
EasyChair Preprint
№ 9380

Alleviating Performance Interference Through
Intra-Queue I/O Isolation for NVMe-over-Fabrics

Wenhao Gu, Xuchao Xie and Dezun Dong

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 28, 2022

Alleviating Performance Interference through
Intra-Queue I/O Isolation for NVMe-over-Fabrics

Wenhao Gu1, Xuchao Xie1, and Dezun Dong?

College of Computer, National University of Defense Technology, Changsha 410073,
China

{guwenhao16,xiexuchao,dong}@nudt.edu.cn

Abstract. The NVMe-over-Fabrics (NVMeoF) protocol enables high-
performance Protocol Data Units (PDUs) exchanges between hosts and
remote NVMe controllers. The performance benefits of NVMeoF are
mainly derived from the multiple deep queue pairs for parallel PDUs
transfers. NVMeoF has significantly facilitated NVMe SSD disaggrega-
tion from compute nodes for better resource utilization and scaling inde-
pendence. However, as the performance of NVMe SSD and network in-
frastructure increases, the near-perfect performance delivery of NVMeoF
is harder to achieve. The primary reason is the increased CPU interrupts
and performance interference originated from the I/O requests served by
the same NVMeoF queue pair.
In this paper, we investigate how intra-queue requests are mutually af-
fected, and propose PINoF, a Performance Isolated remote storage access
mechanism for NVMe-over-Fabrics. PINoF separates CMD and Data
PDUs resources in each NVMeoF queue pair to achieve intra-queue I/O
isolation, transfers PDUs in batch along with read or write specific I/O
path to achieve isolated interrupt-coalescing, and introduces differenti-
ated PDU reordering schemes to achieve isolated scheduling. Our experi-
mental results demonstrate that compared with state-of-the-art NVMeoF
implementations, PINoF achieves 23.92% lower latency, increases band-
width by up to 19.59%, and improves IOPS by 12.41% on average.
Keywords: NVMeoF · Performance Interference · I/O Isolation.

1 Introduction

Resource disaggregation architecture has been significantly facilitated by recent
advances in high-speed network technologies[7]. Meanwhile, various resource-
specific interconnection protocols have been developing for ultra-low latency
and high throughput communication between different kinds of disaggregated
resources. In terms of storage disaggregation, as NVMe SSDs perform much
faster than SAS/SATA SSDs and Hard Disk Drives (HDDs)[20], the software
overheads in the I/O path to NVMe SSDs become much more pronounced[2].
Recently, the NVMe-over-Fabrics (NVMeoF) protocol[15] reclaims that it can
dramatically reduce network and processing overheads[8], thus achieving negli-
gible performance degradation for remote storage access through RDMA, FC,

1 Equal contribution
? Corresponding author

2 W.Gu et al.

and TCP networks[6]. Compared with the iSCSI protocol that was originally
designed for disaggregating HDDs, the performance benefits of NVMeoF are
mainly derived from the multiple deep queue pairs for parallel PDUs (Protocol
Data Units) transfers that can fully utilize the internal parallelism of SSDs[18].

Unlike NVMe-over-RDMA that builds on the basis of large-scale RDMA-
enabled specific network infrastructures, NVMe-over-TCP (NoT) is a recent
transport extension of NVMeoF that can be implemented on top of commodity
Ethernet hardware and standard TCP/IP protocol stack[11, 17]. NoT promotes
NVMeoF deployment scenarios to the most common network infrastructure in
datacenters without building out separate storage networks. Specifically, NoT
defines how NVMe command (CMD) and data are encapsulated within TCP
PDUs and provides regulations of how the queue pairs of host and remote NVMe
controller are mapped to TCP connections and CPU cores.

As NoT inherits the superiorities of both NVMe and TCP/IP protocols,
it comes at a cost of the flaws of TCP/IP software stack, such as additional
memory copies and more CPU overhead compared with NVMe-over-RDMA[4,
5, 13]. Therefore, as the performance of NVMe SSD and network infrastructure
increases, NoT has to cost more CPU processing overhead on both host and
target sides to achieve full performance delivery of NVMe SSDs. The primary
reason is the increased CPU interrupts and performance interference originated
from the CMD and Data PDUs served by the same queue pair[1]. Hwang et
al. have proposed i10[9, 10] to delay ringing doorbells to accumulate requests
and process the requests in batch to amortize network and software overhead.
However, accumulating requests further exacerbates performance interference
issues of the PDUs processed in the same batch.

