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Abstract—Functional programs over inductively defined data
types, such as lists, binary trees and naturals, can naturally
be defined using recursive equations over recursive functions.
In first-order logic, function definitions can be considered as
universally quantified equalities. Verifying functional program
properties therefore requires inductive reasoning with both the-
ories and quantifiers. In this paper we propose new extensions
and generalizations to automate induction with recursive func-
tions in saturation-based first-order theorem proving, using the
superposition calculus. Instead of using function definitions as
first-order axioms, we introduced new simplification rules for
treating function definitions as rewrite rules. We guide inductive
reasoning and strengthen induction schema using recursively
defined functions. Our experimental results show that handling
recursive definitions in superposition reasoning significantly im-
proves automated reasoning with induction.

I. INTRODUCTION

Automated reasoning has become the backbone of formal
software development [1]. Automating inductive reasoning is
of increasing importance for emerging applications in soft-
ware verification, in particular in the context of functional
programming and inductive/algebraic data types (also called
term algebras), such as natural numbers, lists and binary trees.
Functional programs can be typically described by recursive
equations/functions over algebraic data types, as illustrated in
Figure 1. On the other hand, algebraic data types are, for
example, commonly used in security applications to encode
uniqueness of hash functions [2] or to express non-interference
properties preventing information flow between private/public
channels [3]. Formalizing such properties requires full first-
order logic with theories, and automating their validation
requires inductive reasoning.

Previous works on automating induction mainly focus on
inductive theorem proving [4], [5], [6], [7], [8], [9], [10], [11]:
deciding when induction should be applied and what induction
axiom should be used. Further restrictions are made on the log-
ical expressiveness, for example induction over only universal
properties [7], [9], [6], term algebras [12] or Horn clauses [13].
Recent advances related to automating inductive reasoning,
such as first-order reasoning with inductively defined data
types [14], inductive strengthening of SMT properties [15],
structural induction in first-order theorem proving [16], [17],
[18], [12], open up new possibilities for automating induction.
In this paper we focus on first-order theorem proving and
automate induction by integrating it directly into the proof
search algorithm of first-order theorem proving. The program

assertions from lines 17–18 of Figure 1 show what we strive
for: validating first-order properties over algebraic data types,
such as binary trees, lists and naturals, involving additional
recursive function definitions and predicates, such as even,
mul, app, flat and aflat. We prove such and similar
inductive properties by using saturation-based proof search
based on the superposition calculus [19], which is the leading
technology in automated theorem proving [20], [21], [22].
Reasoning about inductively defined data types with recur-
sive definitions. Our work targets full and efficient automation
of induction with recursive function reasoning, as illustrated
in a toy ML-like functional program of Figure 1. Lines 1–3
of Figure 1 declare respectively the algebraic data types of
natural numbers nat, lists list and binary trees bt, using
constructors. In first-order logic, these data types correspond
to term algebras [14]. Functional programs over data types
can be defined by recursive equations, for example lines 4-5
of Figure 1 define the addition add of two natural numbers
x, y (in first-order logic, function definitions can be considered
as universally quantified equalities). Verifying the correctness
of Figure 1 requires then to prove the formulas of lines 17-
18, which asserts the equivalence of two functions over binary
trees (line 17) and even properties of naturals (line 18). Au-
tomating reasoning about properties of inductively defined data
types like nat, list and bt needs to handle acyclicity already
for equational properties (which, in general, is not finitely
axiomatizable) and induction. Our recent results on reasoning
with inductively defined data types and induction [14], [18]
enable induction in superposition-based theorem proving, yet
only by applying induction over one clause at a time. Our
work builds upon these results and brings novel extensions
for handling recursive functions and (generalized) induction
on arbitrarily many clauses simultaneously.
Our contributions. This paper brings the following contribu-
tions.

• We introduce an induction formula generation method,
utilizing unification and recursive function definitions
over algebraic data types (Section IV). We propose induc-
tive strengthening and generalization methods well-suited
for saturation-based approaches.

• We propose new inference rules for induction in super-
position by treating recursive function definitions over
algebraic data types as rewrite rules in superposition (Sec-
tion V). Moreover, we make use of induction hypotheses
with specialized inference rules. Applications of induc-
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1 datatype nat = zero | s of nat

2 datatype list = nil | cons of nat list

3 datatype bt = leaf | node of bt nat bt

4 add zero y = y
5 add (s x) y = s (add x y)
6 mul zero y = zero

7 mul (s x) y = add (mul x y) y
8 even zero

9 ¬even (s zero)

10 even (s (s x)) ↔ even x

11 app nil z = z
12 app (cons x y) z = cons x (app y z)
13 flat leaf = nil

14 flat (node x y z) = app (flat x) (cons y (flat z))
15 aflat leaf u = u
16 aflat (node x y z) u = aflat x (cons y (aflat z u))

17 assert (∀x, y)(app (flat x) y = aflat x y)
18 assert (∀x, y)(even y → even (mul x y))

Fig. 1. Motivating example with recursive definitions over algebraic data types.

tion become inference rules of the saturation process,
adding instances of appropriate induction schemata.

• We extend superposition-based equational reasoning with
new inference rules capturing inductive steps over mul-
tiple clauses and optimize saturation-based proof search
with induction (Section VI). Unlike [16], our results do
not necessarily depend on the AVATAR clause splitting
framework [23]. Contrarily to [12], we are not limited to
induction over term algebras with the subterm ordering
and we stay in a standard saturation framework.

• We implemented our approach in the VAMPIRE theorem
prover [22] and evaluated it on a large collection of
examples, including 327 examples from the SMT-LIB
repository [24] and 3,397 mathematical properties over
naturals, lists and binary trees (Section VII).

• Our experiments show the potential of our new approach,
by solving 527 problems that other systems automating
induction could not prove (Section VII).

