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Abstract— Knowledge is key factor in AI problem solving.  Sometimes knowledge available to the AI problem is incomplete.   John 
McCarthy proposed non-monotonic reasoning for incomplete problems in which inference is changed if added some knowledge. John 
There is no method to solve the non-monotonic reasoning. The   fuzzy non-monotonic logic is able to solve problems of non-monotonic 
reasoning. In this paper, fuzzy non-monotonic logic is studied to solve problems of non-monotonic reasoning.   Fuzzy truth maintenance 
system (FTMS) algorithm is studied for fuzzy non-monotonic reasoning. Some examples are discussed for fuzzy non-monotonic 
reasoning. 
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1. Introducdtion 

Sometimes AI has to deal with incomplete knowledge.   If knowledge base is incomplete then the inference is also incomplete.   
In non-monotonic reasoning, some additional information is to be added the reasoning will be changed [4]. 
Ɐx(x is bird Λ x has wing) x can fly 
Penguin is bird Λ Penguin has wings Penguin can fly 
Ozzie is bird Λ Ozzie has wings  Ozzie can fly 

“If x is not known then conclude y”  
“If x is con not be proved in some amount of time, then conclude y” 
 
x is bird Λ x has wings Λ x is not known to fly   x can fly 
x is bird Λ x has wings Λ x is not known to fly   x can‟t fly 
This is incomplete information. 
it is default logic, in which one may be assumed it can fly or it can‟t fly 
  A method is needed to reasoning with non-monotonic logic to complete problem. 
 
There are many theories to deal with    incomplete information, but these theories are based on probable (likelihood]. Zadeh 

[12] fuzzy logic is based on belief rather than probable (likelihood). The fuzzy logic made imprecise information in to precise 
information. 

 
The two fold fuzzy set Z= (A, B) for the proposition of the type “x is P”, where A is likely support the knowledge and B is 

unlikely support the knowledge [9] 
x is bird Λ x has wings Λ x is known to fly   x can fly 
x is bird Λ x has wings Λ x is not known to fly   x can‟t fly 
. 
x is bird Λ x has wings Λ x is likely to fly   x can fly 
x is bird Λ x has wings Λ x is unlikely to fly   x can‟t fly 
Here is first case support the inference and in second case not support the information 
The fuzzy non-monotonic reasoning will bring imprecise knowledge in to precise knowledge. 
  

2. Fuzzy Logic 

The possibility set may be defined for the proposition of the type “x is P” as 
 
πP(x)[0,1] 
πP(x)=max{ µP(xi) }, xєX 
 
µP(x)= µP(x1)/x1+ µP(x2)/x2+…+ µP(xn)/xn  
 µbird(x)= µbird(x1)/x1+ µbird(x2)/x2+…+ µbird(xn)/xn  
  
µbird(x)= 0.0/penguin +0.2/ozzie+ . 0.6/parrot+ 0.7/waterfowl + 0.9/eagle 
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 Let  P and Q be the  fuzzy sets, and the operations on fuzzy sets are given below [10]   
 
PVQ=max(µP(x) , µQ(x)}         Disjunction 
PΛQ=min(µP(x) , µQ(x)}         Conjunction 
P′=1- µP(x)                                Negation 
 PxQ=min { µP(x) , µQ(x)}        Relation 

    P o Q==min{µP(x), µQ(x, x)}    Composition 
 
The fuzzy propositions may contain quantifiers like “very”, “more or less” . These fuzzy quantifiers may be eliminated as 

µvery(x) =µP(x) ²                         Concentration 
µmore or less(x) = µP(x) 0.5              Diffusion  
 

 The Zadeh [11] fuzzy  condition inference s given by 
 
if  x is  x is P1 and P2 …. X is Pn then Q   = 
 min 1, (1-min(µP1(x), µP2(x),  …,  µPn(x))   +µQ(x)}    
      
The Mamdani  [5] fuzzy  condition inference s given by 
if  x is  x is P1 and P2 …. X is Pn then Q   = 
 min {1, (1-min(µP1(x), µP2(x),  …,  µPn(x))   +µQ(x)}         
 