As the performance interference issue caused by the diverse PDUs of requests
in NoT implementation has not been paid sufficient attention and is rarely stud-
ied, in this work, we investigate how intra-queue requests are mutually affected in
current NoT implementation and propose PINoF, a Performance Isolated remote
storage access mechanism for NVMe-over-Fabrics. Overall, our main contribu-
tions in this paper can be summarized in three aspects as below.

• Intra-Queue I/O Isolation. We propose to separate data structures and
resources of CMD and Data PDUs in each PINoF queue pair to isolate the
PDUs generated by read and write I/O, thus PINoF can greatly mitigate the
performance interference between CMD and Data PDUs and manage CMD and
Data PDUs with the same kind of operation independently.

• Specific I/O Paths. PINoF always transfers NoT PDUs in batch along with
specific read or write I/O path that uses specially designed interrupt-coalescing
strategy, thus the performance interference among the PDUs generated from the
requests processed in a same batch can be further mitigated.

• Isolated Scheduling. PINoF further introduces differentiated PDU reorder-
ing schemes by offering different priorities for different types of PDUs. In this
case, the waiting latency of the PDUs that potentially affect subsequent PDUs
can be significantly reduced.

PINoF 3

Incoming I/O

Requests
Read Common Write Inline Write

TYPE: CMD

OP: Write

SIZE： 72B
TYPE: CMD

OP: R2T

SIZE： 72B

TYPE: CMD

OP: Response

SIZE： 56B

TYPE: CMD

OP: H2C Data

SIZE： 4KB

TYPE: DATA

OP: H2C Data

SIZE： 4KB

TYPE: CMD

OP: Response

SIZE： 56B

Blk Req

TYPE: DATA

OP: C2H Data

SIZE： 4KB

TYPE: DATA

OP: C2H Data

SIZE： 4KB

TYPE: CMD

OP: Response

SIZE： 56B

TYPE: CMD

OP: Read

SIZE： 72B

Exchanging

PDU

TYPE: CMD DATA

OP: Inline Write

SIZE : <= 8KB

Interactive Process

between Host and Target

Fig. 1. NoT PDUs generated by the I/O requests with different types and sizes

We implemented PINoF in Linux kernel and evaluated it by FIO and RocksDB
benchmarks. Our experimental results demonstrate that compared with state-
of-the-art NVMeoF implementations, PINoF can achieve 23.92% lower latency,
increase bandwidth by up to 19.59%, and improve IOPS by 12.41% on average.

2 Background and Motivation
2.1 NVMe-over-TCP
NoT host needs to establish a connection to remote NVMe controller in target
to enable transfers. The process of connection is to create multiple one-to-one
mappings between host queues and controller queues. Each host queue and its
associated controller queue will be mapped to a specific TCP connection and a
separate CPU core. As long as a NoT connection is established, NoT drivers will
encapsulate the NVMe command, response, and data into TCP PDUs, trans-
ferred along standard TCP/IP protocol stack[14, 19]. Generally, there are five
kinds of PDUs used in NoT implementation, i.e., Read/Write CMD PDU, R2T
(Ready to Transfer Command) PDU, H2CData (Host to Controller Data) PDU,
C2HData (Controller to Host Data) PDU, and Resp (Response) PDU.

The detailed NoT workflows of the I/O requests with different types and
sizes can be characterized in Fig. 1. Take common write I/O as an example, for
the write request that is larger than 8KB, its data to write has to be transferred
by at least two H2CData PDUs. Specifically, when target receives a CMD PDU
of a large-size write request, target driver will determine the size of data it can
receive in the next transfer and pass the information to host via R2T PDU. Host
driver will always send H2CData PDUs following the requirement in R2T PDUs.
Target driver will execute the write request only if all the data to write has been
transferred by H2CData PDUs. The Resp PDU will be sent to host when the
write request is executed successfully on target side.

