
EasyChair Preprint
№ 10604

A Research Agenda for Space Flight Software
Security

James Curbo and Gregory Falco

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 21, 2023



A Research Agenda for
Space Flight Software Security

James Curbo
Whiting School of Engineering

Johns Hopkins University
Baltimore, USA
jcurbo1@jhu.edu

Gregory Falco
Institute for Assured Autonomy

Johns Hopkins University
Baltimore, USA

falco@jhu.edu

Abstract—Space flight software is no longer a closely guarded
secret for space vehicle developers, owners and operators - it is
open-sourced and available as a commercial-off-the-shelf module.
Despite its wide availability, limited security research has been
conducted on flight software in an unclassified environment.
This paper proposes a research agenda that outlines critical
challenges for space flight software and proposes a series of
research and development efforts that could ultimately aid in
developing inherently secure space vehicles.

Index Terms—space flight software, space cybersecurity, flight
software security

I. INTRODUCTION

Flight software is fundamental to any space vehicle’s suc-
cessful mission operation. The reliability of flight software
is not a new topic and has been studied extensively for the
past decades through the lens of fault tolerance and fail-safe
operations, with particular attention to instrumenting flight
software with layers of redundancy. Despite attention to fault
management principles and practice, there has been limited
attention to the cybersecurity of flight software, a related but
separate topic. The principal difference between fault tolerance
for flight software and security challenges for the same is that
fault tolerance assumes faults are probabilistic in nature and
that failures will occur in a predicable order from predictable
environmental effects. Cybersecurity threats to flight software
are propagated by an intelligent adversary that may be actively
engaging with the flight software, despite fail-safe mechanisms
or available defenses, intentionally stressing its processes in
an unanticipated fashion. An attacker’s pursuit or next move
is not as predictable as an environment-propagated failure.

While the flight software community has historically oper-
ated under the guise of security by obscurity, the increasingly
open-source and commercial-off-the-shelf (COTS) availability
of flight modules have erased any perceived security benefits.
NASA’s core Flight System (cFS) and NASA’s Jet Propulsion
Laboratory’s F’ flight software is readily available for adver-
saries and security researchers alike to explore, which forces a
public discourse about space flight software security practices
and requirements for the ’new’ space era. This paper presents
a research agenda for flight software security, discussing the
robust related research conducted thus far in related fields and

describing opportunities to improve the security posture of
flight software from future threats.

II. CYBER RESILIENCE AND FLIGHT SOFTWARE

A. Defining Flight Software

Space missions use software in many different places in a
typical spacecraft architecture. For this paper, we will focus
on the core of a spacecraft’s software, usually known as ”flight
software,” made up of the real-time operating system (RTOS)
and mission applications running on a spacecraft’s primary
computer. This is a necessarily generic definition due to the
wide variety of computing architectures used in spacecraft.
Flight software implements a variety of fundamental spacecraft
functionality, such as guidance, navigation, running and com-
municating with science instruments, controlling subsystems
like thermal management and power, and managing communi-
cations. Many other types of spacecraft-related software exist,
including embedded firmware within hardware components,
dedicated software running within instruments and hosted
payloads that interface with the spacecraft’s primary flight
software. They are not the focus of this paper, but deserve
scrutiny as well.

B. Why is Cyber Resilience Necessary?

Space missions require highly reliable hardware and soft-
ware components, therefore value is assigned to proven sys-
tems that have flown on successful missions (so-called ”her-
itage” components). Historically, spacecraft have not been a
prominent target of cyber attack, so their developers have
not built them with cyber resilience in mind. Organizations
developing flight software do not usually specialize or have
significant expertise in cybersecurity or secure software engi-
neering practices. The nature of space mission development
yields a wide variety of organizations’ involvement in devel-
oping flight software, where many of these organizations have
in-house software engineering groups dedicated to their flight
software needs. Some are civilian space agencies focused on
scientific missions and human spaceflight, such as NASA and
ESA. These organizations oversee many space efforts with
a wide variety of goals. Overlapping with this category are
universities and other research establishments designing their
own missions. Some of these organizations are developing



their missions for civilian space agencies, and others are
simply pursuing a line of research. Another area is the military
and its associated defense contractors. Like scientific missions,
military missions have very specific requirements that vary
among mission types, and so many defense contractors de-
velop their flight software in-house and for specific missions
or related mission sets. Finally, commercial companies who
develop spacecraft must develop flight software tailored to
their needs and the needs of their customers. All of these
organizations need to use flight software, whether they develop
it in house, modify an existing software stack, buy it from
someone else, or use open source software. These organiza-
tions all have different needs when it comes to cyber resilience,
which must be discovered, documented and integrated into the
development process.

C. Threats Against Flight Software

Flight software is a prime target for attack by malicious
parties. Because of the central nature of the flight software
for operation of the spacecraft, access to it can lead to partial
or total control of spacecraft functions, which adversaries can
co-opt for their own goals. Like any other piece of software,
flight software is imperfect and vulnerabilities will probably
exist in currently used software components and languages.
Since authorized spacecraft users access them remotely, a
secure ground system does not necessarily mean a spacecraft
is secure as well. In addition, the growing complexity of
software architectures on spacecraft, and increasing use of
common software platforms instead of custom-built software
components, means that there are more possible pathways for
an adversary to take to perform an attack on the spacecraft’s
systems and introduces a supply-chain aspect to securing these
systems.

There is a lack of open source literature about cyber attacks
against spacecraft. The Space Attack Research & Tactic Anal-
ysis (SPARTA) project [1] was recently started to document
and categorize threats against spacecraft but is in its early
stages and needs validation and extension.

D. Moving Towards Space Cyber Resilience

Organizations developing space missions must consider
cybersecurity and adversary activity and design their systems
accordingly. Cyber attackers do not limit their activities to
military targets. Securing one portion of a system alone is
not sufficient; mission designers must incorporate resilience
against attack into the design of the complete system, includ-
ing both software and hardware. NIST has released compre-
hensive guidance for developing cyber-resilient systems [2],
however, developers implement few of these recommendations
in flight software, much less the entirety of a space system.
A potential reason for the meager adoption of such resilience
guidelines is that they are not written specifically for space
system developers as is the intention of future international
space standards [3]

Bailey [4] lays out a set of cyber resilience principles that
can be applied to the development of spacecraft. These are

being robust, being opaque, constraining behavior, and being
responsive. Developers can apply all these principles to flight
software, but the robustness and constraint principles are the
most applicable to the software domain. When applied to flight
software design, these principles can provide ways to provide
resistance against attacks, containment of attacks as they move
through components, or mitigation against successful attacks.
Flight software must constrain or eliminate unsafe or undesired
behavior such that an attacker can not co-opt or leverage
system components to produce harmful effects.