The fuzzy rules are of the form “if <Precedent Part> then <Consequent Part>” 
The Reddy [8] fuzzy  condition inference given by “Consequent Part” is drawn from “Precedent Part”  
if  x is  x is P1 and P2 …. X is Pn then Q   = 
 min(µP1(x), µP2(x),  …,  µPn(x))           

 
 Quasi-fuzzy set 
A quasi-fuzzy set is defined for the proposition “ x is P” as  
 
µP(x)(0, 1) 

3. Fuzzy Predicate Logic 

          The fuzzy reasoning system[ 11]   is  complex processing   system for incomplete   information.. The fuzzy predicate 
logic (FPL) is transformed   fuzzy facts and rules in to meta form (semantic form) [10]. These fuzzy facts and rules are modulated 
to represent the knowledge available to the incomplete problem.  

The fuzzy modulations for Knowledge representation  are  type of modules for fuzzy propositions of the form   “x is A”.  
“x is A” is may be represented as 
[A]R(x),  
where A is fuzzy set, R is relation and x is individual in the Unversed of discourse X For instance 
 “x is bird” is modulated as 
[bird]is(x) 
 
   The FPL is e combined with logical operators. 
Let A and B be   fuzzy sets. 
   x is ¬A     
   [¬A]R(x) 
x is A or x is B 
   [A V B]R(x) 
x is A and  x is B 
[A Λ B]R(x) 
if x is A then  x is B 
[A → B]R(x) 
Some of the Fuzzy Reasoning rules for FPL are given as  
R1:  [A]R(x)                           
        [B](R(x) or R(y))                    
       
        [AΛB]R(y)                           



R2: [A]R(x)  
    [B](R(x) or R(y)        
 
    [AVB ]R(y) 
                                                                                              
R3:  [A](R(x,y) 
        [B](R(y,z) 
     ______________ 
      [AΛ B](R(x,z) 
R4: [A](R(x)  or  R(y))      
       [B](R(y)  or  R(z))      
            
       [AV B](R(x)  or  R(z))           
R5: : [A1]R(x)   
       if [A]R(x)  then  [B]R(y) 

 
  [[Ao  (A→B)]R(y) 
 
x is bird 
[bird]is(x) 
if  x is bird   then x can fly 

if [bird]is(x) then [fly]is(x) 
or 
[bird][fly]is(x) 
if  x is bird  and x has wings   then x can fly 

if [bird]is(x) Λ [wings]is[x] then [fly]is(x) 
[bird] Λ [wings][fly]is(x) 
 The fuzzy reasoning is given as 
[long wings]]i(x)   
 if [wings]R(x)  then  [fly]is(x) 

-------------------------------- 
  [long wings o  (wings→fly)]is(x) 

 
          

 
4. Fuzzy Non-Monotonic Logic 

   Zadeh [10] is defined the Z-Number  {A,B] for the proposition of the type “x is P”, where A support the P and B not 

support the P .  
 

 The fuzzy non-monotonic  set may defined with two fold membership function using likely  and unlikely  . 
 
Definition: Given some Universe of discourse X, the proposition “ x is P”  is  defined as  its two fold fuzzy membership 

function as 
 
µP(x) = {µP

likely  (x), µP
unlikely  (x)} 

                      or 
P = {µP

likely(x), µP
unlikely(x)} 

Where P is Generalized fuzzy set and x Є X , 
 
0 <= µP

likely(x) <=1 and, 0 <= µP
unlikely (x) <=1 

P  =  { µP
likely (x 1)/x1     + … +   µP

likely (x n)/xn, 
µP

unlikely (x 1)/x1     + … +    µP
likely (x n)/xn,  xi  Є X, “+” is union 

  
For example  „ x  will fly” , fly  may be given  as 
 

fly = {µfly
likely(x), µfly

unlikely (x)} 



=  0.0/penguin +0/2/ozzie+ .5/peacock+0.6/waterfowl + 0.8/parrot+ 0.9/eagle - .0/penguin + 0..1/ozzie+ 0.2/waterfowl+ 
0.1/parrot+  0.05/eagle} 
In MYCIN [1], the certainty  factor(CF) is defined as the deference  between belief  [MB] and disbelief   
[MD] of probabilities. 
 
