into extracted common factors that represents
most of the information. At that point, the extracted common
factors can be used for analysis instead of using complete data
sets directly. The advantage of this approach is that managers
can retain the main effective information while reducing the
volume of data. The mathematic model of factor analysis can
be expressed as:

xi = ai1f1 + ai2f2 + · · ·+ aimfm + εi, i = 1, 2, . . . , p, (1)

where xi is primitive variable, fj is the common factor,
and εi is the specific factor representing the specific factor
of corresponding xi, aij is the factor loading that is the
covariance of xi and fj . It represents the dependent degree
(or relative importance) of xi to fj . The significance of factor
loadings is that they reflect the relationship between xi and
fj , and they structure the component matrix, determining
which common factors should be integrated. Meanwhile, the
calculated component matrix represents the results; namely,
the results of reducing dimension.

Note that Eq. (1) satisfies following 4 conditions:
1. m ≤ p it means the number of common factors is less

than the number of primitive variables; namely, the number of
dimensions may be reduced.

2. cov(fj , εi) = 0; it means the common factors and special
factors are uncorrelated; namely, they are independent.

3. Every common factor are uncorrelated, and each variance
is 1. As shown in Eq. (2)

D([f1, f2, . . . , fm]′) =


1

1
. . .

1

 . (2)

4. Every special factors are uncorrelated, and the variances
may not be equal. As shown in Eq. (3)

D([ε1, ε2, . . . , εp]′) =


σ2
1

σ2
2

. . .
σ2
p

 . (3)

Generally speaking, the process of factor analysis can be
summarized as following points:

Step1: Choose the appropriate data set. the data set must
be tested for suitability; namely, we should prove that it can
be used for factor analysis. Usually, we accept the data set
when value of Kaiser-Meyer-Olkin test(KMO) is more than
0.7. Otherwise, we don’t think this set of data can be used for
factor analysis.

Step2: calculate correlation matrix. The original data set
can form an observation matrix, and the calculation of corre-
lation matrix is based on the observation matrix. For example,



Step 1:       Choose the appropriate data set

Step 2:        Calculate correlation matrix

Step 5:        Carry the factor loading to rotate

Step 3:     Calculate the eigenvalues and the 
eigenvectors of the correlation matrix

Step 6: Get the model

Step 4:     Calculate the variance contribute rate, and 
determine the number of common factors

Fig. 2: The risk matrix with traditional method

the Eq. (4) is the observation matrix, and it represents there
are p samples evaluated in n aspects.

(X1, X2, ..., Xn) =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

...
...

xp1 xp2 . . . xpn

 . (4)

Therefore, the correlation coefficient can be calculated by
Eq. (5)

r =
Cov(Xi, Xj)√
D(Xi)

√
D(Xj)

, (5)

where the Cov(Xi, Xj) represents the covariance between Xi

and Xj , and the D(Xi) and D(Xj) represent the variance of
Xi and Xj respectively.

And the correlation coefficient matrix can be formed as Eq.
(6) shown.

R =


r11 r12 . . . r1n
r21 r22 . . . r2n

...
...

...
...

rn1 rn2 . . . rnn

 , (6)

Step3: Calculate the eigenvalues and the eigenvectors of
the correlation matrix. In order to get the factor loadings,
the eigenvalues and eigenvectors of the correlation matrix
will be used for calculating. Suppose there are n eigenvalues,
they ranged from big to small in order of Eq. (7), and their
corresponding eigenvectors are represented as µn. Therefore,
the factor loading matrix can be calculated as Eq. (8).

λ1 > λ2 > · · · > λn, (7)

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 =


µ11

√
λ1 . . . µn1

√
λn

µ12

√
λ1 . . . µn2

√
λn

. . . . . . . . .
µ1n

√
λ1 . . . µnn

√
λn


(8)

Step4: Calculate the variance contribute rate, and deter-
mine the number of common factors. Commonly, there were
two way to confirm the number of factors, depending on the
number of eigenvalue (λi needs more than 1) and cumulative
contribution rate (cumulative contribution rate need more than
80%). Here, we adopted observation method of cumulative
contribution rate, calculating as Eq. (9):

ck =

∑k
i=1 λi∑n
i=1 λi

, (9)

where ck is the cumulative contribution rate, k is the number
of factors, λi is eigenvalue.