Structure of the paper. The rest of the paper is organized as
follows. We illustrate the challenges of automating induction
with recursive definitions in superposition reasoning in Sec-
tion II. We present our induction formula generation method
in Section IV. Section V describes inductive reasoning with
recursive definitions, whereas Section VI generalizes our work
to induction with multiple premises. After summarizing our
experimental findings in Section VII, we overview related
work in Section VIII. We conclude the paper in Section IX.

II. MOTIVATING EXAMPLE

We first motivate our work using the functional program of
Figure 1 over naturals, lists and binary trees.

Example 1 (Inductive reasoning with lists and binary trees).
Using the recursive function definition app over lists, and
recursive function definitions flat and aflat over binary
trees (lines 11–16 of Figure 1), we first focus on proving the
equivalence of functions flat and aflat flattening binary
trees to lists, specified as an assertion at line 17 of Figure 1.
For easing readability, we write this assertion in infix notation
as below:

∀u, v.app(flat(u), v) = aflat(u, v) (1)

Proving (1) requires induction over binary trees, using for
example the structural induction formula(

F [leaf] ∧ ∀x, y, z.
(
(F [x] ∧ F [z])

→ F [node(x, y, z)]
))

→ ∀u.F [u],
(2)

where F [x] denotes a first-order formula over x. By instan-
tiating (2), proving (1) reduces to proving two formulas: the
base case and the step case. The base case,

∀v.app(flat(leaf), v) = aflat(leaf, v), (3)

holds by the recursive definitions at lines 11, 13 and 15 of
Figure 1. For the step case, we strengthen the hypotheses by
replacing v with fresh universally quantified variables v0, v1:

∀x, y, z, v.
(
∀v0.app(flat(x), v0) = aflat(x, v0)∧ (4)
∀v1.app(flat(z), v1) = aflat(z, v1) → (5)

app(flat(node(x, y, z)), v) = aflat(node(x, y, z), v)
)

(6)

For proving (6), we first use the recursive definitions at
lines 14 and 16 of Figure 1 to obtain (omitting (4), (5) and
implicit universal quantification):

app(app(flat(x),cons(y, flat(z))), v) =

aflat(x, cons(y, aflat(z, v)))
(7)

By rewriting (7) with (4) and (5), we are left with proving:

app(app(flat(x),cons(y, flat(z))), v) =

app(flat(x), cons(y, app(flat(z), v)))
(8)

By replacing flat(x) with a fresh variable w in (8), we obtain

app(app(w, cons(y,flat(z))), v) =

app(w, cons(y, app(flat(z), v)))
(9)

which is a generalized/stronger formula than (8). By applying
the structural induction formula over lists(

F [nil] ∧ ∀x, y.(F [y] → F [cons(x, y)])
)
→ ∀z.F [z]

over w in (9), we derive the validity of (9) by also using
the definition of app from lines 11-12 in Figure 1. We thus
conclude that (1) holds, and hence the assertion at line 17 of
Figure 1 is valid.



While the proof above is quite natural for humans, it is very
difficult for saturation-based first-order provers using the su-
perposition calculus. For example, the state-of-the-art solvers
supporting induction CVC4 [15], ZIPPERPOSITION [16] and
VAMPIRE [17] fail proving (1). To organize proof search,
saturation-based theorem provers, intuitively speaking, disal-
low rewriting small terms into big terms w.r.t. some ordering.
In most (simplification) orderings used by these provers, the
terms flat and aflat in (6) cannot be expanded using their
recursive definitions, as the right-hand sides of these defini-
tions are heavier/bigger1 than their left-hand sides. Moreover,
deciding the order in which induction hypotheses should be
applied, such as (4) and (5), is as difficult as doing the proof
itself. In this paper, we extend superposition reasoning with
special treatment of recursive definitions, guiding the genera-
tion of induction formulas during saturation (Section IV). We
use rewrite rules for terms occurring in recursive definitions
and inductive hypotheses (Section V). Thanks to this extension,
our work can easily validate (1).

Another challenging aspect of induction with recursive
definitions comes with generalizing and adjusting induction
formulas over recursively defined terms and multiple premises,
as illustrated next.

Example 2 (Inductive reasoning with naturals). Using the
recursive function and predicate definitions of add, mul, and
even from lines 4–10 of Figure 1, the assertion at line 18
encodes the following first-order formula over naturals:

∀x, y.even(y) → even(mul(x, y)) (10)

Similarly as in Example 1, proving (10) requires instantiat-
ing a structural induction formula for naturals as below:(

F [zero] ∧ ∀z.(F [z] → F [s(z)])
)
→ ∀x.F [x] (11)

and thereby proving the following two formulas:

∀y.even(y) →even(mul(zero, y)) (12)

∀z, y.
((
even(y) → even(mul(z, y))

)
→(

even(y) → even(mul(s(z), y))
)) (13)

Validity of the formula (12) follows from the recursive func-
tion definitions in lines 6 and 8 of Figure 1. By using the
recursive definition in line 7 of Figure 1, formula (13) reduces
to

∀z, y.
(
even(mul(z, y)) → even(add(mul(z, y), y))

)
(14)

The antecedent of (14) cannot however be used for prov-
ing its conclusion. We overcome this limitation by replac-
ing/generalizing mul(z, y) in (14) with a fresh new variable u
and instantiating the following variant of (11):(

F [zero] ∧ F [s(zero)] ∧ ∀z.(F [z] → F [s(s(z))])
)

→ ∀x.F [x]
(15)

While (11) cannot be used to prove (14), note that (15) enables
the application of the recursive definition of even in line 10

1W.r.t. orderings of first-order provers.

of Figure 1. As such, proving the generalized version of (14)
reduces to proving the three formulas:

even(zero) → even(add(zero, y)) (16)
even(s(zero)) → even(add(s(zero), y)) (17)

∀z.
((
even(z) → even(add(z, y))

)
→(

even(s(s(z))) → even(add(s(s(z)), y))
)) (18)

All three formulas can be proven by applying the recursive
function definitions of add and even from Figure 1 and using
induction with multiple premises over (18) (Section VI). In this
paper, we generate induction formula variants, such as (15),
based on recursive function/predicate definitions (Section IV)
and support induction with multiple premises (Section VI),
proving for example (10).