CF[h,e]=MB[h,e]-MD[h,e],    where    “e‟is  evidence and “h” is hypothesis. 

 CF[h,e],MB[h,e] and MD[h,e] are probabilities. 
 
The  fuzzy certainty  factor (FCF) is  defined  by  fuzziness instead of probability for the fuzzy preposition of the type “ x is A” 
CF[x, A]=MB[x, A]-MD[x,A],     
The FCF is the difference between “likely” and “unlikely” and will eliminate conflict between “likely” and “unlikely” and, 

made as single membership function 
 

µ A 
FCF (x )  = µ A 

likely  (x ) - µ A 
unlikely  (x )   

 
 µA

FCF(x) = µA
likely   (x) - µA

unlikely    (x)     >0 
µA

FCF(x) = µA
likely   (x) - µA

unlikely    (x)       =0  
µA

FCF(x) = µA
likely   (x) - µA

unlikely    (x)       <0     
  
The above are interpreted as sufficient, redundant and insufficient information respectively. 
The business intelligence has to take decision while taking decision. The   fuzzy decision sets defined by 
 
 R= µ A 

R (x ) = 1    µ A 
FCF (x )≥α,     (5) 

                            0    µ A 
FCF (x )<α  

 
where αє[0,1] and α-cut is  decision factor. 

µ fly
FCF (x )   = {µfly

likely(x) - µfly
unlikely (x)} 

= {0.0/penguin +0.2/ozzie+ . 0.6/parrot+ 0.7/waterfowl + 0.9/eagle - 0.0/penguin +0.1/ozzie+ . 0.1/parrot+ 0.15/waterfowl + 
0.2/eagle } 
 
= { 0.0/penguin +0.1/ozzie+ . 0.5/parrot+ 0.55/waterfowl + 0.7/eagle } 
For  instance “ x can fly” for α>=0.5 
Is given as  
={0/penguin +0/ozzie+  1/peacock+  1/waterfowl+ 1/parrot+ 1/eagle} 

 

Since formation of the fuzzy non-monotonic logic  is  simply  to solve incomplete problem..    
 

 µP(x) = {µP
likely(x), µP

unlikely(x) } 
 
Suppose P and Q  are fuzzy non-monotonic sets.  The operations on fuzzy sets are given below for two fold  fuzzy sets. 

 
Negation 
P′= {1- µP

likely(x), 1- µP
unlikely(x)     }/x 

 
Disjunction 
PVQ={ max(µP

likely (x) , µP
likely (y)), max(µQ

unlikely (x) , µQ
unlikely (y))}(x,y) 

 
Conjunction 
PΛQ={ min(µP

likely (x) ,µP
likely (y)), min(µQ

unlikely (x) , µQ
unlikely (y)) }/(x,y) 

 
Implication 
Zadeh fuzzy conditional inference  
PQ= {min(1,  1-  µP

likely (x) +  µQ
likely (y) , min ( 1, 1- µP

unlikely  (x) + µQ
unlikely (y)}(x,y)   

 



Mamdani  fuzzy conditional inference  
PQ= {min( µP

likely(x) ,  µQ
likely(y) , min ( µP

unlikely (x) , µQ
unlikely (y)}(x,y)   

 
Reddy fuzzy conditional inference  
PQ= {min ( µP

likely (x) , µP
unlikely (y)}(x,x)   

 
  Composition 
P o R = {minx ( µP

likely (x), µP
likely  (x) ), minx( µR

unlikely (x), µR
unlikely (x) )}/y                

The fuzzy propositions may contain quantifiers like “very”, “more or less” . These fuzzy quantifiers may be eliminated as 
 