2.2 Intra-Queue Performance Interference
In this paper, we further investigate the performance interference issue[12, 16, 3]
in NoT from a microscopic point of view. The performance interference mainly

4 W.Gu et al.

0 25 50 75 100
Write Ratio(%)

0

1

2

3

4

Av
g

La
te

nc
y(

ns
)

1e5 RAM

i10 Read
RDMA Read
NoT Read

i10 Write
RDMA Write
NoT Write

(a)
0 25 50 75 100

Write Ratio(%)
0

1

2

3

4

5

To
ta

l B
an

dw
ith

(K
B

/s
)

1e5 RAM

i10 Read
RDMA Read
NoT Read

i10 Write
RDMA Write
NoT Write

(b)
4 8 16 32 64

Block Size(KB)

2

3

4

5

6

7

Av
g

La
te

nc
y(

ns
)

1e5 RAM

i10 Write
i10 Read
NoT Write
NoT Read

(c)

Fig. 2. Intra-queue performance interference in NVMe over TCP and i10.

comes from the I/O requests with different types and sizes that are handled in a
same NoT queue. These I/O requests will finally generate a large number of NoT
PDUs with different attributes in terms of types, sizes, relevance, and urgencies.
Thus the common unified transceiver strategy should be carefully reconsidered,
especially when multiple PDUs are accumulated for transferring in batch.

For a read request, NoT host first sends a CMD PDU of 72B to target, then
NoT target returns many C2HData PDUs that contains data typically 4KB. In
the case of an application with read-intensive I/O workloads, such as reading
data sets from remote NVMe SSDs for machine learning, both NoT and i10
hosts will continuously process PDUs with short flow data while targets always
return PDUs with long flow data. Apparently, PDUs on the host side are latency-
sensitive and need to be sent out in time for processing. Meanwhile, PDUs on the
target side are more suitable for gathering and transferring in batch to achieve
high throughput. However, the desired PDU sending strategies of read and write
requests are diametrically opposite as Fig. 1. Therefore, once these PDUs with
different desires are accumulated together as i10 does, both the read and write
requests have to endure severer intra-queue performance interference caused by
their uncompromising PDUs.

As read and write mixed I/O workload is common in production storage sys-
tems, simply designing different NoT PDU accumulation and sending strategies
on host and target sides can hardly adapt to the dynamic needs of read and write
requests, and the performance interference is inevitable. As shown in Fig. 2, the
read/write latency and bandwidth performance of NVMe-over-RDMA keeps sta-
ble and basically proportional respectively with the read/write ratio, while the
performances of NoT and i10 are significantly interfered especially when read
and write mixed. Thus, managing PDUs from read and write requests sepa-
rately on both host and target sides is essential to accurately provide the most
appropriate PDU accumulation and sending strategies.

Besides type and size, NoT PDUs may present significant differences in rel-
evance and urgency. For example, even if the CMD PDU of a write request is
transferred to target in time, the data of the write request cannot be transferred
until its associated R2T PDU returns back. For both read and write requests,
even if their data have been transferred, NoT will not signal blk-mq (multiple
per-core block queues) the finish of these I/O requests since not received their
Resp PDUs. Thus, R2T and Resp PDUs need to be prioritized to transfer for
their relevance to H2CData PDU and urgency to finish an I/O request to further

PINoF 5

I/O syscalls

Core

blk-mq

Specific

I/O

Path

Network

Structrue

[Host] [Target]

NVMe

SQ/CQ

User

Space

Kernel

Space
Read

Write

Read

Block

layer

NIC&

NVMe

PINoF

Read
Write
Read

PINoF

queue

TCP

buffer

Read
Write
Read

DATA PDUs

freight

ReadReadReadRead

CMD PDUs

freight

ReadReadReadWrite

NVMe

SSD

ReadReadReadRead

DATA PDUs

freight

ReadReadReadWrite

CMD PDUs

freight

Submit bio

sock1 sock1sock2 sock2

Fig. 3. System overview of PINoF.

mitigate the performance interference. As shown in Fig. 2(c), the write request
latency increases significantly after the block size is 16 compared with read, due
to the R2T PDU transmission.

2.3 Motivation
In this paper, we propose intra-queue I/O isolation to alleviate the performance
interference in NoT. Our work is motivated by the observations below.
• Performance overhead can be amortized. Aggregating multiple requests for
batch processing can amortize the overheads from network processing and TCP
/IP software stack, thus the performance of NoT can be improved.
• PDU attribute should be distinguished. I/O requests with different types and
sizes will generate PDUs with different attributes in terms of type, size, relevance,
and urgency, which inspires differentiated PDU batch processing mechanisms.
• PDU dependency should be considered. R2T and Resp PDUs show significant
relevance to H2CData PDU and urgency to finish an I/O request. Prioritizing
R2T and Resp PDUs while accumulating H2CData and C2HData PDUs can
achieve high throughput and mitigate I/O latency amplification simultaneously.