III. PRIOR ART

There are many existing techniques, processes and method-
ologies for developing flight software. They exist to increase
quality, handle mission-specific needs, ensure reliable space-
craft operation, and ensure the software produced meets user
requirements. However, most flight software development pro-
cesses do not address cyber threats or consider adversarial
attacks. This section highlights existing work and where that
work falls short of mitigating or preventing cyber attacks.

A. Quality Assurance Processes

Many flight software projects have associated quality assur-
ance standards, processes, and associated coding guidelines.
Mission designers use these guidelines to ensure that the flight
software meets the requirements of the mission operators and
will execute according to its intended design. These standards
can also include safety-related guidelines, if necessary for the
operation of the spacecraft, for example in human spaceflight
missions. These guidelines are used to define testing and
independent verification and validation (IV&V) processes used
by developers of flight software. Examples of standards in this
area include NASA’s Software Engineering Requirements [5],
the European Space Agency (ESA) code standards [6], the
Jet Propulsion Laboratory (JPL) F’ flight software system [7],
and JPL’s standards for using the C programming language [8].
Holzmann provides a detailed case study of software quality
in the Mars Science Laboratory mission [9] and highlights
the need for reliable code and detailed software engineering
processes.

Since many existing quality standards focus on ensuring
the software meets its intended design, they do not specifi-
cally include understanding, measuring or requiring resilience
against cyber attack or related security concerns. Also, the
pace of the development of cyber threats often outpaces the
development of complex systems such as spacecraft, so even
with the best security requirements up front, the system may
not be fully secure. These reasons make quality standards
alone insufficient, but not unnecessary, for increasing the
security of a flight software system. Developers should apply
quality standards to mitigations used to make a flight software
system more resilient to cyber attack, and disallow harmful
features or design patterns that are known to be leveraged by
adversaries.



B. Security Testing

One way to augment existing quality assurance processes
to increase security is to leverage security-focused and adver-
sarial testing and evaluation methods to look for cyber-related
weaknesses. These tools and methods take many forms and
can be applied at distinct steps of the systems engineering
lifecycle. During the development phase, code analysis tools
can be used to scan and identify weaknesses in source code
and binaries. Today, many of these tools are used for quality
assurance by searching for flaws in code that may result in
incorrect program behavior. While important, this does not go
far enough to evaluate the security of the system.

Static code analysis is straightforward to implement for
many code bases and static code analyzers are available
for many languages, both commercially and open-source.
However, static code analysis often provides false positives
and hard to understand results. Wheeler et al. [10] present
a detailed discussion of the use of static code analysis in
flight software. Dynamic analysis tools can bridge some of
the gaps in static analysis tools by providing varying test
inputs and running code to find problems, but dynamic analysis
is more difficult to instantiate and requires dedicated test
setups and properly emulated system inputs. One example
of a comprehensive dynamic analysis setup is NASA’s Jon
McBride Software Testing and Research (JSTAR) Laboratory
which provides IV&V services to NASA missions. [11]

Another set of approaches focuses on emulating the adver-
sary. Penetration testing and red teaming refer to a specific
style of testing that seeks to employ known adversary tech-
niques to find and exploit weaknesses in running systems.
Developers can use these testing methods at various steps
of the development lifecycle, either as feedback while they
write code (in the form of assessments used incrementally
in the development process), test events during integration
activities that attack a component or set of components of
a running system, all the way to full-up in situ testing of a
fully developed and integrated system that is feature-complete.
In all cases, these methods rely on accurate and timely threat
intelligence of cyber adversary techniques and tools.

Both sets of testing methods presented above, code analysis
and penetration testing/red teaming, are empirical techniques
based on observation and experimentation to uncover defects
that adversaries use to attack systems. While these techniques
have proven useful, they require a large body of knowledge
to know where to look and what to do. In addition, these
empirical techniques do not prove correctness of a specific
software implementation, instead they help verify that either
specific attack patterns are not possible or are difficult to
execute. More performant code analysis tools and efficient red
teaming methodologies only decrease the uncertainty around
defects, but do not remove them completely.

C. Formal Methods

Various methods exist to leverage formal, rigorous ver-
ification and validation methods to automatically or semi-
automatically prove the correctness of software components in

flight software. These methods vary, but all focus on the use of
formal specifications to drive correctness and eliminate unsafe
or undesired behavior from the root of the implementation.

1) Formal Verification of Architectures and Model-Based
Design: One method, requirements verification, uses a set of
formal requirements to drive a verification framework that is
embedded in the software code base. This framework drives
a set of unit and integration tests that are used to report
the compliance of specific software components against the
necessary requirements. One example of this method was the
verification of the Parker Solar Probe flight software via formal
requirements. [12]

Another method uses a model-based design philosophy to
develop, test, and validate the behavior of software compo-
nents through simulation. In this approach, the environment
that the software must interact with is extensively modeled
and used to generate software code as well as drive simulation
inputs for testing. This approach cuts out a step between
design and implementation as the implementation becomes the
design (also called an ”executable specification”). Developers
often use this approach for the guidance, navigation & control
(GN&C) subsystem, since it must implement control system
algorithms that must work in real-time. An example of this
approach is the GN&C flight software for the Orion Crew
Exploration Vehicle. [13]

These methods are useful for constraining a flight software
system to a limited set of behaviors based on formal specifica-
tions (executable or not) and setting up comprehensive testing
and evaluation frameworks to ensure compliance. However,
from a cyber-resilience point of view, they still fall short
in several ways. Eliminating undesired behavior may reduce
the attack surface available for adversaries, but there are
numerous examples in cybersecurity literature of adversaries
using legitimate methods to perform attacks. Furthermore,
requirements verification activities that set up unit test driven
frameworks still operate on an empirical basis, starting as
lists of desired behavior and then reporting on the compliance
or non-compliance of specific software components but not
preventing unsafe behavior. Finally, many current implemen-
tations of these methods use unsafe programming languages,
and even if unsafe features of the languages are forbidden,
undefined behavior may still be an issue.