While relatively simple, Figure 1 illustrates the key chal-
lenges in automating induction with recursive definitions in
superposition: (i) strengthening and creating induction for-
mulas using recursive definitions (Section IV); (ii) rewriting
recursively defined terms by their (function/predicate) defini-
tions (Section V); and (iii) applying induction with multiple
premises (Section VI). In what follows, we describe our
solutions for these challenges.

III. PRELIMINARIES

We assume familiarity with standard multi-sorted first-order
logic with equality. Functions are denoted with f , g, h,
predicates with p, q, r, variables with x, y, z, u, v, w, and
Skolem constants with σ, all possibly with indices. A term is
ground if it contains no variables. By x and t we denote tuples
of variables and terms, respectively.

We use the standard logical connectives ¬, ∨, ∧, → and ↔,
and quantifiers ∀ and ∃. A literal is an atom or its negation.
For a literal L, we write L to denote its complementary literal.
A disjunction of literals is a clause. We reserve the symbol □
for the empty clause which is logically equivalent to ⊥. We
denote the clausal normal form of a formula F by cnf(F ).
We call every term, literal, clause or formula an expression.
We use the notation s ⊴ t to denote that s is a subterm of t
and s ◁ t if s is a proper subterm of t.

We use the words sort and type interchangeably. We distin-
guish special sorts called inductive sorts, function symbols
for inductive sorts called constructors and destructors. We
distinguish recursive constructors, which have at least one
argument of the same sort as their return sort, from base
constructors, which do not have any arguments of the same
type as their return sort. We call the ground terms built from
the constructor symbols of a sort its term algebra.

We axiomatise term algebras using their injectivity, dis-
tinctness, exhaustiveness and acyclicity axioms [14]. In this
paper, we refer to term algebras also as algebraic data types
or inductively defined data types.

We write E[s] to denote that expression E contains k
distinguished occurrence(s) of the term s, with k ≥ 0. For
simplicity, E[t] means that these occurrences of s are replaced
by the term t. Further, E[t]p1...pk

, with p1 . . . pk ∈ {0, 1}k,



is the expression obtained by replacing ith distinguished
occurrence of s by t in E[s] iff pi = 1. We abbreviate
E[t1] . . . [tn] with E[t].

A substitution θ is a mapping from variables to terms. A
substitution θ is a unifier of two terms s and t if sθ = tθ, and
is a most general unifier (mgu) if for every unifier η of s and
t, there exists substitution µ s.t. η = θµ. We denote the mgu
of s and t with mgu(s, t).

A. Saturation-based proof search

First-order theorem provers work with clauses, rather than
with arbitrary formulas. Given a set S of input clauses, first-
order provers saturate S by computing all logical conse-
quences of S with respect to a sound inference system I.
The saturated set of S is called the closure of S and process
of computing the closure of S is called saturation [22]. If
the closure contains the empty clause □, the original set S of
clauses is unsatisfiable. A simplified saturation algorithm for
inference system I is given below with a clausified goal F
and clausified assumptions A as input:

1 passive := A ∪ {¬F}, active := ∅
2 while passive ̸= ∅:
3 G := select(passive)
4 derive consequences C of G and active w.r.t. I
5 passive := (passive ∪ C) \G
6 active := active ∪ {G}
7 if □ ∈ passive then return UNSAT
8 return SAT

Completeness and efficiency of saturation-based reasoning
rely heavily on properties of select and I (lines 3 and 4).
The superposition calculus [19] (denoted Sup) is the most
common inference system employed by saturation-based first-
order theorem provers, such as E [20], VAMPIRE [22] and
ZIPPERPOSITION [16]. The superposition calculus is sound
and refutationally complete: for any unsatisfiable formula,
the empty clause can be derived as a logical consequence.
To organize saturation, first-order provers use simplification
orderings on terms, which are extended to orderings over
literals and clauses; for simplicity, we write ≻ for both the
term ordering and its clause ordering extension. We write s .

= t
to mean that the orientation of the equality s = t is fixed (i.e.,
either s ≻ t or t ≻ s).

We make use of the following inference rules of Sup in this
paper:
Binary resolution:

A ∨ C ¬B ∨D
(C ∨D)θ

where θ is the mgu of A and B.
Superposition:

l = r ∨ C s[l′] ̸= t ∨D

(s[r] ̸= t ∨ C ∨D)θ

l = r ∨ C s[l′] = t ∨D

(s[r] = t ∨ C ∨D)θ

where θ is the mgu of l and l′, rθ ̸⪰ lθ and tθ ̸⪰ s[l′]θ. There
are special cases of these rules, imposing more restrictions on

the premises. One such case is when one of the premises of
superposition is a unit clause, yielding the so-called demodu-
lation rules, as given in Section V.

Given an ordering ≻, a clause C is redundant with respect
to a set S of clauses if there exists a subset S′ of S such
that S′ is smaller than {C} (i.e., C ≻ S) and S′ implies
C. Redundant clauses can be eliminated during proof search
without destroying completeness; simplification and deletion
rules are used to remove redundant clauses.

