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Abstract—Distributed systems are highly heterogeneous, dy-
namic and unstable. It is therefore realistic to expect that some
resources will fail during use. To overcome these problems and
achieve better performance, it is necessary to implement load
balancing algorithms that are adapted to any situation where
some nodes are overloaded while others are less so or are even
idle.

Load balancing between JobManager and JobManagers can-
didates, and between JobManagers of the same scheduler or load
balancing between Schedulers, implies that additional loads are
only done hierarchically.

In this paper, we propose a two-level dynamic, hierarchical
and decentralised load balancing strategy focusing on three
performance indicators namely: response time, process latency
and running time of MapReduce jobs.

The first level of load balancing is intra-scheduler, in order
to avoid the use of the large-scale communication network,
and the second level of load balancing is inter-scheduler, for
load regulation of our whole system. The proposed solution
provides a better optimisation of the load balancing process and
an improvement of the task mean response time with minimal
communication.

Index Terms—Big Data, Distributed processing, Load balanc-
ing, CLOAK-Reduce, Task allocation

I. INTRODUCTION

Big Data can be considered in two main phases : Data stor-
age on the Distributed File System (DFS) and Data processing
on Distributed System. Different approaches to distributed
computing have been proposed for Big Data processing, the
most widely used being MapReduce [1].

DHTs have been widely studied because of their attractive
properties: efficiency and simplicity with Chord [3], controlled
data placement with SkipNet [4], Pastry [5] routing and
localization, and good consistency and reliable performance
with Kademlia [6].

CLOAK1 DHT, the basis of our work, is based on a
hyperbolic tree constructed in hyperbolic space (hyperboloid)
and projected stereographically into a Poincaré disk (Euclidean
plane) of radius 1 centred at the origin where the tree node
uses a virtual coordinate system [7]–[9].

Like DHTs, several studies and many load-balancing al-
gorithms [10]–[12] have been proposed for traditional cluster
computing and distributed systems..
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However, load balancing, which consists of allocating data
first and then eventually redistributing it across a set of nodes
in order to minimise their processing time, remains a real
problem for distributed systems.

Although the problem of load balancing of homogeneous
distributed systems has been intensively studied, the new chal-
lenges related to heterogeneous distributed systems make it an
interesting topic for many projects because of the management
of node heterogeneity.

Our objective is to propose a load balancing and task
allocation strategy for our distributed CLOAK-Reduce model
inspired by the CLOAK DHT [7]–[9] and MapReduce [13]–
[15].

We will then evaluate the performance of this strategy by
simulations.

Our study focuses on the following aspects:
1) Our first contribution is the summary of our model of

distributed processing platform CLOAK-Reduce.
2) Our second contribution is the description of the load

balancing strategy of CLOAK-Reduce.
3) the third contribution is to study the quality of the results

produced by the analysis of the proposed load balancing
strategy.

Our paper will be organized as follows:
1) a first step covers related works;
2) a second step, we describe CLOAK-Reduce platform;
3) the third part, we analyse the results of the different

simulations.

II. RELATED WORKS

A. Distributed Systems

Distributed System is a heterogeneous set of independent
computers that appears to its users as a single coherent system
[16].

It is an arbitrary set of computing units (Nodes) with its own
address space, linked in a network so that they can exchange
messages and coordinate their activities. A distributed system
is capable of handling any number of processes. Communi-
cation between the different nodes is done by messages. It
is important, to take into account the communication delay
between the different nodes [17] .



Fig. 1. Distributed systems computing environment

B. Grid Computing

Grid computing is a virtual infrastructure made up of a set
of potentially shared, heterogeneous, distributed, autonomous
and delocalised computing resources [18].

Grid computing is an autonomous, dynamically reconfig-
urable, scalable computing infrastructure aggregating a large
number of computing and data storage resources. It is intended
to make resources available to users for distributed computing.

More concretely, a computing grid is made up of a large
number of heterogeneous and often delocalized machines
linked by an Internet network and made homogeneous to users
by middleware [19].

C. Distributed Hash Tables

A DHT is a technology for constructing a hash table in a
distributed system where each piece of data is associated with
a key and is distributed over the network. DHTs provide a
consistent hash function and efficient algorithms for storing
STORE(key, value) and locating LOOKUP(key) of the node
responsible for a given (key, value) pair.