3 System Overview
PINoF is a modified implementation of standard NoT and works as a shim NVMe
capsule and data forwarding layer between the Linux blk-mq layer and TCP/IP
software stack. As shown in Fig. 3, different from standard NoT implementation,
PINoF isolates both resources and strategies of CMD and Data PDUs while
separating read and write requests. Specifically, the isolated resources include
spatial resource “freight” and temporal resource “hrtimer”. freight is the newly
established container for accumulating PDUs while hrtimer leverages the kernel
high-precision timer for controlling PDU aggregation processes.

As each PINoF queue is one-to-one mapped to a hardware queue in the blk-
mq layer, for each queue pair, PINoF maintains both CMD and Data PDUs

6 W.Gu et al.

timeout？

PINoF

queue

Read

Write

Write

blk-mq

 R/W hrtimer

strats counting

 Judge the

trigger condition

 Send the

freights

 Reset the

hrtimer/freights

aggregation size degree ?

Data PDUs

freight
CMD PDUs

freight

Socket

25ms75ms

64KB 16 512B 8

Fig. 4. Isolated resources on the host side of PINoF.

freights. The PDUs generated by an I/O request from its associated hardware
queue will be distributed into either CMD or Data specific PDUs freight for
aggregation by PINoF. The PDUs in the same freight have the same destination,
thus can be transferred by a preassigned TCP socket. In this way, PINoF can
separately manage intra-queue PDUs of read and write requests. The detailed
design will be further discussed in §4.1.

The time when a freight can be sent to the remote side is cooperatively
controlled by its size and the hrtimer. In PINoF, there is a trade-off between
the long-time aggregation to accumulate more PDUs in a single freight and the
short-time aggregation for less delays of the accumulated PDUs in the freight. To
this end, PINoF separates intra-queue PDUs into different I/O paths, i.e., read
specific I/O path and write specific I/O path, to achieve a good balance between
interrupt-coalescing and extra delays for both read and write I/O requests. We
will particularly describe the specific I/O paths in detail in §4.2.

With isolated resources and I/O paths, PINoF can achieve isolated scheduling
to flexibly tune the transfer priorities of intra-queue PDUs. Besides, in PINoF,
we always prioritize R2T PDUs in write specific I/O path to alleviate the PDU
dependency issue, which will be discussed in §4.3.

4 PINoF Design
4.1 Intra-queue I/O Isolation
PINoF implements intra-queue I/O isolation by introducing two kinds of ded-
icated resources, freight and hrtimer. Both freight and hrtimer are allocated
separately for the CMD and Data PDUs served by the same queue pair. Each
freight is considered as a PDU container where multiple PDUs to the same
destination are gathered and will be transferred along the I/O path in PINoF
together. Compared with standard NoT, PINoF can significantly reduce the over-
head from frequent context switches caused by fragmented PDU transmission
and fully utilize the TCP acceleration technologies such as TCP segmentation
offload (TSO) and generic receive offload (GRO).

As shown in Fig. 4, PINoF uses both spatial and temporal measurements to
determine whether a freight should be transferred or not. Spatial measurements
include aggregation size and aggregation degree. When the allocated memory

PINoF 7

size for a freight cannot accommodate the next PDU, the freight will incur an
aggregation size triggered freight send operation. Similarly, a freight will incur
an aggregation degree triggered send operation when the number of its accom-
modated PDUs exceeds the predefined threshold. PINoF introduces hrtimer as
the temporal measurement of freight. Each hrtimer is used to record how much
time its associated freight has spent to accumulate PDUs and has a predefined
threshold to indicate the freight should be sent out. In PINoF, once a freight
receives its first request, its associated hrtimer will wake up. As the hrtimer
reaches its threshold, its associated freight will incur an hrtimer triggered send
operation. Note that no matter whether a freight send operation is triggered by
hrtimer or other spatial measurements, its hrtimer will always be reset.

4.2 Specific I/O Paths
Due to the different attributes of the PDUs generated by read and write re-
quests, as shown in Fig. 3 and Fig. 4, the freights for read and write requests are
organized and managed differently. Take read requests as an example, PINoF
first prepares all the data structures needed by freights in each PINoF queue
pair on both host and target sides. On host side, once a CMD PDU generated
by a read request arrives, it is simply linked to the send list of the PINoF queue
rather than rings the doorbell to wake up send thread directly. All the following
PDUs from read requests will repeat this step until the sending condition is trig-
gered and the freight is sent to the remote PINoF queue through socket. On the
remote target side, PINoF caches freight in buffer and receives the fixed-length
header to parse the header information, analyze the length of subsequent data,
and receive data accordingly. This process will be repeatedly processed to real-
ize the unpacking of the freight and parse each read request. Subsequently, the
request gets off the specific I/O path, transferred to other layers for processing.
The workflow of the write path is similar to that of the read, yet they mainly
differ in the predetermined parameters of dedicated resources in §4.1.