IV. INDUCTION FORMULAS OVER RECURSIVE
DEFINITIONS IN SUPERPOSITION

We now describe our solution for generating induction
formulas in saturation-based theorem proving. Unlike [7], [4],
[16], [10], [11], [25], [26], we integrate induction directly in
the saturation-based theorem proving using the superposition
calculus. For doing so, we rely on [17], [18] and use the
following sound inference rule of induction:

L[t] ∨ C

cnf(F → ∀y.L[y])
(Ind),

where L is a ground literal, C is a clause, and F → ∀y.L[y]
is a valid induction formula. Further, y is a tuple of variables
and t is a tuple of induction terms, of the same size.

In [17], [18], the inference rule (Ind) has been used by
considering the induction formulas as instances of mathemat-
ical and structural induction. In this paper, we go beyond
these works and utilise recursive function/predicate definitions
to derive induction formulas to be used in (Ind). For doing
so, we first select terms in recursive definitions over which
induction formulas will be generated in Section IV-A and
strengthened in Section IV-B. Further, in Section VI we extend
(Ind) to induction formulas with multiple premises.

A. Generating Induction Formulas over Recursive Definitions

A recursive function/predicate definition has a number of
branches, characterized by one or more clauses. We assume
that (i) a function definition clause contains exactly one
equality with a fixed orientation, i.e., f(s) .

= t∨C. Similarly,
(ii) a predicate definition axiom contains one marked literal,
i.e., (¬)p̂(s) ∨D, where p̂ denotes that p is marked/selected.
Two clauses f(s1)

.
= t1 ∨ C and f(s2)

.
= t2 ∨ D belong to

the same branch of f if f(s1) and f(s2) are variants of each
other. Similarly, two clauses (¬)p̂(s1) ∨C and (¬)p̂(s2) ∨D
belong to the same branch of p if p(s1) and p(s2) are variants
of each other. We therefore characterize a recursive definition
branch with its characteristic term f(s) or characteristic atom
p(s). We write “branch f(s)” and “branch p(s)” to refer to the
branches with the characteristic term f(s) and characteristic
atom p(s), respectively. We denote the set of variable disjoint
branches of a function f and predicate p with Bf and Bp,
respectively.

Definition 1 (Recursive Calls of Recursive Definitions). Let f
be a recursive function and p a recursive predicate. The set of



recursive calls corresponding, respectively, to the branch f(s)
and the branch p(s) are defined as:

Rf(s) :=
⋃

f(s′)
.
=t∨C

{f(s′′)θ | f(s′′) ⊴ t, f(s′)θ = f(s)}

Rp(s) :=
⋃

p̂(s′)∨C

{p(s′′)θ | p(s′′) ∈ C, p(s′)θ = p(s)}

The rest of this section only details the generation of induc-
tion formulas using recursive function definitions; recursive
predicates are handled similarly. Given a recursive function f,
we categorize its argument positions similarly to [16].

Definition 2 (Active Positions, Accumulators). If for any
branch f(s) ∈ Bf and f(s′) ∈ Rf(s):
(1) if s′i ◁ si, then i is an active argument position of f
(2) if si is a variable and si ̸= s′i, then i is an accumulator

argument position of f
We denote the set of active and accumulator argument posi-
tions of f with If.

Example 3. Based on the functions app, flat and aflat

from Figure 1 lines 11-16, we have:

Bapp = {app(nil, z0), app(cons(x, y), z1)}

Bflat = {flat(leaf), flat(node(x, y, z))}

Baflat = {aflat(leaf, u0), aflat(node(x, y, z), u1)}

While Rapp(nil,z0) = Rflat(leaf) = Raflat(leaf,u0) = ∅, the
second branches of the three functions have the following sets
of recursive calls:

Rapp(cons(x,y),z1) =
{
app(y, z1)

}
Rflat(node(x,y,z)) =

{
flat(x), flat(z)

}
Raflat(node(x,y,z),u1) =

{
aflat(x, cons(y, aflat(z, u1))),

aflat(z, u1)

}
Iapp = {1}, since y is a proper subterm of cons(x, y) but the
second argument is not an accumulator since it remains z1 in
the only recursive call. The only argument position of flat

is active, and therefore Iflat = {1}. Finally, aflat has one
active and one accumulator argument position, hence Iaflat =
{1, 2}.

Definition 3 (Induction Terms from Active and Accumulator
Positions). Consider a recursive function f of arity n and a
ground term f(c). The term f(c′) is a generator term iff (i) c′
coincides with c in all positions from {1 ≤ i ≤ n} \ If, and
(ii) c′ contains fresh variables on positions from If.

The induction case of f(c) over branch f(s) ∈ Bf is the
two-tuple:

(θ, {mgu(f(c′), f(s′)θ) | f(s′) ∈ Rf(s)})

where θ := mgu(f(c′), f(s)).
The case distinction Θf(c) of f(c) is the set of induction

cases of f(c) over each branch of f. We call {ci | i ∈ If} the
induction terms of f(c).

Induction Formula over Active and Accumulator Terms.
Using Definition 3, we guide induction formula generation
over active and accumulator terms, as follows. Given a literal
L[c] with zero or more occurrences of the terms c, we generate
and add the following induction formula over active and
accumulator terms to saturation-based proving:

(∀)
∧

(θ,R)∈Θf(c)

( ∧
θ′∈R

L[c′]θ′ → L[c′]θ
)
→ L[c′] (19)

Since (19) is a valid induction formula, using it in the
conclusion of (Ind) yields a sound (Ind) inference.