It is therefore important to specify that only a reference of
the declared object (Object IDentifier (OID)) is stored in the
DHT. Concerning the search for an object, only by routing the
searched key can the set of associated values be found [7], [8],
[16].

In practice, DHTs are substituted by ”overlay” networks on
top of the physical networks, thus reducing the size of the table
at each node while considerably increasing the efficiency of
the search algorithm.

D. Load Balancing

Load balancing is the process of allocating workloads
and resources between nodes so that no node is overloaded,
underloaded or idle. With the advent of Big Data and the
proliferation of connected objects, the world has become
digital, which can lead to system failure, as the number of
requests submitted leads to system overload.

Therefore, to solve this overload problem, load balancing
algorithms are used to distribute the tasks among several
nodes. These algorithms track and manage the demand of

running applications by distributing resources across multiple
systems. Load balancing also aims to optimise the use of
resources.

CLOAK DHT, to solve this problem uses the root as the
only controller so that it can handle the workloads, but after
some time, if more requests are made, it will cause the system
to fail again. This process is considered onerous because it is
also costly. This is why a hierarchical solution is considered
the best, as it avoids the problem of bottlenecks by distributing
the loads according to the capacity of the nodes.

E. Dynamic Load Balancing Algorithms Classification

To activate the load balancing and to decide which nodes to
give the next job, load balancing algorithms are used. So load
balancing algorithms are classified into Static and Dynamic
load balancing algorithms.

In this paper, we mainly interested in dynamic load balanc-
ing which offers three categories of load balancing algorithms
[27]: decentralized, centralized or hierarchical. A dynamic
process allocation algorithm consists of two basic elements: an
information element and a control element (Figure 2). The role
of the information element is to maintain information about
the state of the distributed system, which is used by the control
element to perform the actual placement of processes [29].

In a dynamic environment the lightest node among whole
nodes is searched and that nodes is selected for balancing a
load. These algorithms easily adapt to the changes made in
the load during runtime [30], [31]. Dynamic environment is
considered difficult and complex to apply but it balances a
load in an efficient way.

Fig. 2. Structure of a dynamic allocation algorithm

F. Some Load Balancing Performance Indicators

Some performance indicators are needed to measure the
effectiveness of the different load balancing algorithms. They
have been the subject of many studies which can be resumed
as follows [12]:

• Response Time: This is the time spent in the queue of
ready processes before the first execution.

• Process latency: or Waiting Time for Jobs is the time a
process spends waiting before started.

• Running time: or Restitution time is the time that elapses
between the submission of the job and its completion.



• Throughput: It indicates that how many requests (tasks)
completed execution per unit time.

• Makespan: It is the total time required to complete all
the tasks submitted to a virtual machine.

• Fault tolerance: It is the capabilities of the system to
perform uninterrupted and uniform service even if one or
more arbitrary nodes fail.

• Migration time: The time required to transfer a task or
a virtual machine from one physical machine to another.

• Degree of Imbalance: It measures the imbalance among
virtual machines.

• Energy Consumption: It is the amount of energy con-
sumed by the devices used in the cloud computing or by
the particular data centers.

• Resource utilization: It is the notch to which the re-
sources of the system like CPU, Memory, Storage, and
Networking etc. are uniformly utilized.

• Reliability: The task is transferred to any other virtual
machine in case of any system failure to enrich the
reliability of the system.

• Band width (BW): It determines the regulating of out-
going traffic from the local network and incoming traffic
sent by an internet agent. This disparity of traffic over a
network needs to be managed.

It should also be noted that this is not an exhaustive list,
many other parameters can be taken into account depending
on the needs of the researcher. As outlined in the abstract, this
study is concerned with the Response time, Process latency,
and Running time of a task.

III. OUR CONTRIBUTIONS

A. CLOAK-Reduce

CLOAK-Reduce is built by implementing, on the CLOAK
DHT, a module to create and execute MapReduce operations.
It is a distributed model that exploits the advantages of
CLOAK DHT and MapReduce. CLOAK DHT to submit
Map() and Reduce() jobs in a balanced way thanks to the repli-
cation mechanisms it offers in addition to the task scheduling
strategy we provide (Figure 3)

The tree structure of the CLOAK DHT allowed us to define
a hierarchical architecture of load balancing at two levels:
Intra-scheduler for local load balacing and Inter-schedulers for
global load balacing (Figure 4).