2) Formal Verification of Software: Formal verification
techniques can also be used by developers within programming
languages directly, to prove the correctness of implemented
algorithms. Formal verification techniques are often used for
code that must be extremely robust and failure-proof, such
as cryptographic algorithms or control systems. Various tech-
niques and tools exist to perform formal verification depending
on the language and environment in use.

Real-time operating systems, being low-level interfaces to
the hardware and implementing core processing functions, are
often targets of formal verification efforts. The FreeRTOS
Project [14], which produces a commonly used operating
system in flight software stacks, has used formal verification
techniques to analyze critical sections of the FreeRTOS code



base, including analyzing network packet handling code using
a C model checker to look for memory safety and other issues.
[15]

While model checking can find many issues in languages
such as C that are popular for systems programming (and flight
software), it is still an empirical process working within a
set of programming language design decisions with inherent
flaws. Because of the exhaustive search necessary for full
model checking, it can be expensive in time and space to
check a large code base. The state explosion problem is a
well known issue in the development and implementation of
model checkers, with various optimizations and workarounds
available. [16]

D. Programming Language Selection

C and C++ are by far the most popular languages for
developing low level embedded code such as flight software
given its powerful low-level functionality. However, the C
language has flaws that allow for unsafe usage. These flaws
are well documented [17] and while workarounds exist, such
as restricted compilers and restricted subsets of the language,
C is still used, even for new projects.

Flight software developers have recognized the need to
consider safer languages for development. Snavely, Meyers,
Inacio and Runyon [18] provide a perspective on choosing a
language for flight software development, consider the history
of safer languages for systems development (including C, C++,
Ada, Java, and Rust) and detail an approach that leverages an
ISO/IEC standard for avoiding vulnerabilities through selec-
tion of a safer language. [19]

When considering undesirable behavior to eliminate, the
biggest and most targeted area is memory safety. Recently the
National Security Agency released official guidance recom-
mending memory-safe languages. [20] Numerous efforts exist
to extend C with memory safety, including the CompCert C
compiler [21] and Microsoft’s Checked C project [22]. Rust is
by far the most well known and mature language implementing
memory safety as a core design principle, and is picking up
steam in many systems-programming communities, including
being used for portions of the Linux kernel (which is otherwise
implemented in C). [23] Other languages with memory safety
include the venerable Ada and newer languages such as D
[24], Nim [25], and Ivory. [26]

E. Architectural Design

While use of safe programming languages is one way
to constrain behavior, designing software architectures with
security-specific features in mind is another way to limit
unsafe and unwanted system behavior. One method is to use
a design language to specify system behaviors and interfaces
and verify that software components follow the specification.
This is the approach of the Architecture Analysis and Design
Language (AADL), which is used in the avionics world and
is beginning to be applied to spacecraft design. [27] [28]

Another approach is to enforce separation of concerns and
isolate system components so that they can only interact

with each other when necessary and enforcing that by secure
software design such as formal verification. One example of
this approach is the seL4 microkernel [29]. Mission developers
can use this fully verified, provably secure low-level operating
system as a foundation where the various components can only
communicate as allowed. This allows the usage of possibly
untrusted software components, or components leveraging
unsafe technologies, since they will not be able to breach the
walls of their containment due to the secure nature of the
seL4 isolation environment. Another example of this approach,
from ESA, presents a methodology for developing functional
requirements implementing security isolation and partitioning
(in time and space) for flight software. [30]

A prominent example of secure architectures and use of
formal methods for the development of secure software is
the DARPA High-Assurance Cyber Military Systems program.
This program developed software for two aircraft platforms
(a quadcopter and a full helicopter) using verified operating
systems providing isolation and application code developed
using memory-safe programming techniques. Fisher [31] de-
scribes the ways formal methods were used in application
development during the project, and Klein (et al) [32] detail
the use of the seL4 microkernel and how it was used to derive
security guarantees for the entire architecture.

IV. REQUIRED SECURITY AUGMENTATION OF CURRENT
STATE

The need to create flight software systems that are resilient
to cyber attack requires consideration of choices in design and
implementation across multiple areas. This section highlights
several areas where we deem current work insufficient to
mitigate adversary cyber attacks and prevent production of
unwanted or harmful mission effects. Developers must pur-
posefully analyze flight software systems with the adversary’s
intentions and capabilities in mind, and develop methods and
tools that respond to those attacks.

A. Complementing Quality Assurance with Cyber Resilience

As the flight software is a critical part of the overall
system, reliability and quality are prioritized. Flight software,
along with other parts of the space system, undergoes intense
testing and must pass rigorous quality assurance processes
to meet design goals and project milestones. However, these
processes are not designed around evaluating and mitigating
risks due to adversary cyber attack. These risks may overlap
with quality risks, but adversaries can utilize legitimate parts
of a system to pursue their goals, which a quality process
will not recognize. Therefore, processes that analyze a system
from an adversary’s point of view are necessary to enable
true cyber resilience. These processes must be complimentary
to and considered with relevant quality processes to enable
overall system resilience.

B. Understanding the Attack Surface of Flight Software

Understanding the attack surface available to adversary is
a fundamental part of engineering a software system that is



resilient against cyber attack. Frameworks such as SPARTA are
used to categorize and characterize the techniques necessary to
perform a full attack, and what parts of the attack surface each
technique uses. With this information, flight software develop-
ers can prioritize and begin mitigating these techniques. Many
current efforts only focus on specific parts of the software
used in a space system, such as the RTOS or specific mission
applications. A comprehensive methodology that looks at the
entire software stack present on a spacecraft is necessary
to fully understand where adversaries may be able to take
advantage of a system. This stack encompasses a wide variety
of software components that may require specific approaches
based on the technology used. A comprehensive survey gives
flight software developers the means to prioritize mitigation
activity across the entire system and is a critical component
of the overall process.

One way of characterizing the software stack is architec-
turally, starting with the lowest-level code and moving up
to user-facing applications. A typical decomposition of these
layers might look like this:

1) CPU running microcode
2) operating system kernel CPU/memory management
3) operating system kernel core services (task scheduler,

process handling, etc.)
4) operating system kernel system call interface and device

drivers
5) operating system userspace services (language runtimes,

device handling)
6) application layer core services and API
7) mission-specific applications (possibly multiple layers)
Besides this layer cake, there’s a breadth-wise relationship

between multiple user-space applications running on the same
OS, the interfaces between which depend on the system
architecture. There is also a breadth-wise relationship between
the CPU and other hardware components residing on the
system, each of which may have interfaces with the operating
system.