Example 4. For proving the assertion of line 17 from Figure 1
in a saturation-based framework, we consider its negation:

app(flat(σ0), σ1) ̸= aflat(σ0, σ1) (20)

Using Definition 3 and Iflat (Example 3), the generator term
of flat(σ0) is t := flat(v). Moreover, by Bflat from
Example 3, we obtain

θ1 = mgu(t, flat(leaf)) = {v 7→ leaf}
θ2 = mgu(t, flat(node(x, y, z))) = {v 7→ node(x, y, z)}

Applying the unifier θ2 on the recursive calls of
Rflat(node(x,y,z)) from Example 3 is a no-op, since the
recursive calls do not contain v and we derive

θ2.1 = mgu(t, flat(x)) = {v 7→ x}
θ2.2 = mgu(t, flat(z)) = {v 7→ z}

Using the case distinction

Θflat(σ0) = {(θ1, ∅), (θ2, {θ2.1, θ2.2})} (21)

we derive the following induction formula:

∀x, y, z, u.((
app(flat(leaf), σ1) = aflat(leaf, σ1)∧(
app(flat(x), σ1) = aflat(x, σ1)∧
app(flat(z), σ1) = aflat(z, σ1) →
app(flat(node(x, y, z)), σ1) = aflat(node(x, y, z), σ1)

))
→ app(flat(u), σ1) = aflat(u, σ1)

)
(22)

B. Strengthening Induction over Recursive Definitions

Induction hypotheses of induction formulas might not be
strong enough to prove the corresponding induction step.
A common technique to overcome such limitations is to
strengthen the induction hypotheses: replace some terms in
the hypotheses with universally quantified fresh variables,
yielding thus logically stronger versions of induction hy-
potheses. Introducing universally quantified variables during
saturation can however negatively impact the performance of
the prover (e.g., yielding more unifications/rewriting steps). As
a remedy to this practical burden in the context of recursive
function definitions f, we utilize the accumulator argument
positions from If in Definition 3, which supersede the need
for introducing universally quantified variables by implicitly
instantiating these variables to the terms that will be matched
by the recursive calls of f.



Example 5. The induction formula (22) is not strong enough
to prove (20) and strengthening its induction hypotheses by
replacing σ1 with a universally quantified fresh variable – as
in (4) and (5) from Example 1, – is inefficient. Instead, we
use the term aflat(σ0, σ1) from (20) with the generator term
t′ := aflat(v, w) and induction terms {σ0, σ1}. We obtain
the following unifiers:

θ′1 = mgu(t′, aflat(leaf, u0)) = {v 7→ leaf, w 7→ u0}
θ′2 = mgu(t′, aflat(node(x, y, z), u1))

= {v 7→ node(x, y, z), w 7→ u1}

Applying θ′2 is once again a no-op on the recursive calls
Raflat(node(x,y,z),u1), and we get the unifiers:

θ′2.1 = mgu(t′, aflat(x, cons(y, aflat(z, u1))))

= {v 7→ x,w 7→ cons(y, aflat(z, u1))}
θ′2.2 = mgu(t′, aflat(z, u1)) = {v 7→ z, w 7→ u1}

Thus we obtain the induction formula with the required
induction hypothesis with term cons(y, aflat(z, u1)) that
matches the conclusion after simplification:

∀x, y, z, u0, u1, v, w.((
app(flat(leaf), u0) = aflat(leaf, u0)∧(
app(flat(x), cons(y, aflat(z, u1))) =

aflat(x, cons(y, aflat(z, u1)))∧
app(flat(z), u1) = aflat(z, u1) →
app(flat(node(x, y, z)), u1) = aflat(node(x, y, z), u1)

))
→ app(flat(v), w) = aflat(v, w)

)
(23)

After skolemizing x, y, z, u0 and u1 during clausification,
binary resolving with (20), with v and w bound to σ0 and σ1,
respectively, we get the following ground induction hypotheses
literals and ground conclusion literal from (23):

app(flat(σ2), cons(σ3, aflat(σ4, σ5))) =

aflat(σ2, cons(σ3, aflat(σ4, σ5)))
(24)

app(flat(σ4), σ5) = aflat(σ4, σ5) (25)
app(flat(node(σ2, σ3, σ4)), σ5) ̸=

aflat(node(σ2, σ3, σ4), σ5)
(26)

Further, the hypotheses of (23) are strong enough to
prove (20), as shown in Section V.

In summary, we use Definition (3) to generate induction
formulas over the active and accumulator terms from If. To
further limit and guide the generation of induction formulas,
we devised heuristics similar to [16]. Foremost, we only
generate induction formulas from function/predicate terms
with active occurrences.

Definition 4 (Active Term Occurrences). An occurrence of a
term t in literal L is an active occurrence if (i) t is L, or (ii)
L is an equality l = r and t is l or r, or (iii) the immediate
superterm s of t is an active occurrence and the occurrence of
t is in an active argument position of s.

As described in [18], apart from generalizing over complex
terms as seen in Example (1), we can also generalize over
active term occurrences. For example, we can refine the

induction formula (19) to induct upon only certain occurrences
of an induction term t with k occurrences in literal L, by using
any bit vector p ∈ {0, 1}k and L[t]p instead of L[t].

V. REFUTING INDUCTIVE PROPERTIES WITH RECURSIVE
DEFINITIONS

Automating inductive reasoning not only requires finding
useful induction formulas, but also comes with the task of
proving inductive properties. Section IV detailed our approach
towards finding useful induction formulas over recursive def-
initions. As a next step, we now present our solution towards
(more) efficient refutation of inductive properties over recur-
sive definitions.

A. Rewriting with Recursive Function Definitions

We extend superposition reasoning with two inference rules
in support of rewriting recursive functions by their definitions.