Our model consists of a root node, three schedulers, several
candidate nodes or JobManagers candidates and builder nodes
or JobBuilders.

1) Summary of the invention:
a) Root node: The root is a node of coordinate (0,0), the

minimal depth (D0) tree, of the Poincaré disk. It allows to :

• Keep tasks that cannot be executed immediately in a Jobs
queue;

• Maintain schedulers load information;
• Decide to submit a task to a scheduler.

Fig. 3. Architecture of CLOAK-Reduce

b) Schedulers: The schedulers of depth (D1), have the
function of :

• Maintain the load information of all their JobManagers;
• Decide their JobManagers load balancing;
• Synchronise their load information with their replicas to

manage their failure and the others schedulers for load
balacing;

• Transfer unsubmitted tasks to the root;
c) JobManagers: JobManagers candidates have a mini-

mum depth (≥ D2). They are elected for:
• Supervise MapReduce jobs running;
• Manage the information related to JobBuilders;
• Maintain their load state;
• Decide local load balacing with their circulars replicas

JobManager candidate of the same scheduler;
• Inform JobBuilders of the load balancing decided for the

backup of intermediate jobs.
d) JobBuilders: The JobBuilders are of minimum depth

(≥ D3). Their function is to:
• Execute MapReduce jobs;
• Synchronize the images of their different works as they

go on their radial replicas of the depth > D3.
• Keep the information on the state of their charge up to

date;
• Update this workload information at the JobManager;
• Perform the balancing necessities ordered by their Job-

Managers.

Fig. 4. CLOAK-Reduce function diagram



B. Load balancing strategy

Our strategy is to load balance at each JobManager, between
JobManagers, and between Schedulers. This load balancing
approach using key hashing is more deterministic and allows
for more or less efficient affinity (under certain conditions)
between nodes.

Load balancing is performed between nodes and their
circular replicas (JobManagers candidates). It saves response
time on the one hand, and reduces the communication time of
the model on the other.

1) Brief description:

• Each JobManager has a period, during which it sends its
load information to the JobManagers candidates of the
same scheduler.

• Each JobManager has a period, during which it sends its
load information to its scheduler.

• Each scheduler has a period, during which it sends its
load information to the other schedulers.

• Each scheduler has a period, during which it sends its
load information to the root.

• Intra-scheduler load balancing is triggered by schedulers
or their JobManagers.

• Intra-scheduler load balancing of JobManager is per-
formed between the JobManagers and its JobManagers
candidates to avoid the use of any scheduler communi-
cation network.

• Scheduler’s intra-scheduler load balancing favours, where
possible, load balancing between JobManagers to avoid
the use of any Scheduler communication network.

• The overloaded scheduler redirects the task to be submit-
ted to the root spool.

• Inter-scheduler load balancing is triggered by the over-
loaded schedulers in case intra-scheduler load balancing
is not successful.

• Inter-scheduler load balancing favours load balancing
between schedulers.

• The root submits pending tasks to schedulers based on a
load level.

2) Intra-scheduler load balancing: Each JobManager can
trigger a load balancing operation based on a threshold load.
This threshold is estimated from cumulative information col-
lected periodically from JobBuilders. The load balancing of the
JobManager takes place between its candidate JobManagers.
The inter-JobManager load balancing is ordered by the Sched-
uler when that of a JobManager fails. This locality approach
aims to reduce communication costs.

3) Inter-scheduler load balancing : Inter-schedulers load
balacing start only when intra-scheduler balancing fails. In
this case, all the new submissions of the overloaded scheduler
will be transfered to the root.

In addition, the root, depending on the scheduler’s informa-
tion, may instruct the overloaded scheduler to perform inter-
schedulers load balancing, taking into account allocation costs
and the choice of tasks to select.

Fig. 5. Intra-scheduler load balancing

Fig. 6. Inter-schedulers load balancing

4) Brief description of some load balancing algorithms:
We are focused on the Response time, the Process latency,
and the average execution time of a task as a JobManager
load.
Notations :

• Break-even point for JobManagers :
– αj : Response time,
– βj : Waiting for jobs,
– ϵj : Running time for jobs.