All these of these touchpoints are interfaces where two
software components must communicate, be it by low level
memory access, over a shared interface (bus or network),
with a specific API, or a combination of all the above. Each
interface is a seam in the system that, if used incorrectly, can
cause undefined behavior or unknown state if the software
component is not designed to handle the misusage. Several
questions arise when considering how the flight software
should securely operate.

1) Understanding the spread of interfaces across the entire
system - how many are there, where are they in the
system in relationship to each other?

2) What are the interfaces used to do? What components
do they connect?

3) How are the interfaces developed? What
language/protocol/schema is used to communicate
using the interface?

Expanding this view to the entire system, an attacker can

look at the combined set of attack surfaces and think about
ways to cause effects on the behavior of the system to their
desired end.

From an attacker point of view, the related questions be-
come:

1) To produce a desired effect, what interfaces do I have
to traverse?

2) Which interfaces do I need to use and are there ways to
abuse their functionality?

3) Are there low-level design flaws in each interface on my
desired path that I can utilize to produce the behavior
I’m looking for that will allow me to move to the next
step in my attack graph?

Current typical vulnerability analysis practices are empirical
and search driven. Vulnerability analysts look for bugs or poor
design decisions and then try to derive other impacts from
them. They examine previous vulnerabilities for applicability
to the system under test. While this is a useful process in terms
of ensuring that a system is not vulnerable to specific types
of flaws, this is not fundamentally driven by the design of the
system and the mission it performs. Where the system has been
historically secure or not secure does not necessarily correlate
with where the system must be the most secure. Therefore, this
approach only gets a system partway to being cyber resilient.

C. Security of the RTOS

RTOSs are foundational to all flight software functionality.
Therefore, increasing the security of the RTOS layer is one
way to increase the overall resilience of flight software.
Because of the need for RTOSs to be lean, fast, and effi-
cient, system developers use low-level systems programming
languages such as C. However, C and similar languages have
qualities that lead to unsafe design and so many tools have
been developed to mitigate and remediate issues in RTOSs.
These include static and dynamic code analysis methods,
model checking, and implementation of critical portions of
the RTOS in formally verified languages. RTOS developers
should expand and standardize these practices within their
development projects.

To improve upon these techniques, which are empirical in
their coverage, developers should consider a mission-oriented
point of view. The SPARTA framework gives us a way to
analyze adversary techniques in the context of the RTOS. One
method would be to consider each SPARTA technique, ask
how an adversary would take advantage of that technique, and
how a developer can mitigate the technique in the context of
the RTOS. The results of that process will give developers a
list of starting points for remediation work, security analysis,
and further investigation.

D. Security of Mission Applications

Mission applications running on top of the RTOS must
also be built securely and have unique security challenges.
There are usually multiple applications running in parallel
and communicating with each other, the RTOS and multiple
spacecraft components (such as instruments, core hardware



subsystems, and hosted payloads). Developers must address
each mission application’s implementation decisions and se-
curity concerns. Some concerns, such as programming safety,
may be common to all applications if they are using the same
language and development environment. Others, however, may
depend on application functionality. One example is handling
of communication protocols, performed by the command
and data handling (C&DH) subsystem. Any processing of
unvalidated input presents a possible attack surface and code
that serializes or deserializes protocol traffic is especially
vulnerable to such attacks and requires extra attention. Mission
applications may also use a common middleware application
programming interface (API) or shared code libraries, and
these may also introduce unique security concerns that can
affect every subsystem that uses them.

E. Formal Methods and Safe Programming Languages

Systems programming languages with access to low-level
computing functionality are a necessity for real-time, em-
bedded system development, such as that necessary to de-
sign spacecraft. Previous work on selection of programming
languages for flight software (Snavely et.al) focused on un-
derstanding the features of languages, associated risks, and
mitigations thereof, based on ISO/IEC 24772 (”Guidance to
avoiding vulnerabilities in programming languages through
language selection and use”). Previous efforts focused on
constrained subsets of system-level languages (e.g. C or Ada).
However, the growth of newer languages with built-in safe
features, such as Rust, provides an opportunity to start from
a more secure baseline, from a language perspective, and
focus resilience efforts on other problems. In addition, the
proliferation of formal methods-based toolkits and language
support provides another way to add resilience to flight
software systems. As Wheeler et al. point out [10], the
aerospace industry does not seem to be moving to these newer
languages en masse. However, combining this risk analysis
with construction of a fundamentally new system architecture
divorced from the RTOS/application split of the past provides
an opportunity to address these risks in a foundational way,
while increasing resilience and assurance of the entire system.

There are several types of safe language features to consider
in the design of a programming language being selected to
build performant, real-time, cyber-resilient software. Memory
safety has been the primary concern of many efforts over
decades of computer science research. This includes both
tracking and proper usage of memory allocation techniques,
but also defensive measures that interface with hardware, such
as memory addressing schemes (e.g. ASLR). Type safety is
another area of consideration around the management and us-
age of data structures within programs. A well typed program
only allows operations to occur that are a property of the
relevant data, and the degree by which the language enforces
these operations provides a way to characterize and understand
risk. Some languages only support simple types built into the
language (such as integers, floats, strings) while some allow
for creation of algebraic data structures that can represent

complex data as well as the operations that can be performed.
If a language provides complex type safety functionality, the
domain can be encoded into the type system and the language’s
features can prevent undefined or anomalous behavior.

Modern-day programming language design has provided nu-
merous candidates to consider outside of the C/C++ hegemony
that can still provide systems programming features such as
direct memory access and low-level control of hardware while
avoiding unsafe behaviors, and in some cases guaranteeing that
unsafe behavior can not be implemented at all. As discussed
above, the most prominent example is Rust, but there are
alternatives available. There is existing work to extend Rust
with formal methods and other high assurance techniques,
including the Rust Formal Methods Interest Group [33], the
High Assurance Rust project [34], and the Prusti formal
verification project [35], among others. In addition, the cutting
edge of programming language theory provides some language
features that, while not production-ready today, may make
their way into systems languages in the future as additional
ways to restrict unsafe behavior, such as dependent types and
linear logic.