First, we focus on a simplification inference implementing
rewriting by unit equalities, called also demodulation [22]. We
adjust demodulation to handle unit clauses describing recursive
function definitions, as follows:

f(s)
.
= t ((((((L[f(s)θ] ∨D

L[tθ] ∨D
(DemF)

where f(s)θ ≻ tθ and L[f(s)θ] ∨D ≻ f(s)θ = tθ.
Second, we introduce a generating inference rule as an

instance of superposition rules. Namely, we enable rewriting
arbitrary recursive functions with their definitions, as follows:

f(s)
.
= t ∨ C L[f(s)θ] ∨D

L[tθ] ∨ Cθ ∨D
(ParF)

Note that (ParF) has no side conditions restricting which
terms can be rewritten. As such, (ParF) allows to expand
function headers, yet at the cost that small terms may be
rewritten into bigger terms w.r.t. the underlining term ordering
≻ of a superposition prover. As a result, the simplification
ordering constraints of ≻ are violated by (ParF), yielding
an incomplete extension of superposition. On the other hand,
soundness of superposition implies soundness of our new
inference rules.

Theorem 1 (Soundness of Rewriting). The inference rules
(DemF) and (ParF) are sound.

B. Rewriting Induction Hypotheses

Upon clausifying the induction formula (19) introduced
in Section IV, for each step case ∧1≤i≤mL[ti] → L[t] we
obtain a set of induction hypothesis literals L[t′i] and an
induction conclusion literal L[t′]. Intuitively, we extend these
notions such that any literal resulting from the rewriting or
simplification of induction hypothesis or induction conclusion
literals is also an induction hypothesis or induction conclusion
literal, respectively.

We introduce an induction hypothesis rewriting rule, in short
(IndHRW), to (i) rewrite one side of an induction conclusion
literal with one of its induction hypothesis literals (against



ordering constraints) and (ii) apply induction on the rewritten
induction conclusion literal without adding it to the search
space:

l = r ∨D s[l] ̸= t ∨ C

cnf(F → ∀y.(s[r] = t)[y])
(IndHRW)

where s ̸= t is an induction conclusion literal with cor-
responding induction hypothesis literal l = r, l ̸⪰ r, and
F → ∀y.(s[r] = t)[y] is a valid induction formula. By
soundness of (Ind), we conclude soundness of (IndHRW).

Theorem 2 (Soundness of Induction Hypothesis Rewriting).
The inference rule (IndHRW) is sound.

Note that (IndHRW) allows rewriting only with induction
hypothesis literals that are positive equalities. Hence, the
induction conclusion literal must be a disequality (s ̸= t). We
further stress that rewriting using the premises of (IndHRW)
yields s[r] ̸= t ∨ C ∨D, which is binary resolved against the
resulting induction formula clauses of (19) and not added to
the search space.

Example 6. Continuing Example 5, rewriting (26) with
(ParF) results in a new induction conclusion literal:

app(app(flat(σ2), cons(σ3, flat(σ4))), σ5) ̸=
aflat(σ2, cons(σ3, aflat(σ4, σ5)))

(27)

By rewriting the right-hand side of (27) with the corresponding
hypotheses literals (24) and (25), we obtain the intermediate
induction conclusion literal

app(app(flat(σ2), cons(σ3, flat(σ4))), σ5) ̸=
app(flat(σ2), cons(σ3, app(flat(σ4), σ5)))

(28)

By applying induction with (IndHRW) with case distinction
Θapp(flat(σ2),cons(σ3,flat(σ4))) and induction term flat(σ2),
we obtain the induction formula:
∀x, y, z.((
app(app(nil, cons(σ3, flat(σ4))), σ5) =

app(nil, cons(σ3, app(flat(σ4), σ5)))∧(
app(app(y, cons(σ3, flat(σ4))), σ5) =

app(y, cons(σ3, app(flat(σ4), σ5))) →
app(app(cons(x, y), cons(σ3, flat(σ4))), σ5) =

app(cons(x, y), cons(σ3, app(flat(σ4), σ5)))
))

→ app(app(z, cons(σ3, flat(σ4))), σ5) =

app(z, cons(σ3, app(flat(σ4), σ5)))
)

(29)

The resulting clauses – after binary resolving with the
intermediate unit clause (28) – can be finally refuted using the
definitions at lines 11 and 12 of Figure 1. We thus validate
correctness of the assertion on line 17 in Figure 1.

VI. MULTI-CLAUSE INDUCTION IN SUPERPOSITION

The induction rule (Ind) does not allow inducting on mul-
tiple literals, limiting for example the use of (Ind) over (14)
in Example 2. Moreover, when (Ind) is used together with the
induction formula (19), clausification introduces new Skolem
constants, making it impossible to use ground assumptions
or previous induction hypotheses containing different ground

subterms. To address this issue, in this section we revise the
induction inference rule (Ind) with only one premise to an
induction rule with multiple premises, as follows.

We extend (Ind) for a given literal L (the main literal) to
also incorporate other literals Li (the side literals) that are
relevant for proving L, as follows:

L1[t] ∨ C1 ... Ln[t] ∨ Cn L[t] ∨ C

cnf(F → ∀y.(
∧

1≤i≤n Li[y] → L[y]))
(IndMC)

where L and Li are ground literals, C and Ci are clauses,
and F → ∀y.(

∧
1≤i≤n Li[y] → L[y]) is a valid induction

formula. Further, y and t are tuples of variables and induction
terms, respectively. Soundness of (IndMC) follows then from
soundness of (Ind).

Theorem 3 (Soundness of Multi-clause Induction). The rule
(IndMC) is sound.

We note that after the application of (IndMC), binary
resolution can be applied on each resulting clause with the
main and side literals, yielding cnf(¬F ) ∨

∨
1≤i≤n Ci ∨ C.