kernel_sendpage() can avoid data replication on the transmission side when
sending data per page, but leads to a weak batch processing capacity. While
kernel_sendmsg() can copy the kernel I/O vector to the socket buffer as a func-
tion parameter, thus significantly improves the throughput at high load. There-
fore, we always call kernel_sendmsg() for sending the bandwidth-intensive Data
PDUs of which host write requests and target read requests mainly composed.
Conversely, the CMD PDUs generated by read requests and the Resp and R2T
PDUs generated by write requests are always regarded as latency-sensitive PDUs
and sent by calling kernel_sendpage().

4.3 Isolated Scheduling
During the whole I/O workflow in PINoF, CMD PDUs are the initiator of all
the interactions between host and target sides. Apparently, sending CMD PDUs
for processing as soon as possible can significantly reduce I/O waiting latency.

As the PDUs handled on host and target sides are different, we introduce
isolated scheduling mechanism in PINoF to schedule freights on host and target
sides. Our basic strategy is to set different threshold for the dedicated resources

8 W.Gu et al.

of host and target. The timeout threshold of the CMD PDUs hrtimer is set to
25ms and that of the Data PDUs hrtimer is set to 75ms in PINoF. The PDUs
on host side in read specific I/O path and target side in write specific I/O path
are all CMD PDUs smaller than 72B, hence we heuristically set the size of CMD
PDUs freight to 512B and the degree of aggregation to 8. As the Data PDUs
are no less than one physical page, the Data PDUs freight size and aggregation
degree are set to 64KB and 16 respectively, since 64KB is the partition upper
limit of TSO technology.

Besides, we manually set the weight of R2T PDU to 3 and Resp PDU to 2 to
trigger the aggregation size preferentially. Thus, the freights that contain R2T
and Resp PDUs on target side will achieve highest priority to transfer in PINoF,
while the freights that contain H2CData or C2HData PDUs have to endure a
longer accumulation time. Consequently, the PDUs show significant relevance to
H2CData PDU and urgency to finish an I/O request can be transferred in time
while the H2CData and C2HData PDUs can be fully accumulated to achieve
high throughput in PINoF. These parameters (high-quality setting obtained from
experiments) are set loosely to prove the effectiveness of isolated scheduling.

5 Performance Evaluation
5.1 Experimental Setup

Table 1. Hardware and software configurations

Host Target

CPU

2-socket Intel (R) Xeon (R)
CPU E5-2692v2@2.20GHz

12cores per socket,
NUMA enabled (2 nodes)

2-socket Intel (R) Xeon (R)
CPU E5-2660v2@2.60GHz

10cores per socket,
NUMA enabled (2 nodes)

MEM 125GB of DRAM 64GB of DRAM

NIC
Mellanox CX-5 EX (100G)

TSO/GRO=on, LRO=off, DIM disabled
Jumbo frame enabled (4096B)

SSD N/A 1.6TB DERA D5457 NVMe
SSD

IRQ N/A irqbalance enabled
OS Centos 7 (kernel 5.4.43)

FIO

version=fio–3.7, rw=randrw, size=15G
cpus_allowed=0–23, runtime=300, engine=libaio

iodepth=8, Direct I/O=on
CPU affinity enabled, block size=4KB

We implement PINoF as a loadable kernel module of Linux 5.4.43 by adding
723 lines of C codes on the basis of the standard NoT implementation, which
can be reached at https://github.com/jackey-gu/PINoF. We build a PINoF pro-
totype using the hardware and software configurations described in Table 1.