F. Reconsidering the Typical Flight Software Architecture

A more foundational approach to flight software security
asks why the RTOS and mission applications are separate in
the first place. This style of design philosophy considers the
full range of functionality necessary in the mission software
and eliminates artificial divisions between mission applica-
tions, middleware and the RTOS. Following typical systems
engineering principles, designers would derive operational
needs of the spacecraft from the mission objectives, and would
then turn them into functional and technical requirements.
Some of these requirements would be fulfilled by dedicated
software interfacing with appropriate hardware. In theory, this
should lead to a set of software subsystems more aligned to
the various elements of the mission and eliminate unused or
redundant software components. This also allows the addition
of resilience against cyber attack as a fundamental operational
need, which should then flow into the rest of the system design.

One example of a cyber resilience-oriented operational need
is secure isolation, authentication, and authorization between
various system components, labeled a ’zero-trust’ system ar-
chitecture. With this as a core design principle, developers can
integrate zero-trust design patterns up front. For instance, in a
zero-trust spacecraft architecture, components communicating
over the system’s main bus would require authorization and
authentication by default. Many spacecraft today implement
interfaces such as MIL-STD-1553 that do not require this and
are susceptible to other attacks, such as bus takeover attacks.

V. TOWARDS CYBER RESILIENT FLIGHT SOFTWARE

To create flight software that is secure and resistant to
cyber attacks, mission designers must build a more robust
architecture with cyber resilient principles in mind. This must
incorporate all the previously defined design considerations,
and there are likely others that need to be discovered and



incorporated as well. Designers must explicitly integrate these
features into the architecture via specification and model-
based design, and into the software development process by
selection of safe programming languages and development
approaches. Flight software developers must have the ability
to leverage these techniques without requiring a computer
science education. For some of the design considerations, this
is a straightforward introduction of existing techniques. For
others, additional research is necessary to make the techniques
production-ready.

A. Design a Modular, Integrated Flight Software Architecture

Instead of the typical separation between RTOS and mission
applications, which uses an underlying RTOS that may not
be explicitly designed for spacecraft, a novel approach could
break down the existing barriers and treat the full flight soft-
ware stack as one system. Designing a modular architecture
would involve decomposing the typical RTOS and application
layer functions and recombining them into a more integrated
architecture. The architecture would then leverage verification
and model-based design techniques to prove correctness and
map out all possible interfaces between system components.
This would allow for better understanding of possible attack
surfaces and identification of where the system may need ad-
ditional security protections, at the fundamental requirements
specification stage. Advanced security design elements such
as zero-trust techniques, privilege separation, and isolation
can be incorporated and enforced at the design level via the
architecture verification process.

B. Use Safe Programming Languages

To eliminate undesired and unsafe behavior, developers
should write the entire flight software architecture in a safe
programming language. Memory safety is an absolute require-
ment for a secure system, and the availability and priority of
other elements of safety (such as the needed degree of type
safety) should be evaluated as well. For these purposes, Rust is
likely the best candidate in terms of production readiness and
ecosystem maturity, but developers should perform an analysis
of alternatives of languages to understand risk, tradeoffs and
development requirements.

C. Prove the Cyber Resilience of the Flight Software Archi-
tecture Using Formal Methods

Developers should incorporate rigorous development tech-
niques using formal methods at all stages and layers of
flight software development to verify and validate the cyber
resilience properties of the entire software stack. A variety of
techniques exist, and developers should perform an evaluation
of which techniques are tractable and contribute most to
validation of cyber resilience. Many of these techniques are
already being used for validation and testing of fault tolerance
and could be extended to cyber resilience.

A verified kernel of some type should form the basis
of any new flight software system. Developers should ver-
ify additional components on top of the RTOS, including

components such as file systems and device drivers. Other
targets for verification include protocol implementations and
internal communications systems, such as busses, point-to-
point connections and internal networks. Finally, developers
should formally verify mission applications comprising the
core subsystems of the flight software.

Developers should also consider formal methods for un-
derstanding and constraining the behavior of applications.
Many attacks rely on timing, memory positioning, or memory
access, and these could be caught through proper modeling
of the larger set of activities being performed by multiple
components of the system. Similar techniques have been used
in the past for fault tolerance and quality related to task
execution and system behavior and have prevented issues
that are difficult to reason about, such as those related to
concurrency.

At the code level, developers should increase the use of
static code analyzers and model checkers to the maximum
amount possible throughout the system’s code base. Addi-
tional, newer code-checking techniques, such as symbolic
execution and dynamic code analysis techniques, should be
investigated and built into flight software development pro-
cesses where applicable and feasible.

D. Verify Resistance from Threats by Using Adversarial Test-
ing Techniques

In addition to formally modeling and verifying the proper
behavior of the flight software architecture, much work could
be done in modeling, analyzing, and representing possible
cyber attacks. Efforts such as SPARTA are starting to quantify
possible techniques used by adversaries. Security researchers
should do more research to discover new techniques or expand
current techniques documented in SPARTA. In addition, each
technique within SPARTA needs to be modeled, developed,
tested and proven in a wide variety of mission scenarios and
environments. Formal techniques for modeling and testing
these techniques should be developed and those test cases
used as input to the formal specification of flight software
architectures. At a system level, developers should use ac-
tive adversarial testing techniques such as penetration testing
and red/purple teaming exercises more often and at multiple
stages of the systems engineering lifecycle to validate the
cyber resilience of the flight software architecture. Early stage
adversarial testing can provide feedback to the developers
so changes can get implemented early on, while later stage
testing can help with risk management and validation of proper
system operation in specific mission scenarios.

VI. A PROPOSED RESEARCH AGENDA

The following is a proposed research agenda for investi-
gating how to develop cyber resilient flight software. This
agenda evaluates the proposed design considerations, outlines
activities that can discover additional elements of architecture
design that may be necessary and builds an understanding
of what additional techniques of secure software design and
formal methods developers of flight software can leverage.



A. Develop Cyber Resilience Guidelines for Flight Software
Systems Engineering

Flight software development projects should have cyber
resilience guidelines added to their systems engineering pro-
cesses and documentation. This research activity would con-
sider a specific mission and develop a set of cyber resilience
guidelines tailored to that mission, and an implementation
guide for other projects using the lessons learned from the
guideline development process. These guidelines can be added
to the appropriate stages of flight software development to
ensure developers mitigate possible vulnerabilities at the best
times. NIST has published cyber resilience guidelines that
could be used as a starting point [2], and Bailey has produced
a high level set of guidelines that can be expanded upon. [4]
These guidelines should be converted into technical standards
that apply to software development, procedures for testing
software using adversarial methods, exercises and tabletops for
evaluating processes, and reviews that developers can integrate
into the existing flight software lifecycle. While this is the
intention of the recently launched IEEE Standard Association’s
Standard for Space System Cybersecurity Working Group, an
international effort to develop a technical standard for space
system cybersecurity, there is much work to be done [36].