Multi-Clause Induction Formula over Active and Accu-
mulator Terms. For generating valid induction formulas to
be used in (IndMC), we proceed as in Section IV. Yet, we
adjust the generation of (19), by using Definition 3 over the
active and accumulator terms of ∧n

k=1Lk[c′] → L[c′] (rather
than just L[c]). As a result, for a given case distinction Θf(c),
we generate the following multi-clause induction formula over
active and accumulator terms in saturation-based proving:

(∀)
∧

(θ,R)∈Θf(c)

( ∧
θ′∈R

(∧n
k=1Lk[c′]θ

′ → L[c′]θ′) →

(∧n
k=1Lk[c′]θ → L[c′]θ)

)
→ (∧n

k=1Lk[c′] → L[c′])

(30)

Since (30) is a valid induction formula, using it in the
conclusion of (IndMC) yields a sound (IndMC) inference.

Example 7. Negating and clausifying the assertion on line 18
of Figure 1, we obtain the two unit clauses:

even(σ1) (31)
¬even(mul(σ0, σ1)) (32)

Inducting on (32) using Θmul(σ0,σ1) and induction term σ0, we
get the following clauses:

¬even(mul(zero, σ1)) ∨ even(mul(σ2, σ1))

¬even(mul(zero, σ1)) ∨ ¬even(mul(s(σ2), σ1))

By function and predicate definitions of mul and even, the
base case reduces to false and we are left with the unit clauses

even(mul(σ2, σ1)) (33)
¬even(add(mul(σ2, σ1), σ1)) (34)

The hypothesis literal in (33) and the conclusion literal in (34)
cannot be binary resolved with each other to solve the step
case but they share the term mul(σ2, σ1). We can use (33)



and (34) in (IndMC) as side and main literals, respectively,
with induction term mul(σ2, σ1) and the case distinction:

Θeven(mul(σ2,σ1)) =

{
({z 7→ zero}, ∅), ({z 7→ s(zero)}, ∅),

({z 7→ s(s(x))}, {{z 7→ x}})

}
We get the following induction formula:

∀x, z.
((

even(zero) → even(add(zero, σ1))
)
∧(

even(s(zero)) → even(add(s(zero), σ1))
)
∧((

even(x) → even(add(x, σ1))
)
→(

even(s(s(x))) → even(add(s(s(x)), σ1))
))

→
(
even(z) → even(add(z, σ1))

))
(35)

After clausifying (35), and binary resolving the resulting
clauses against (33) and (34), using function and predicate
definitions and the unit clause (31), we arrive at the empty
clause, thus validating the assertion at line 18 in Figure 1.

We conclude this section by noting that the (IndMC) infer-
ence rule might use an arbitrary number of side literals, slow-
ing down the practical efficiency of saturation-based proving
with multi-clause induction. As a remedy, the following two
heuristics could be used to choose the literal L from clause
L ∨ C as a side literal of (IndMC): (i) if L is p(s) for some
predicate p, and L is an induction hypotheses to the main
literal p(t), and s and t share some non-Skolem (complex)
term with an active occurrence, or (ii) if neither L nor the
main literal are derived from a clausified induction formula
and they share some common term with an active occurrence.

VII. EXPERIMENTS

Implementation. We implemented our approach to automat-
ing induction with recursive definitions in superposition-
based theorem prover VAMPIRE. We extended VAMPIRE’s
induction framework [18] with recursive definitions and hy-
pothesis strengthening, as described in Section IV. This
can be enabled with --structural_induction_kind
rec_def. Rewriting with induction hypotheses and func-
tion definitions, as presented in Section V, can be switched
on using --induction_hypothesis_rewriting on
and --function_definition_rewriting on, re-
spectively. The multi-clause induction rule from Section VI
is enabled by --induction_multiclause on. All to-
gether, our implementation consists of around 5,000 lines
of C++ code and is available at https://github.com/vprover/
vampire/tree/induction-recursive-functions.
Experimental setup. To experimentally evaluate our ap-
proach, we used the benchmarking tool BENCHEXEC [27],
[28] and two benchmark sets2: (i) the UFDTLIA examples
from SMT-LIB [24], consisting of 327 problems over algebraic
data types; and (ii) our new set dty RD of 3,397 inductive
examples with recursive definitions, as described in [30]. We
used the keyword define-fun-rec for defining recursive
functions in the examples from our dty RD dataset. Moreover,

2While some examples from the TIP library [29] are included in SMT-LIB,
most of the TIP examples are parametric and not yet supported by VAMPIRE.

UFDTLIA dty RD
327 problems 3,397 problems

VAMPIRE 180 (0) 1,641 (0)
VAMPIRE∗ 259 (30) 3,223 (497)

ZIPPERPOSITION 174 (0) 2,534 (21)
CVC4 235 (12) 165 (0)

Fig. 2. Numbers of problems solved by respective solvers in our experiments.
The number in parentheses is the number of problems solved uniquely
compared to the other solvers.

we also converted examples from the UFDTLIA set to ex-
plictly use define-fun-rec, detecting this way recursive
definitions in UFDTLIA.

We also combined our inductive approach in
VAMPIRE with recent developments in first-order
reasoning [18], [31], [32], creating this way various
VAMPIRE configurations for automating induction with
recursive definitions. The default options we used
for these configurations are: --induction_gen
on --induction_on_complex_terms on
enabling inductive generalizations and induction on
complex terms [18]; --newcnf on to select the
cnf method in [31]; and --theory_split_queue
on --theory_split_queue_cutoffs 0,8 and
--theory_split_queue_ratios 20,10,1 to
control theory reasoning with split queues [32]. As a
result, we designed a new VAMPIRE portfolio mode for
inductive reasoning, which can be switched on by --mode
portfolio --schedule struct_induction.
Experimental comparison. In what follows, VAMPIRE refers
to the (default) version of VAMPIRE, as in [18]. By VAMPIRE∗

we denote our new version of VAMPIRE, using induction
with recursive definitions and the aforementioned options. We
compared our work in VAMPIRE∗ against VAMPIRE, as well as
against the superposition prover ZIPPERPOSITION3 [16] and
the SMT solver CVC4 [33].