• Break-even point for Scedulers :
– αs : Response time,
– βs : Waiting for jobs,
– ϵs : Running time for jobs.

• Nodes :
– Jb : JobBuilder,
– Jm : JobManager,
– Jmc : JobManager candidate,
– S : Scheduler,
– R : Root

• Variables :
– τr : Jb response time ,
– τa : Jb wait time ,
– τe : Jb run time,
– Φr : Jm response time,
– Φa :Jm wait time,
– Φe : Jm run time



Algorithms:

Algorithm 1: Intra-Scheduler load balancing

1 for Every Jm of S do
2 for Each time period do
3 /* Receive from every Jb of Jm */
4 Calculate τr = Στri;
5 Calculate τa = Στai;
6 Calculate τe = Στei;
7 Send τr, τa, τe to their S associated ;
8 if ((τr > αj) and (τa > βj) and (τe > ϵj)) then
9 Transfer submissions from Jm to Jmc ;

10 else
11 Transfer submissions from Jm to Jb ;

Algorithm 2: Tasks allocation

Input: Tr[3], Ta[3], T e[3],Φr,Φa,Φe

1 for Every S of CLOAK-Reduce do
2 /* Calculate the capacities of S*/
3 Calculate Φr = Στr;
4 Calculate Φa = Στa;
5 Calculate Φe = Στe ;
6 TrS [i] = Φr ;
7 TaS [i] = Φa;
8 TeS [i] = Φa;
9 /* List S capacities by descending order relative to their

load */
10 Sort TrS [i] ; Sort TaS [i]; Sort TeS [i]
11 if ((Φr > αs) and (Φa > βs) and (Φe > ϵs)) then
12 Transfer submissions from S to R.JobSpool ;
13 else
14 Transfer submissions from S to Jmc ;

Algorithm 3: Inter-Schedulers load balancing

1 Call Algorithm 2
2 while Capacity(Si) > Capacity(Si+1) And R.JobSpool

!=ϕ do
3 if R.JobSpool !=ϕ then
4 Transfer submissions from R.JobSpool to S ;
5 Underloaded R.JobSpool;
6 R.JobSpool −−;
7 else
8 Capacity(Capacity(Si+1))

C. Performance analysis

1) Experimental setup: For data collection, the circular and
radial replication mechanisms of CLOAK-Reduce have been
set to five (05), in a dynamic network with 10% churns, have
been required.

In order to study the scalability of the system in addition
to load balancing, we opted to consider a random number of
nodes as follows: 100, 300, 500 and 1000, with the number
of tasks varying from 6000 to 10000 in steps of 1000.

The data processed in the rest of this paper are the result
of ten (10) independent repetitions of each simulation phase
in order to extract a significant average.

This collection allowed us to conduct a comparative study
on the Intra-Scheduler and Inter-Schedulers load balancing
strategy.

This limitation is due to the hardware constraints of the ma-
chine to run the simulation. All experiments were performed
on a 2.60 GHz Intel Core i5 CPU PC with 8 GB memory
running Windows 10 Professional.

To achieve our simulation objectives, we opted to use the
PeerSim simulator.

2) Simulator:
• PeerSim [33] is a simulator whose main objective is

to provide high scalability, with network sizes up to
106 nodes, which characterises its dynamicity and ex-
tensibility. Its modularity facilitates the coding of new
applications. The PeerSim configuration file has three
types of components: protocols, dynamics and observers.

• Simulation is a widely used method for performance
evaluation. It consists of observing the behaviour of a
simplified model of the real system with the help of
an appropriate simulation program which will result in
graphs that are easy to analyse and interpret. This method
is closer to the real model than analytical methods, and
is used when evaluation by direct measurement becomes
very expensive [34].

3) Some performance indicators: We are interested by
reducing the response time, the process latency for jobs,
and the running time of MapReduce tasks. The following
performance metrics have been analysed in order to measure
the performance.

• To calculate the mean response time (MRT) of the
processes we use the following formula:

MRT =

n∑
i=0

τri/n (1)

With τri= completion time - arrival date
• The mean process latency (MPL) is calculated as follows

MPL =

n∑
i=0

τai/n (2)

With τai= τri - running time
• Running time: or Restitution time is the time that elapses

between the submission of the job and its completion.