B. Modify Quality Assurance Processes for Security

Existing quality assurance processes are ideal places for
adding cyber resilience because of their thoroughness, scale
and widespread nature in spacecraft development. The mindset
that drives detailed, impactful quality assurance can also drive
the same qualities for cyber resilience. This activity would take
an existing software engineering process and add additional
checks to account for cyber resilience. Technical software
development processes, such as those that ensure code quality,
can be modified with additional checks against commonly
used adversary techniques and weaknesses in languages and
frameworks. A framework such as SPARTA can be used to
check coverage of adversary tactics and techniques. Coding
guidelines and style guides can be modified to ensure that
developers do not use language or tool features that are not
secure or properly mitigated in the software architecture.

C. Investigate RTOS Cybersecurity

The RTOS is the bedrock of flight software and deserves
special scrutiny for security. This activity would perform
detailed studies of RTOS security as it relates to programming
language features, system design considerations, and adversary
techniques specifically targeted against RTOS features such as
boot loaders, low level memory access and device drivers. This
work would also consider existing security features of RTOS’
and measure their effectiveness against attacks, including such
features as isolation and the usage of formal methods for
checking specific segments of RTOS code. Different RTOSes
have distinct features and security qualities, and an analysis
of alternatives of existing solutions to identify gaps and
understand common attacksthat would be performed. Further
work should consider restricting the capabilities of an RTOS

to only serve the purpose of flight software, thereby reducing
the attack surface.

D. Investigate Mission Application Cybersecurity

As with the RTOS, developers should examine the mis-
sion applications that carry out the majority of spacecraft
functionality. This activity would perform detailed studies
into application-level security as currently implemented in
popular flight software. This would include an analysis of
many of the operating system functions implemented and
their security postures, including interprocess communication,
inter-application system functions, networking and protocol
handling, and interfacing with the RTOS and any operating
system application layer, if present.

E. Perform Detailed Analysis of Command and Data Han-
dling Subsystem

Several mission application subsystems deserve additional
attention and the most important one is the command and data
handling (C&DH) subsystem. This activity would analyze the
functionality and implementation of the C&DH subsystem,
including how commands are handled, command prioritiza-
tion, how the C&DH subsystem interacts with other important
subsystems, and how mission data is handled. Adversary at-
tacks such as command intrusion are especially important and
hardening the C&DH subsystem against these attacks should
be investigated. Some missions have critical commanding
that happens within the radio or RF subsystem. The critical
commanding function’s implementation and how it relates to
the rest of the C&DH subsystem should be analyzed, as this
presents an appealing target for adversaries. Another area of
significant interest is the safe mode behavior of spacecraft,
including how it is initiated, handled by the C&DH subsystem,
and how transitions are handled between safe mode and any
other operating modes of the spacecraft.

F. Perform Detailed Analysis of Guidance, Navigation and
Control Subsystem

Another important subsystem that adversaries may seek to
influence or modify is the guidance, navigation and control
(GNC) subsystem. This activity would analyze the function-
ality and implementation of the GNC subsystem. One style
of developing a GNC subsystem is developing a model-
based design using tools like Matlab and Simulink, where the
necessary guidance algorithms are implemented in a high level
language then transpiled into C code that is then embedded
into the flight software. A security audit and vulnerability
analysis of the toolchain and GNC implementation would be
performed, to understand what security features are present
in the host language and toolchain, what kind of C code the
transpiler generates, and if any code analysis is done on the
original code or final generated code. Alternatives that use safe
programming languages would be investigated or proposed
in this activity. In addition, the performance of the guidance
algorithms themselves may be susceptible to perturbation or
modification by adversaries and would be evaluated, plus GNC



subsystem connections to other subsystems. Like the quality
assurance processes described before, safety is an integral
feature of spacecraft guidance, but defense against adversary
attack and integrity of guidance data is likely not.

G. Develop Prototype Cyber Resilient Security-Focused Flight
Software Architecture

We believe developers must take another look at flight
software architectures, in light of many of the issues raised
in this paper. This activity would outline a new flight software
design that prioritizes security requirements. Formal methods
and verification would be integral to the design, to guarantee
correctness, ensure architecture requirements are validated,
and verify behavior of the entire stack top to bottom. Tech-
niques such as isolation, secure input handling, and memory
safety would be fundamental to the design. Safe programming
languages would be used throughout to implement all subsys-
tems. Resilient approaches to core operating system function-
ality such as scheduling, task management, protocol handling,
hardware interfaces, and interprocess communication would
be utilized.

H. Investigate Cyber Resilience of Complex Space Systems

Space systems are growing more complex than a simple
single-board computer running a single flight software stack.
Many spacecraft are being proposed, developed and built that
use multiple computers, on-board networks, multiple com-
munication architectures, and are parts of large space-based
networks. The Artemis cislunar architecture is an example
where multiple, complex, and in some cases crewed spacecraft
will be in operation and will have many embedded computing
and networking components. These complex designs require
a different security and cyber resilience analysis process than
what is needed for a single spacecraft. This activity would
investigate and develop cyber resilience and secure systems en-
gineering guidance for complex space systems, space stations,
lunar bases and other large-scale craft. Security beyond the
operating system itself will be evaluated, given the existence
of a cislunar ”internet” using delay-tolerant networking to
communicate within the architecture and with Earth. Future
missions will extend this architecture to Mars and beyond.
Cyber defenders will not be physically present to access
these directly, and communication times with Earth will be
longer, so autonomous cyber defense, security orchestration,
and rapid recovery technology will be important to ensure
cyber resilience and mission resilience.

I. Investigate Adversary Attacks on Autonomy Implemented in
Flight Software

Flight software implements many autonomy-related features
of modern spacecraft. This activity would investigate the
security landscape around the development of autonomy rules
and the implementation of the flight software subsystems that
store, manage and execute those rules. Adversaries will seek
to modify or influence autonomy to their own ends, so the
tactics and techniques available must be analyzed.

J. Perform Multiple Fidelity Level Vulnerability Analysis of
Flight Software

Simply performing code analysis on source code is not
enough to ensure that flight software is resistant against attack;
live systems must be tested by attacking them in situ. This
activity would develop methods and tools to attack flight
software, discover vulnerabilities, and measure their impact at
various stages of the software development lifecycle. Various
testbeds would be developed (or existing testbeds modified) to
allow for adversarial vulnerability analysis, red teaming, and
penetration testing activities using known adversary tactics and
techniques.