5.2 Evaluation Results
Performance with varying read/write ratios We evaluate the impact of
intra-queue PDU isolation by setting different read/write IO request ratios in

PINoF 9

0 25 50 75 100
Write Ratio(%)

0

1

2

3

4

Av
g

La
te

nc
y(

ns
)

1e5 RAM

i10 Read
PINoF Read
NoT Read

i10 Write
PINoF Write
NoT Write

(a)
0 25 50 75 100

Write Ratio(%)
0

2

4

6

Ta
il

La
te

nc
y(

ns
)

1e5 RAM

i10 Read
PINoF Read
NoT Read

i10 Write
PINoF Write
NoT Write

(b)
0 25 50 75 100

Write Ratio(%)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
an

dw
ith

(K
B

/s
)

1e5 RAM

i10 Read
PINoF Read
NoT Read

i10 Write
PINoF Write
NoT Write

(c)

0 25 50 75 100
Write Ratio(%)

0

1

2

3

4

Av
g

La
te

nc
y(

ns
)

1e5 SSD

i10 Read
PINoF Read
NoT Read

i10 Write
PINoF Write
NoT Write

(d)
0 25 50 75 100

Write Ratio(%)
0.0

0.5

1.0

1.5

2.0

2.5

Ta
il

La
te

nc
y(

ns
)

1e6 SSD

i10 Read
PINoF Read
NoT Read

i10 Write
PINoF Write
NoT Write

(e)
0 25 50 75 100

Write Ratio(%)
0.0

0.5

1.0

1.5

2.0

B
an

dw
ith

(K
B

/s
)

1e5 SSD

i10 Read
PINoF Read
NoT Read

i10 Write
PINoF Write
NoT Write

(f)

Fig. 5. Latency comparison with varying write ratio.

4 8 16 32 64
Block Size(KB)

1.5

2.0

2.5

3.0

3.5

IO
PS

1e4 RAM

i10
PINoF
NVMe-TCP
PINoF-Nprio

(a)
4 8 16 32 64

Block Size(KB)

1.5

2.0

2.5

3.0

IO
PS

1e4 SSD

i10
PINoF
NVMe-TCP
PINoF-Nprio

(b)
4 8 16 32 64

Block Size(KB)

2

3

4

5

Av
g

La
te

nc
y(

ns
)

1e5 RAM

i10
PINoF
NVMe-TCP
PINoF-Nprio

(c)
4 8 16 32 64

Block Size(KB)

2

4

6

Av
g

La
te

nc
y(

ns
)

1e5 SSD

i10
PINoF
NVMe-TCP
PINoF-Nprio

(d)

Fig. 6. IOPS and latency comparison with varying block sizes.

FIO benchmarks. As shown in Fig. 5, compared with NoT and i10, PINoF shows
obvious advantages in average latency, tail latency, and bandwidth. When eval-
uated using RAM, compared with i10, PINoF decreases the average latency
and tail latency by 31.94% and 20.45% respectively in the read-only condition.
Meanwhile, PINoF provides 33.58% bandwidth growth than i10. In the write-
only condition, PINoF shows about 13.52% performance improvement in terms
of latency and bandwidth, which is a little bit lower than that of the read-only
workload. In the condition of mixed read and write requests, PINoF presents by
up to 20.57% latency reduction and 18.92% bandwidth improvement than i10.

PINoF achieves similar performance trends when evaluated using NVMe
SSDs, as shown in Fig. 5. However, the overall performance improvements are
lower than that of RAM. This is because the bandwidth of a single NVMe SSD
can be easily saturated in the experiments, which limits the demonstration of the
performance benefits of PINoF. Nevertheless, PINoF still has an 12.82% band-
width improvement than i10 at least. As intra-queue PDU isolation can give
play to the advantages of precise resource allocation and dedicated processing
of read and write specific paths, it can significantly alleviate the performance
interference of the aggregated PDUs no matter works alone or collaboratively
with other PDU management strategies.

10 W.Gu et al.

0 4 8 12 16 20 24
Number of CPUs

1.0

1.5

2.0

2.5

3.0

3.5

Av
g

La
te

nc
y(

ns
)

1e5 RAM

i10 PINoF NVMe-TCP

(a)
0 4 8 12 16 20 24

Number of CPUs

2.0

2.5

3.0

3.5

4.0

Av
g

La
te

nc
y(

ns
)

1e5 SSD

i10 PINoF NVMe-TCP

(b)
0 4 8 12 16 20 24

Number of CPUs

0

1

2

3

4

B
an

dw
ith

(K
B

/s
)

1e6 RAM

i10
PINoF
NVMe-TCP

(c)
0 4 8 12 16 20 24

Number of CPUs
0.0

0.5

1.0

1.5

2.0

2.5

B
an

dw
ith

(K
B

/s
)

1e6 SSD

i10
PINoF
NVMe-TCP

(d)

Fig. 7. Latency and bandwidth comparison with varying number of CPU cores.