Concentration 
“x is very P             
µvery P(x) = { µP

likely  (x)2, µP
unlikely  (x)µP(x)2 } 

 
Diffusion  
“x is more or less P”     
µmore or less P(x) = ( µP

likely  (x)1/2, µP
unlikely  (x)µP(x)0.5 

 
For instance, consider logical operations on P and Q 
 
P = {  0.8/x1 + 0.9/x2 + 0.7/x3 + 0.6/x4 +0.5/x5 ,                                                                        
0.4/x1 + 0.3/x2 + 0.4/x3 + 0.7/x4 +0.6/x5}  
 
Q = {  0.9/x1 + 0.7/x2 + 0.8/x3 + 0..5/x4 +0.6/x5 ,                                                                      
  0.4/x1 + 0.5/x2 + 0.6/x3 + 0.5/x4 +0.7/x5}  
 
P V Q = {  0.9/x1 + 0.9/x2 + 0.8/x3 + 0.6/x4 +0.6/x5 ,                                                                        
0.4/x1 + 0.5/x2 + 0.6/x3 + 0.7/x4 +0.7/x5}  
 
P Λ Q = {  0.8/x1 + 0.7/x2 + 0.7/x3 + 0.5/x4 +0.5/x5 ,                                                                       
 0.4/x1 + 0.3/x2 + 0.4/x3 + 0.5/x4 +0.6/x5}  
 
  P′ =  not P= {  0.2/x1 + 0.1/x2 + 0.3/x3 + 0.4/x4 +0.5/x5 ,    
                            0.6/x1 + 0.7/x2 + 0.6/x3 + 0.3/x4 +0.4/x5}                                                                               
 
P Q =  {  1/x1 + 0.8/x2 + /x3 + 0.9/x4 +1/x5 ,    
                            1/x1 + 1/x2 + 1/x3 + 0.8/x4 +1/x5} 
P o Q = {  0.8/x1 + 0.7/x2 + 0.7/x3 + 0.5/x4 +0.5/x5 ,                                                                        
0.4/x1 + 0.3/x2 + 0.4/x3 + 0.5/x4 +0.6/x5}                            
  
µvery P(x) = { µP

likely(x)2, µP
unlikely(x)µP(x)2 }                            

 = {  0.64/x1 + 0.81/x2 + 0.49/x3 + 0.36/x4 +0.25/x5 ,  
                         0.16/x1 + 0.09/x2 + 0.16/x3 + 0.49/x4 +0.36/x5                                                                                  
 
µmore or less P(x) = ( µL

ikely (x)1/2, µU
nlikely (x)µP(x)1/2 }   

  ={  0.89/x1 + 0.95/x2 + 0.84/x3 + 0.77/x4 +0.70/x5 ,                                                                        
0.63/x1 + 0.55/x2 + 0.63/x3 + 0.81/x4 +0.77/x5}  
 

 quasi-fuzzy non-monotonic set is defined as  
 
µP

 (x) = {µP
likely  (x), µP

unlikely  (x)} 
µP

 (x)(0, 1) 
 
Consider the fuzzy non-monotonic inference  
 
 “x is bird Λ x has wings x can fly” 

 if [bird]is(x) Λ [wings]is[x] then [fly]is(x) 



 
 µbird(x)  = {µbird 

likely (x), µbird 
likely (x)} 

 
µbird(x)= {0.0/penguin +0.2/ozzie+ . 0.6/parrot+ 0.7/waterfowl + 0.9/eagle - 0.0/penguin +0.1/ozzie+ . 0.1/parrot+ 
0.15/waterfowl + 0.2/eagle } 
  µwings(x)  = {µwings 

likely (x), µwings 
likely(x)} 

 
µwings(x)=  {1.0/penguin +1.0/ozzie+ .1.0/parrot+ 1.0/waterfowl + 1.0/eagle – 0.0/penguin +0.0./ozzie+ . 0.0/parrot+ 
0.0/waterfowl + 0.0/eagle } 
where µwings(x) is quasi fuzzy set. 
 