Step5: Carry the factor loading to rotate. Sometimes, there
is no significant difference of each factor on the different
variables in the non-rotating factor loading matrix. In order
to distinguish each factor, we carry the factor to rotate.

Step6: Get the model. The factor analysis model can be
built by the rotated factor loading matrix.

Note that the author of this paper suggests using software for
calculation due to the complex calculation of factor analysis.

III. OPTIMAL RISK MATRIX

In this section, the optimal risk matrix will be proposed,
according to the method of risk matrix and factor analysis.

A. The Limitations of Optimal Risk Matrix

The optimal risk matrix is similar to traditional risk matrix
in terms of frames. Although optimal risk matrix is based on
the traditional risk matrix, the usage of factor analysis makes
it possible that the multidimensional data can be used in risk
matrix. Please NOTE that the usage of multidimensional data
set does not mean that there is no correlation between the
data set. On the contrary, the data used here are related to the
likelihood factors and the consequence factors indeed. Because
the risk matrix aims at likelihood and consequence; and the
factor analysis is a approach which integrates the similar data
set. Therefore, the usage of optimal risk matrix still has its
own limitations.

B. The Build Steps of Optimal Risk Matrix

In order to illustrate how to implement optimal risk matrix,
the build steps of it will be introduced by a flow chart and
explained in detail. The flow chart of optimal risk matrix is
shown as follow:

Step1 : Test and process data. In this step, what we need
to focus on involves the reliability of data set and the usage
of factor analysis. On the once hand, the reliability means
the trustworthiness of the data source. The data we get is
not always reliable such as questionnaire. Therefore, it is
necessary to ensure data validity before experiment. Generally,
the Cronbachs alpha coefficient is used for confirming the
validity [29], [30]. One the other hand, the data processing
in factor analysis follows the steps and methods in Fig. 2,
Section II-B. And the processed data will contain two factors,
which represents the likelihood factor and the consequence
factor.



Step 1:        Test and process data

Step 5:          Finish and analyze

Step 4:               Data input

Step 2:    Coordinate transformation

Step 3:   Define the risk level of risk 
matrix

Fig. 3: Flow chart of build steps

Step2 : Coordinate transformation. The two processed
factors should have been used in risk matrix but there are
some other problems. Generally, the processed factors contain
negative values which could not be used in the interval [0,5]
of risk matrix. But the use of coordinate transformation is a
method of converting the range of factors into interval [0,5];
the same as the interval on the risk matrix scale. The specific
method of coordinate transformation is as Eq. (10) shown:

f
′

i =
d− c
b− a

(fi − a), i = 1, 2, (10)

where f1 and f2 represent likelihood factor or consequence
factor respectively after processed. For example, if we consider
f1 first, and a is the minimum value in the components of f1,
b is the maximum value of the original components of f1; c is
the lower limit of the interval to which it will be transformed;
namely, 0; and d is the upper limit of the interval to which
it will be transformed; namely, 5. So Eq. (10) can also be
depicted as:

f
′

i =
5− 0

fimax − fimin
(fi − fimin), i = 1, 2, (11)

Therefore, f
′

1 or f
′

2 will respectively be the X coordinates
and Y coordinates of the risk matrix.
Step3 : Define the risk level of risk matrix. In the third

step, what we should do is a partition, namely, the risk matrix
will be divided into several regions, each region representing
different risk situations. Generally, the tri-colored risk matrix
is the most common diagram. The green represents low risk,
the yellow represents moderate risk, and the red represents the
high risk.
Step4 : Data input. The different f

′

i will respectively
represent X or Y coordinates.
Step5 : Finish and analyze. Complete the construction

of optimal risk matrix. The information and significance of
finished optimal risk matrix about the data should be analyzed
and discussed on subsequent work.

IV. CASE STUDY

In this section, we will take the data of an oil field as the
sample, and make a comparative analysis by using traditional
risk matrix and optimal risk matrix.