VII. CONCLUSION

As spacecraft get more complex and more software driven,
and determined adversaries increase efforts to cause harmful
effects, to the need for better cyber resilience in their software
design and implementation becomes more critical. Flight soft-
ware must be actively redesigned to mitigate and neutralize
adversary attacks and reduce their impact on the mission.

The typical mission software design of applications running
on an RTOS layer not designed for spacecraft may provide
opportunities for adversaries to attack. Therefore, we see a
need for a tightly integrated application/RTOS stack that can
address the limitations of previous approaches. Understand-
ing the attack surface of the entire software system, most
importantly how adversaries may use the interfaces between
software components, is necessary to mitigate risks from
adversary attack.

Current flight software quality work focuses on mission
assurance and protection from loss, not on defending against
adversary attack. When security is considered for flight soft-
ware, most work today focuses on empirical vulnerability
analysis, formal verification, and secure system models such
as isolation. We believe this does not go far enough and
that a fresh look at vulnerability analysis methods, software
architectures, and programming languages is required.

This paper lays out a research agenda that addresses risks
from cyber adversaries in both design and implementation
and bring secure, cyber resilient software engineering methods
firmly into spacecraft flight software development.

REFERENCES

[1] The Aerospace Corporation, “Space Attack Research & Tactic Analysis
(SPARTA).” [Online]. Available: https://sparta.aerospace.org/

[2] R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and
R. McQuaid, “Developing Cyber-Resilient Systems: A Systems
Security Engineering Approach,” National Institute of Standards
and Technology, Gaithersburg, MD, Tech. Rep. NIST SP 800-
160v2r1, Dec. 2021. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf

[3] G. Falco, W. Henry, M. Aliberti, B. Bailey, M. Bailly, S. Bonnart,
N. Boschetti, M. Bottarelli, A. Byerly, J. Brule et al., “An international
technical standard for commercial space system cybersecurity-a call to
action,” in ASCEND 2022, 2022, p. 4302.

[4] B. Bailey, “Protecting Space Systems from Cyber Attack,”
May 2022. [Online]. Available: https://aerospacecorp.medium.com/
protecting-space-systems-from-cyber-attack-3db773aff368

https://sparta.aerospace.org/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
https://aerospacecorp.medium.com/protecting-space-systems-from-cyber-attack-3db773aff368
https://aerospacecorp.medium.com/protecting-space-systems-from-cyber-attack-3db773aff368


[5] NASA, “NASA Software Engineering Requirements.” [Online].
Available: https://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal ID=N
PR 7150 002D &page name=AppendixD

[6] “ECSS-E-ST-40C – Software (6 March 2009) | European Cooperation
for Space Standardization.” [Online]. Available: https://ecss.nl/standard/
ecss-e-st-40c-software-general-requirements/

[7] California Institute of Technology, “F’ Code and Style Guide-
lines.” [Online]. Available: https://nasa.github.io/fprime/UsersGuide/
dev/code-style.html

[8] Jet Propulsion Laboratory, “JPL Institutional Coding Standard.” [On-
line]. Available: https://yurichev.com/mirrors/C/JPL Coding Standard
C.pdf

[9] G. J. Holzmann, “Landing a Spacecraft on Mars,” IEEE Software,
vol. 30, no. 2, pp. 83–86, Mar. 2013, conference Name: IEEE Software.

[10] W. A. Wheeler, N. Cohen, J. Betser, and R. M. Ewart, “Cyber
Resilient Flight Software for Spacecraft,” in 2018 AIAA SPACE and
Astronautics Forum and Exposition. Orlando, FL: American Institute
of Aeronautics and Astronautics, Sep. 2018. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2018-5220

[11] M. Asbury, “Jon McBride Software Testing and Research (JSTAR),”
Mar. 2015. [Online]. Available: http://www.nasa.gov/centers/ivv/jstar/
JSTAR.html

[12] S. Jacobs and K. A. Wortman, “Solar Probe Plus Spacecraft Flight Soft-
ware requirements verification test framework,” in 2016 IEEE Aerospace
Conference, Mar. 2016, pp. 1–8.

[13] M. Jackson and J. Henry, “ORION GN&C MODEL BASED
DEVELOPMENT: EXPERIENCE AND LESSONS LEARNED,” in
AIAA Guidance, Navigation, and Control Conference. Minneapolis,
Minnesota: American Institute of Aeronautics and Astronautics, Aug.
2012. [Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2012-5036

[14] “FreeRTOS - Market leading RTOS (Real Time Operating System)
for embedded systems with Internet of Things extensions.” [Online].
Available: https://www.freertos.org/index.html

[15] “The CBMC Homepage.” [Online]. Available: https://www.cprover.org/
cbmc/

[16] T. Do, A. C. M. Fong, and R. Pears, “HOW EFFECTIVE IS MODEL
CHECKING IN PRACTICE?” in Proceedings of the 6th International
Conference on Evaluation of Novel Approaches to Software Engineering.
Beijing, China: SCITEPRESS - Science and Technology Publications,
2011, pp. 239–244. [Online]. Available: https://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0003467402390244

[17] V. Yodaiken, “How ISO C became unusable for operating
systems development,” in Proceedings of the 11th Workshop
on Programming Languages and Operating Systems, Oct.
2021, pp. 84–90, arXiv:2201.07845 [cs]. [Online]. Available:
http://arxiv.org/abs/2201.07845

[18] W. Snavely, C. Meyers, B. Runyon, C. Inacio, M. Riley, and J. D.
Lareau, “Flight Software Programming Language Selection: A Security
Perspective,” in 2018 AIAA SPACE and Astronautics Forum and
Exposition. Orlando, FL: American Institute of Aeronautics and
Astronautics, Sep. 2018. [Online]. Available: https://arc.aiaa.org/doi/10.
2514/6.2018-5397

[19] ISO/IEC, “ISO/IEC TR 24772-1:2019, Programming languages —
Guidance to avoiding vulnerabilities in programming languages.”
[Online]. Available: https://www.iso.org/standard/71091.html

[20] National Security Agency, “Cybersecurity Information Sheet
- Software Memory Safety,” Nov. 2022. [Online]. Avail-
able: https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI
SOFTWARE MEMORY SAFETY.PDF

[21] X. Leroy, “CompCert.” [Online]. Available: https://compcert.org/
[22] “Checked C.” [Online]. Available: https://www.microsoft.com/en-us/

research/project/checked-c/
[23] Internet Security Research Group, “Memory Safety for the World’s

Largest Software Project,” Jun. 2022. [Online]. Available: https:
//www.memorysafety.org/blog/memory-safety-in-linux-kernel/

[24] D Language Foundation, “D Programming Language.” [Online].
Available: https://dlang.org/

[25] “Nim Programming Language.” [Online]. Available: https://nim-lang.
org/

[26] Galois Inc., “The Ivory Language.” [Online]. Available: https:
//ivorylang.org/

[27] J. Backes, D. Cofer, S. Miller, and M. W. Whalen, “Requirements
Analysis of a Quad-Redundant Flight Control System,” in NASA
Formal Methods, K. Havelund, G. Holzmann, and R. Joshi, Eds.