 . “x is bird Λ x has wings Λ x will  fly  x can fly” 

 
x can fly may be given as using Reddy fuzzy conditional inference "consequent part “may be derived from “precedent 

part”. 

[fly]is(x)=[bird]is(x) Λ [wings]is[x]  

= [bird] Λ [wings] is[x] 

= [min{bird,  wings} is[x] 

=0.0/penguin +0.2/ozzie+ . 0.6/parrot+ 0.7/waterfowl + 0.9/eagle - 0.0/penguin +0.0/ozzie+ . 0.0/parrot+ 
0.0/waterfowl + 0.0/eagle } is(x) 

 µbird(x) ={0.0/penguin +0.2/ozzie+ . 0.6/parrot+ 0.7/waterfowl + 0.9/eagle - 0.0/penguin +0.0/ozzie+ . 
0.0/parrot+ 0.0/waterfowl + 0.0/eagle } is(x) 

µbird 
FCF(x)= 0.0/penguin +0.2/ozzie+ . 0.6/parrot+ 0.7/waterfowl + 0.9/eagle 

 
the decision of “ x can fly” for α>=0.5 is given by 
= 1/parrot+ 1/waterfowl + 1/eagle 

The parrot, waterfowl  and eagle can fly. 
 

Here fuzzy logic made imprecise information to precise information‟s. Some birds  can fly and some birds can‟t fly. 

For instance, The parrot, waterfowl  and eagle can fly and,  penguin and ozzie are can’t fly 
“  

 
Zadeh[13] defined fuzzy granularity  for  the proposition  of  type “ x is A is λ”  where λ is granular variable likely,  unlikely, 

very likely not very likely, more or less likely, etc. 
  

For instance, the inference for  “x is bird is not very likely ” is given as 
1- µbird(x) 2 
 
Fuzzy granular non-monotonic position  “x is P is  not very likely ” is given by 

{ 1-µP 
likely   (x)2 , 1-µP unlikely(x)2}   

 
The g fuzzy granular non-monotonic position  “x is P is  not very unlikely ” is given by 

 
{ µP 

likely   (x) , µP unlikely   (x)}   
 
Granular  variables may be  apply on respective   functions 



  
The fuzzy granular  vales  may be applied on respective fuzzy membership functions. 
“x is P is very likely ” is given as 

 
{ µ P 

very likely   (x) , µ P unlikely   (x)}   
“x is P is more  or less unlikely ” is given as 

 
{ µ P 

likely(x) , µ  P   
more or less unlikely(x)}   

For instance, “Ozzie  is bird is very likely ” is given as 
 
{ µbird

likely   (Ozzie) , µbid 
unlikely   (Ozzie)} 

 
“Ozzie  is bird is very likely ” is given as 
P{ µ bird 

likely   (Ozzie)2 , µbird 
unlikely   (Ozzie)} 

“Ozzie  is bird is more or less unlikely ” is given as 
P{ µ bird 

likely   (Ozzie) , µbird 
unlikely   (Ozzie)0.5} 

 

 µbird(x)  = {µbird 
likely (x), µbird 

likely (x)} 
 
  

 . “x is bird Λ x has wings Λ x will  fly  x can fly” 
 

5. Fuzzy Truth Maintanance System 

  
 In the truth maintenance system (TMS) for proposition  is give by 
 
x is bird    x can fly 

 
1. x is bird  
2. x can fly 
3. x can‟t fly 

 
  
IN   OUT 
x is bird  with  >=α x can fly 

x is bird with < α         x can‟ fly 

 where α is cutoff fuzziness 
 

 For instance, Ozzie is bird 
 

IN                          OUT 
Ozzie  is bird with fuzziness 0.5               Ozzie can fly 
Ozzie is bird with fuzziness with <0.5    Ozzie  can‟t fly 
  

6. Conclusion 
 
In non-monotonic logic,  multiple inferences are giving, if knowledge is goes on adding.  In fuzzy non-monotonic, the 
inference  is given for the incomplete problem. FTMS is algorithm to solve non-monotonic logic. 
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