A. Questionnaire And The Data Sets

The data sets which used in our case study derived from a
questionnaire of an oilfield at the Tarim Basin in Xinjiang
Province, China. In the questionnaire, there are 123 risk
questions, and each question would be evaluated from 4
aspects: The likelihood of an accident(x1), The influence of
an accident(x2), The public opinion of an accident(x3) and
The economic losses of an accident(x4). Each respondent will
fill in his own opinion from the ′degrees′ according himself.
The ′degrees′ which were divided into 5 showed in Table I.
Finally, the average score of the answers were made into the
original data sets.

In this case, the result of Cronbachs alpha coefficient was
0.652, so the data sets were comparatively trusted. And the
KMO value is 0.734 that means the data can be used for factor
analysis. So We can use the data for analysis.

B. The Building Process of Traditional Risk Matrix

In this subsection, we will use the original data sets in a
traditional risk matrix. The traditional risk matrix is established
here to design a contrast for the subsequent optimal risk
matrix.

The four-aspects data sets which mentioned in Section IV-A
is too many to be used in a traditional risk matrix. Considering
x2, x3, x4 are related, we gave a weight (generally, average
value was used) to each risk aspect; namely, let

x̄ =
x2 + x3 + x4

3
. (12)

So x̄ represents the consequence of accident.
Therefore, x1 represents the likelihood level, which deter-

mines the abscissa value of the point; and x̄ represents the
consequence level, which determines the ordinate value of the
point; That is how the points are determined in the traditional
risk matrix.

Before inputting the data sets, the risk levels of the risk
matrix scales were defined as follows:

In Table II, Lj is the likelihood level, categorized as 5
levels (L1, L2, L3, L4, L5) ordered from low to high: L1 to
L5. Ci is the consequence level, also categorized 5 levels
(C1, C2, C3, C4, C5) ordered from low to high: C1 to C5. Rij is
the risk level, and the i and j of Rij are the location of i at
Ci and the location of j at Lj . In this way, the risk table was
divided into a 5×5 matrix of risk cells. Thus, each combination
of Ci and Lj mapped to a risk cell. Here, the common
operation rules such as addition rule and multiplication rule
can be used to calculate the risk level. So, we decide to adopt
multiplication rule for the mapping; namely, Rij = Ci × Lj .
In this paper, the risk levels are divided into three categories
(green, yellow, and red) according to their different values.
The different colors represent different risk levels: the green,



TABLE I: Evaluative aspects of each sample.

Aspects Description Scale

x1

Once per 5 years Very low
Once per 3 ∼ 5 years Low
Once per years Medium
Once per 6 months High
Once per months Very high

x2

No injuries Negligible
At most 3 people suffered minor injuries Minor
3∼10 people suffered minor injuries Moderate
More than 10 people suffered minor injuries or 2∼4 people suffered serious injuries Serious
Having casualty or more than 5 people suffered serious injuries Critical

x3

Criticism by sub-committee Negligible
Reporting by local county government and media Minor
Reporting by municipal government and media Moderate
Reporting by province government and media Serious
Reporting by national government and media Critical

x4

Loss of 0∼5 thousand RMB Negligible
Loss of 5∼20 thousand RMB Minor
Loss of 20∼200 thousand RMB Moderate
Loss of 200∼2000 thousand RMB Serious
Loss of more than 2000 thousand RMB Critical

TABLE II: The risk level categories.

The likelihood level
L1 L2 L3 L4 L5

C5 R51 = 5 R52 = 10 R53 = 15 R54 = 20 R55 = 25
The C4 R41 = 4 R42 = 8 R43 = 12 R44 = 16 R45 = 20

consequence C3 R31 = 3 R32 = 6 R33 = 9 R34 = 12 R35 = 15
level C2 R21 = 2 R22 = 4 R23 = 6 R24 = 8 R25 = 10

C1 R11 = 1 R12 = 2 R13 = 3 R14 = 4 R15 = 5

yellow, and red colors are low, medium, and high-risk levels
respectively. The points in a red cell have a quantitative value
of at least 15, the points in a green cell have a value of at
most 4, and the remaining points are in yellow cells.

The multiplication method has a small problem concerning
the symmetry of risk cells. Baybutt (2015) [31] explained
that the same consequence, likelihood, and risk level may be
regarded as different results by different analysts, even during
the same study. Generally, the points with a risk value of R41

(i.e., 4) should be in a green cell. But in this case, the color
of the risk level that was green at R41 was not compliant with
reality, so we changed it from green to yellow.