Since the default mode of VAMPIRE and VAMPIRE∗

only occasionally solves unique problems with respect to
their portfolio mode counterpart, we omitted the former
results. Note that we used the same portfolio schedule
struct_induction for VAMPIRE as well. Since in port-
folio mode VAMPIRE ignores the new options and most
of the schedule is not specific to VAMPIRE∗, the results
obtained for VAMPIRE give a meaningful baseline. We used
ZIPPERPOSITION in the default mode, while for CVC4 we
used the parameters --conjecture-gen --quant-ind.
Each prover was given 300 seconds of time and 16 GB of
memory per problem. The experiments were ran on computers
with 32 cores (AMD Epyc 7502, 2.5 GHz) and 1 TB RAM.
Experimental results. We summarize our experimental results
in Figure 2. For each solver, listed in the first column of

3ZIPPERPOSITION has a non-official option --input tip to parse
benchmarks in a variant of SMT-LIB. In order to parse UFDTLIA bench-
marks, we converted them to this variant.

https://github.com/vprover/vampire/tree/induction-recursive-functions
https://github.com/vprover/vampire/tree/induction-recursive-functions


VAMPIRE∗ UFDTLIA dty RD
forced option 327 problems 3,397 problems

default 259 (1) 3223 (3)
-indmc off 237 (0) 3259 (33)
-indhrw off 242 (0) 3192 (4)
-fnrw off 237 (3) 3001 (0)
-sik one 200 (1) 962 (0)

Fig. 3. Numbers of problems solved by VAMPIRE∗ with different new
features disabled. The number in parentheses is the number of problems solved
uniquely compared to the other configurations.

Figure 2, we indicate the total number of examples the solver
proved from the respective benchmark category; the values
in parentheses show the number of uniquely solved problems
compared to the other solvers. Figure 2 shows that while
VAMPIRE performs reasonably well on both benchmark sets,
it cannot solve more problems than CVC4 in the UFDTLIA
set and than ZIPPERPOSITION in the dty RD set, where
the latter two perform the best. VAMPIRE∗, on the other
hand, is able to solve many more problems than the other
solvers in both sets, suggesting that combining the state-
of-the-art techniques of superposition with induction over
recursive definition can perform much better than SMT solvers
and superposition provers with only structural induction. All
together, VAMPIRE∗ solved 527 new problems that the
other automated solvers could not prove. It is also worth
noting that while VAMPIRE∗ dominates the uniquely solved
problems w.r.t. the dty RD set, its dominance is only marginal
compared to the uniquely solved problems of CVC4 in the
UFDTLIA set. Looking at the problems uniquely solved by
CVC4, we found that these problems mostly contain either
some nested structure that current techniques in VAMPIRE∗

cannot handle and require non-trivial lemma generation or
recursive definitions that cannot be used with our induction
formula generation as their well-foundedness is not based on
the subterm relation.

In addition to comparing to other solvers, we compared
VAMPIRE∗ to itself with different techniques from the paper
disabled, overriding the portfolio options during these runs.
Our results are shown in Figure 3.

For UFDTLIA, the default run still performs best but
we can see different deviations from this value with each
disabled technique. We argue that the relatively small differ-
ences obtained by turning off induction hypothesis rewriting
(-indhrw off) and function definition rewriting (-fnrw
off) can be attributed to combinations of options that to-
gether may simulate these techniques. In comparison, multi-
clause induction cannot be simulated with other techniques
in VAMPIRE, so the relatively small difference obtained by
turning off this technique (-indmc off) for UFDTLIA is
probably due to the lack of non-unit induction needed in
most of this set. For dty RD, the decrease in solved problems
when this feature is turned on needs further investigation.
The greatest difference to the default is obtained by using

structural induction (-sik one, see [17]) instead of inferring
induction formulas from recursive function definitions. We can
conclude with the observation that each configuration solved
problems uniquely which suggests the portfolio schedule can
be improved.

VIII. RELATED WORK

Generation of induction formulas, as presented in Sec-
tion IV, although similar to recursion analysis of [7] and
recursion induction of [10], utilizes unification and generates
non-trivial induction hypotheses. Our work complements these
techniques by integrating induction in saturation: rather than
replacing inductive goals by sub-goals/other formulas, we
generate induction formulas over recursive definitions and add
these induction formulas as additional properties to the search
space.

When compared to superposition approaches treating certain
E-theories [19] or function definitions as rewrite rules [16], we
note that our method designs new induction inference rules as
simplification rules in superposition and strengthens induction
hypotheses during saturation-based inductive reasoning. Our
approach extends [17] by handling recursive definitions as
rewrite rules and multiple clauses in a single induction step;
the latter is often required when assumptions are supported in
universally quantified conjectures. Unlike [16], our technique
generalizes to scenarios where multiple induction steps are
needed to refute non-equality literals. Contrarily to [12], we
are not limited to induction over term algebras as most of these
techniques work for e.g. mathematical induction as well.

While our approach often does not need auxiliary lemmas
due to generalizations over (complex) term occurrences and
strengthened induction hypotheses, extending our work to-
wards lemma generation would be beneficial. In particular,
theory exploration and lemma generation approaches from [8],
[15], [10], [34], [35], [13] could complement our method,
ranging from randomly generating terms by iterative deepen-
ing to analysing failed induction steps and even circumventing
the need for auxiliary lemmas by using predicates.

IX. CONCLUSION

We introduce a new approach for automating induction
with recursive definition in first-order theorem proving. We
design new inference rules for rewriting with function defini-
tions as well as induction hypotheses in superposition-based
proving. We generate induction formulas based on recursive
function definitions and extend our work to support multi-
clause induction. Our experiments show that induction with
recursive definitions in superposition allows us to solve many
new problems that other automated reasoners failed to prove.
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