Performance with varying block sizes In this experiment, we choose the
write-intensive workloads with different block sizes to comprehensively evaluate
the impact of the isolated scheduling design because the requests will generate
a large number of R2T PDUs, which can activate the isolated scheduling in I/O
path. By setting all CMD and Data PDUs aggregation conditions to 16 64KB
and cancelling PDUs weight design, we enable a PINoF_Nprio system without
a isolation scheduling function, so as to compare with PINoF to prove its effect.

Fig. 6 shows the IOPS and latency comparisons with varying I/O request
sizes to access remote NVMe SSD and RAM block devices. Apparently, the per-
formance of PINoF is much better than NoT and i10 no matter to access remote
RAM or NVMe SSDs. PINoF can provide an IOPS improvement of 9.15% than
that without designing isolated scheduling for R2T PDUs. Notably, as shown in
Fig. 6(c) and 6(d), 16K block size is a dividing point of latency performance,
where the trend lines of the four tested systems change dramatically. This is be-
cause when write remote storage with 4K and 8K requests, all the write requests
issued from host are inline write requests that will not generate R2T PDUs. For
the write requests larger than 8KB, R2T PDUs are necessary for these write
requests. Besides, all the R2T PDUs are highly relevant to H2CData PDUs
and considered more urgent for transferring in PINoF. In this case, the isolated
scheduling design in PINoF can significantly mitigate the system performance
loss caused by aggregating PDUs.

Scalability with number of cores To further understand the performance
scalability of PINoF in the systems with multiple CPU cores, we evaluate the
performance of PINoF with different number of CPU cores from 1 to 24. As
shown in Fig. 7, both i10 and PINoF present better performance than NoT as
the number of PINoF queues increases. Besides, for a fixed number of CPU cores
involved in this experiment, PINoF always performs better than i10 and NoT in
both latency and bandwidth. This indicates that all the designed strategies in
PINoF do not incur any performance scalability loss.

As shown in Fig. 7(c), when accessing remote RAM, the bandwidth of PINoF
is steadily improved as the number of CPU cores increases and is roughly pro-
portional to the number of CPU cores. This trend does not appear in Fig. 7(d)
is mainly because the performance of NVMe SSD cannot saturate the high per-
formance of PINoF. Different from bandwidth, the average latencies of i10 and
PINoF are obviously reduced compared with NoT as the number of CPU cores
are used in this experiment while the average latency of PINoF increases. This
is because both i10 and PINoF can benefit from the increase of CPU cores that

PINoF 11

Readrandom ReadwhileWriting
0.0

0.5

1.0

1.5

2.0

2.5

3.0

IO
PS

1e4

NoT PINoF i10

(a)
Readrandom ReadwhileWriting

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 P
99

 L
at

en
cy

NoT PINoF i10

(b)

Fig. 8. IOPS and latency comparison with RocksDB.

accelerate the trigger of threshold for batch transfer, i.e., ring the doorbell with
a shorter waiting time. As the average waiting time of the PDUs aggregated in
freight is shorten, PINoF finally achieves lower average I/O latency.

RocksDB Performance We use RocksDB, a widely-deployed key-value stor-
age system, as a real application to evaluate the performance of PINoF. With
Ext4 filesystem to format the SSD block device and the default db_bench tool,
we populate a 43GB database containing 1,000,000,000 pieces of data.

Fig. 8 shows the evaluation results of P99 tail latency and IOPS perfor-
mance. Compared with the FIO tests, due to the high application layer over-
head of RocksDB, the performance improvement of PINoF slightly reduces. The
throughput of PINoF is almost 0.44 times higher than that of NoT, while it is
about 15.66% higher than that of i10. In terms of latency performance, since the
total number of operations is fixed, the average latency is inversely proportional
to IOPS, so we use P99 tail latency to represent the system latency performance.
PINoF gains about a 12.91% improvement than i10, and has a greater improve-
ment compared with NoT. As RocksDB test is to operate on the file system while
FIO is to directly read the block device, thus the additional operation overhead
in RocksDB leads to this performance difference. Since the application layer and
filesystem occupy more latency and limit the bandwidth, the benefits obtained
from the modification of the kernel software layer are partially overshadowed.

6 Conclusion
This paper introduces the design, implementation and evaluation of PINoF, a
performance isolated NVMeoF design that follows the standard NoT protocol.
The experimental results show that PINoF can achieve better performance in
latency, bandwidth, and throughput compared with NoT and i10.