The risk matrix diagram with traditional method is shown
in Fig. 4. Note that in the traditional risk matrix diagram
the samples are excessively crowded except for some special
points. Those crowded points obviously have a low degree of
differentiation and cannot be analyzed clearly by managers.
And we know that each value of the data sets from 0 to 5 was
determined when we designed the questionnaire. Therefore the
method of coordinate transformation can not be directly used
here.

In this case, the traditional risk matrix is not a feasible
approach to deal with multidimensional data sets. The reasons
have 2 points.

First, multidimensional data sets cannot be directly used
on traditional risk matrix because of its limited dimensions.
Also, the method of using weighting is not effective in this
case. Second, the essential theory of this phenomenon is that
the inner relation of each data set is strong, so it leads to this

Fig. 4: The risk matrix with traditional method

unsuccessful risk matrix. The inner relation can be explained
by correlation coefficient matrix.

The 123 questions and four aspects formed a 123 × 4
observation matrix as Eq. (13) shown.

X =


x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4

...
...

...
...

x123,1 x123,2 x123,3 x123,4

 . (13)

And the correlation coefficient matrix can be calculated by
Eq. (5) and shown in Eq. (14)



R =


1 −0.129 −0.325 −0.256

−0.129 1 0.777 0.844
−0.325 0.777 1 0.886
−0.256 0.844 0.886 1

 , (14)

On the one hand, it is obvious that the values of r23, r24, r33
are comparatively high, which means they have a strong
correlation. On the other hand, considering the problem about
percentage of occupancy, the weight of each of the risk aspect
may be different. Thus, the identical weights are inappropriate
to be used for calculating, so the traditional risk matrix is not
an effective and accurate approach to handle this problem.

C. The Building Process of Optimal Risk Matrices

To avoid the problem mentioned in the last paragraph,
Section IV-B, we will design a optimal risk matrix to exper-
iment. In the optimal risk matrix, factor analysis is used to
reduce dimension of data sets. Namely, we wish reduce the
dimensions and let it shown in Fig. 5. And the 2 dimensions
can represent the likelihood factor and consequence level
respectively.

1

2

3

4

5

Original data sets Processed data sets

Dimension reduction dimension

Fig. 5: Factor analysis for reduction dimension

The use of factor analysis makes it possible to achieve a
quantitative dimensionality reduction. The 4-dimension data
sets will be reduced to 2-dimension, as shown in Fig. 6.

Optimal risk 
matrix

The likelihood 
level

The likelihood 
of an accident

The 
Consequence 
level

The influence 
of an accident

The public 
opinion of an 
accident

The economic 
losses of an 
accident

Original 
data sets

Processed
data sets

Fig. 6: Dimension reduction and integration

In Fig. 6, we let original 4-dimensional data sets change into
2-dimensional data by factor analysis. After factor analysis,
one of the dimensions is the likelihood level, and it can be
represented by the data set of the likelihood of an accident
in our case study; the other is the consequence level, and it
actually integrated by factor analysis from the influence of

an accident, the public opinion of an accident and the
economic losses of an accident.

Meanwhile, the Component Matrix and the Component
Score Matrix can be calculated by SPSS.

TABLE III: Component Matrix And Component Score Matrix

(a) Component Matrix
Component
1 2

x1 -0.379 0.922
x2 0.901 0.259
x3 0.946 0.011
x4 0.958 0.110

(b) Component Score Matrix
Component
1 2

x1 -0.137 0.992
x2 0.325 0.279
x3 0.342 0.012
x4 0.346 0.118

In Table III(a), the Component Matrix, it represents
the 2 dimensions after factor analysis. In Component 1,
we can observe the x2 , x3 , x4 have a high and similar
correlation coefficient values. Considering the meaning of
x2, x3, x4, it means that the component 1 is referred to
the consequence, and we name it the consequence factor.
Similarly, in Component 2, the x1 has a high value, so it
means the Component 2 refers to the likelihood. Therefore,
we name it the likelihood factor. Thus, the factor model can
be expressed as Eq. (15)

x1 = −0.379f1 + 0.922f2 + ε1

x2 = 0.901f1 + 0.259f2 + ε2

x3 = 0.946f1 + 0.011f4 + ε3

x4 = 0.958f1 + 0.110f4 + ε4.