Cham: Springer International Publishing, 2015, vol. 9058, pp. 82–96,
series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-17524-9 7

[28] M. Munoz, “Space systems modeling using the Architecture Analysis
& Design Language (AADL),” in 2013 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), Nov. 2013,
pp. 97–98.

[29] seL4 Project, “The seL4® Microkernel.” [Online]. Available: https:
//sel4.systems/

[30] J. Windsor, K. Eckstein, P. Mendham, and T. Pareaud, “Time and space
partitioning security components for spacecraft flight software,” in
2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Seattle,
WA, USA: IEEE, Oct. 2011, pp. 8A5–1–8A5–14. [Online]. Available:
http://ieeexplore.ieee.org/document/6096140/

[31] K. Fisher, J. Launchbury, and R. Richards, “The HACMS program:
using formal methods to eliminate exploitable bugs,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 375, no. 2104, p. 20150401,
Sep. 2017, publisher: Royal Society. [Online]. Available: https:
//royalsocietypublishing.org/doi/10.1098/rsta.2015.0401

[32] G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser,
“Formally verified software in the real world,” Communications of the
ACM, vol. 61, no. 10, pp. 68–77, Sep. 2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3230627

[33] “Rust Formal Methods Interest Group.” [Online]. Available: https:
//rust-formal-methods.github.io/tools.html

[34] T. Ballo, M. Ballo, and A. James, “High Assurance Rust: Developing
Secure and Robust Software,” 2022. [Online]. Available: https:
//highassurance.rs

[35] V. Astrauskas, A. Bı́lý, J. Fiala, Z. Grannan, C. Matheja, P. Müller,
F. Poli, and A. J. Summers, “The Prusti Project: Formal Verification
for Rust,” in NASA Formal Methods, ser. Lecture Notes in Computer
Science, J. V. Deshmukh, K. Havelund, and I. Perez, Eds. Cham:
Springer International Publishing, 2022, pp. 88–108.

[36] “Standard for space system cybersecurity.” [Online]. Available:
https://standards.ieee.org/ieee/3349/11182/

https://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002D_&page_name=AppendixD
https://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002D_&page_name=AppendixD
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://nasa.github.io/fprime/UsersGuide/dev/code-style.html
https://nasa.github.io/fprime/UsersGuide/dev/code-style.html
https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf
https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf
https://arc.aiaa.org/doi/10.2514/6.2018-5220
http://www.nasa.gov/centers/ivv/jstar/JSTAR.html
http://www.nasa.gov/centers/ivv/jstar/JSTAR.html
https://arc.aiaa.org/doi/10.2514/6.2012-5036
https://www.freertos.org/index.html
https://www.cprover.org/cbmc/
https://www.cprover.org/cbmc/
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0003467402390244
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0003467402390244
http://arxiv.org/abs/2201.07845
https://arc.aiaa.org/doi/10.2514/6.2018-5397
https://arc.aiaa.org/doi/10.2514/6.2018-5397
https://www.iso.org/standard/71091.html
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://compcert.org/
https://www.microsoft.com/en-us/research/project/checked-c/
https://www.microsoft.com/en-us/research/project/checked-c/
https://www.memorysafety.org/blog/memory-safety-in-linux-kernel/
https://www.memorysafety.org/blog/memory-safety-in-linux-kernel/
https://dlang.org/
https://nim-lang.org/
https://nim-lang.org/
https://ivorylang.org/
https://ivorylang.org/
http://link.springer.com/10.1007/978-3-319-17524-9_7
https://sel4.systems/
https://sel4.systems/
http://ieeexplore.ieee.org/document/6096140/
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0401
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0401
https://dl.acm.org/doi/10.1145/3230627
https://rust-formal-methods.github.io/tools.html
https://rust-formal-methods.github.io/tools.html
https://highassurance.rs
https://highassurance.rs
https://standards.ieee.org/ieee/3349/11182/

	Introduction
	Cyber Resilience and Flight Software
	Defining Flight Software
	Why is Cyber Resilience Necessary?
	Threats Against Flight Software
	Moving Towards Space Cyber Resilience

	Prior Art
	Quality Assurance Processes
	Security Testing
	Formal Methods
	Formal Verification of Architectures and Model-Based Design
	Formal Verification of Software

	Programming Language Selection
	Architectural Design

	Required Security Augmentation of Current State
	Complementing Quality Assurance with Cyber Resilience
	Understanding the Attack Surface of Flight Software
	Security of the RTOS
	Security of Mission Applications
	Formal Methods and Safe Programming Languages
	Reconsidering the Typical Flight Software Architecture

	Towards Cyber Resilient Flight Software
	Design a Modular, Integrated Flight Software Architecture
	Use Safe Programming Languages
	Prove the Cyber Resilience of the Flight Software Architecture Using Formal Methods
	Verify Resistance from Threats by Using Adversarial Testing Techniques

	A Proposed Research Agenda
	Develop Cyber Resilience Guidelines for Flight Software Systems Engineering
	Modify Quality Assurance Processes for Security
	Investigate RTOS Cybersecurity
	Investigate Mission Application Cybersecurity
	Perform Detailed Analysis of Command and Data Handling Subsystem
	Perform Detailed Analysis of Guidance, Navigation and Control Subsystem
	Develop Prototype Cyber Resilient Security-Focused Flight Software Architecture
	Investigate Cyber Resilience of Complex Space Systems
	Investigate Adversary Attacks on Autonomy Implemented in Flight Software
	Perform Multiple Fidelity Level Vulnerability Analysis of Flight Software

	Conclusion
	References