Acknowledgements We would like to thank the NPC reviewers for their in-
sightful feedback. This work was supported in part by Excellent Youth Founda-
tion of Hunan Province under Grant No.2021JJ10050 and the Science Founda-
tion of NUDT under grant ZK21-03.

References

1. Ahmad, I., Gulati, A., Mashtizadeh, A.: Vic: Interrupt coalescing for virtual ma-
chine storage device io. In: 2011 USENIX Annual Technical Conference. pp. 45–58
(2011)

12 W.Gu et al.

2. Bjørling, M., Axboe, J., Nellans, D., Bonnet, P.: Linux block io: introducing multi-
queue ssd access on multi-core systems. In: Proceedings of the 6th international
systems and storage conference. pp. 1–10 (2013)

3. Cheng, L., Wang, C.L.: Network performance isolation for latency-sensitive cloud
applications. Future Generation Computer Systems 29(4), 1073–1084 (2013)

4. Cobb, D., Huffman, A.: Nvm express and the pci express ssd revolution. In: Intel
Developer Forum (2012)

5. Cohen, D., Talpey, T., Kanevsky, A., Cummings, U., Krause: Remote direct mem-
ory access over the converged enhanced ethernet fabric: Evaluating the options. In:
2009 17th ieee symposium on high performance interconnects. pp. 123–130 (2009)

6. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: Farm: Fast remote mem-
ory. In: 11th USENIX Symposium on Networked Systems Design and Implemen-
tation. pp. 401–414 (2014)

7. Gao, P.X., Narayan, A., Karandikar, S., Carreira, J., Han: Network requirements
for resource disaggregation. In: 12th USENIX Symposium on Operating Systems
Design and Implementation. pp. 249–264 (2016)

8. Guz, Z., Li, H., Shayesteh, A., Balakrishnan, V.: Performance characterization
of nvme-over-fabrics storage disaggregation. ACM Transactions on Storage 14(4),
1–18 (2018)

9. Hwang, J., Cai, Q., Tang, A., Agarwal, R.: Tcp≈rdma: Cpu-efficient remote storage
access with i10. In: 17th USENIX Symposium on Networked Systems Design and
Implementation. pp. 127–140 (2020)

10. Hwang, J., Vuppalapati, M., Peter, S., Agarwal, R.: Rearchitecting linux storage
stack for µs latency and high throughput (2021)

11. Kaufmann, A., Stamler, T., Peter, S., Sharma: Tas: Tcp acceleration as an os ser-
vice. In: Proceedings of the Fourteenth EuroSys Conference 2019. pp. 1–16 (2019)

12. Lee, M., Kang, D.H., Lee, M., Eom, Y.I.: Improving read performance by iso-
lating multiple queues in nvme ssds. In: International Conference on Ubiquitous
Information Management & Communication. p. 36 (2017)

13. Li, Y.T., Leith, D., Shorten, R.N.: Experimental evaluation of tcp protocols for
high-speed networks. IEEE/ACM Transactions on networking 15(5), 1109–1122
(2007)

14. Marinos, I., Watson, R.N., Handley, M.: Network stack specialization for perfor-
mance. ACM SIGCOMMComputer Communication Review 44(4), 175–186 (2014)

15. Minturn, D.: Nvm express over fabrics. In: 11th Annual OpenFabrics International
OFS Developers’ Workshop (2015)

16. Nguyen, D.T., Zhou, G., Xing, G., Qi, X., Hao, Z., Peng, G., Yang, Q.: Reducing
smartphone application delay through read/write isolation. In: the 13th Annual
International Conference (MobiSys 15). pp. 287–300 (2015)

17. Qiao, X., Xie, X., Xiao, L.: Load-aware transmission mechanism for nvmeof stor-
age networks. In: International Conference on High Performance Computing and
Communication (HPCCE 2021). pp. 105–112 (2022)

18. Son, Y., Kang, H., Han, H., Yeom, H.Y.: An empirical evaluation of nvm express
ssd. In: International Conference on Cloud & Autonomic Computing (ICCAC 15).
pp. 275–282 (2015)

19. Tai, A., Smolyar, I., Wei, M., Tsafrir, D.: Optimizing storage performance with cal-
ibrated interrupts. In: Proceedings of the 15th USENIX Symposium on Operating
Systems Design and Implementation. pp. 129–145 (2021)

20. Zheng, S., Hoseinzadeh, M., Swanson, S.: Ziggurat: a tiered file system for non-
volatile main memories and disks. In: 17th USENIX Conference on File and Storage
Technologies. pp. 207–219 (2019)