(15)

And the elements in Component Score Matrix
(TableIII(b)) are similar to assign weights to different xi. Thus,
we assign different weights to x2, x3 and x4, which take full
account of the different factors with different occupancy rates
rather than traditional average method(Eq. (12)). Therefore,
the factor score formula can be expressed in Eq. (17).

{
f1 = −0.137x1 + 0.325x2 + 0.342x3 + 0.346x4

f2 = 0.992x1 + 0.279x2 + 0.012x3 + 0.118x4,
(16)

where f1 represents the consequence level, f2 represents the
likelihood level, xi is standardized original data sets.

The coordinate transformation will be used like it shown
in Eq. (11), to change the inconsistent interval to consistent
interval [0,5].  f1

Eq.(11)−−−−→ f
′

1

f2
Eq.(11)−−−−→ f

′

2 ,
(17)

where f
′

1 represents the values of the vertical coordinate;
f

′

2 represents the values of the abscissa coordinate; and the
coordinate (f

′

2, f
′

1) will be input into the risk matrix diagram.
In this study, 123 points are scattered in the optimal risk

matrix by reducing the number of dimensions in the aspects



Fig. 7: The optimal risk matrix

of data sets in Fig. 7. And some points will be selected as
examples to illustrate.

Points represent a high potential risk level when they are
in the red risk cells. For example, in Fig. 8, the 6th sample
the risk of fire explosion, its coordinates are (2.638, 5); the
60th sample the risk of fire and explosion and their subsequent
influence, its coordinates are (2.271, 4.030); the 61st sample
the risk of poison gas or harmful gas, its coordinates are
(3.238, 3.196).

Fig. 8: Samples in high-risk level

The three points that are in high-risk level should be paid
more attention to. Points represent a moderate risk level when
they are in the yellow cells. For example, in Fig. 9, the 5th

sample the risk of oil tank collapse, its coordinates are (0.650,
3.379); the 26th sample the risk of inside and outside of
pipeline corrosion, its coordinates are (1.437, 5); and the 119th

sample the risk of oil pipeline break, its coordinates are (2.807,
2.524), they and other 35 points are in a moderate state.

And the remaining points represent a relatively low risk
level when they are in the green cells. For example, in Fig.
10., the 2nd sample the risk of oil tank wreck, its coordinates
are (0, 2.199); the 103rd sample the risk of staff occupational
moral, its coordinates are (2.441, 0); and the 106th sample
the risk of staff health conditions, its coordinates are (1.749,
0.593), they and the rest of the 79 points are in a relatively
safe state. Considering the main products of oilfield, they are
inflammable and explosive. Therefore, the manager should pay
due attention to the fire prevention and control of oilfield
management problem.

Fig. 9: Samples in moderate risk level

Fig. 10: Samples in low risk level

D. Results And Analysis

In a sharp contrast with the traditional risk matrix and the
optimal risk matrix shown in Fig. 11. The points in Fig. 11(b)
are more discrete and distinct than the points in Fig.11(a). It
means that the method of optimal risk matrix is superior to the
traditional risk matrix. Moreover, we also have discussed some
shortcomings of the optimal risk matrix in the Section III-A.
First, the multidimensional data needs to be able to refer to
the likelihood and consequence of data. Second, there should
be a strong internal relationship between the data. Third, in
the process of using factor analysis, the dimension problem
should be paid more attention to.

V. CONCLUSION

This study proposed a new approach in regard to a optimal
risk matrix. That covers methods, computational model, prob-
lem, usage of limitation and comparative analysis. The case
study results and comparative analysis indicate the efficiency
of optimal risk matrix. The optimal risk matrix is an acceptable
choice due to three reasons:

1. The usage of factor analysis makes multidimensional
related data to be simplified.

2. It has a significant degree of dispersion.
3. As a decision-making tool, it can also be used in many

field.
In summary, the major contribution of this work is to

propose a approach by combining risk matrix and factor
analysis. As we known, the multidimensional data sets is
usually more common in practical problems. We hope that



(a) Traditional Risk Matrix

(b) Optimal Risk Matrix

Fig. 11: Result comparison

this study can contribute to the both Management Decision
Science and Statistics.
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