• Variance: The variance of a series, noted V, is the
average of the squares of the deviations of each value
from the mean m of the series.
V=

n1 × (x1 −m)2 + n2 × (x2 −m)2 + ...+ np × (xp −m)2

N
• Standard deviation : The standard deviation of a series

is the number, noted σ, with σ =
√
V , where V is the

variance of the series.
• Max / Min: represented respectively the maximum and

minimum mean of the results of the ten (10) independent
runs of each simulation phase. .

D. Load balancing performances

TABLE I
RATIO OF PERFORMANCE TO RESPONSE TIME

Nœuds Nombres de tâches soumises X̄
6000 7000 8000 9000 10000

100 41.22 47.11 46.50 44.21 43.21 44.45
300 34.65 45.92 48.34 47.23 45.16 44.26
500 33.93 37.49 36.42 33.59 37.44 35.77

1000 33.35 36.89 36.15 36.69 41.99 37.01

Fig. 7. Mean Response Time comparison for varying number of tasks

TABLE II
RATIO OF PERFORMANCE TO WAITING TIME FOR JOBS

Nœuds Nombres de tâches soumises X̄
6000 7000 8000 9000 10000

100 48.17 52.75 45.50 53.12 42.98 48.50
300 45.56 53.41 55.02 54.09 52.22 52.06
500 39.09 47.14 50.82 51.83 54.69 48.71

1000 33.40 39.47 43.46 48.02 52.82 43.34

Fig. 8. Mean Process Latency comparison for varying number of tasks

TABLE III
RATIO OF PERFORMANCE TO RUNNING TIME

Nœuds Nombres de tâches soumises X̄
6000 7000 8000 9000 10000

100 4.51 10.97 15.44 15.97 16.88 12.75
300 14.83 15.28 17.61 17.40 17.16 16.46
500 12.11 14.10 14.76 14.30 15.92 14.24
1000 9.93 13.62 14.67 14.37 16.02 13.72

Fig. 9. Mean Running Time comparison for varying number of tasks

We compare CLOAK-Reduce and the CLOAK DHT, un-
like CLOAK DHT which centralized load balancing strategy,
CLOAK-Reduce has a hierarchical load balancing strategy.

Therefore, our strategy performs a load balancing between a
JobManager and its JobManagers candidate before considering
a load balancing between the different JobManagers of a
scheduler and in extreme cases a load balancing between
schedulers.

Figure 7 illustrates the improvement in mean response time
obtained by our load balancing model for different numbers of
nodes by varying the number of jobs. We obtain a minimum
average response time gain of 35.77% and a maximum of
44.75% with an overall average of 40.37%.

Figure 8 shows the mean process latency improvement
obtained by our load balancing model for different numbers of
nodes by varying the number of tasks. We obtain a minimum
average response time gain of 43.43% and a maximum of
52.06% with an overall average of 48.18%.

Figure 9 illustrates the mean running time improvement
obtained by our load balancing model for different numbers of
nodes by varying the number of tasks. We obtain a minimum
average response time gain of 12.75% and a maximum of
16.46% with an overall average of 14.29%.

From the different observations above, we can confirm that
CLOAK-Reduce load balancing strategy certainly presents
better results with respect to the three performance indicators
that were the subject of this study. However, the irregularity
of the time saving as a function of the number of nodes and
tasks may be due to underloaded or even inactive nodes as
the tasks are submitted according to a principle described in
III-A1.

IV. CONCLUSIONS AND PERSPECTIVES

This paper presented a new load balancing and task schedul-
ing strategy for the CLOAK DHT. It proposed a hybrid hierar-
chical and decentralised load balancing model. The simulation



results show an overall improvement of our three performance
indicators. It confirms our theoretical approach regarding the
load balancing strategy between multiple JobManagers in
charge of job submission and their circular replicas (candidate
JobManagers) or even JobManagers of the same scheduler.
Furthermore, inter-Scheduler load balancing gives the privilege
of balancing between Schedulers and not a global balancing
of the whole system. The queue role assigned to the level 0
node. This removal of the root in our load balancing strategy
improves the balancing performance of the CLOAK DHT.

In perspective, we will perform simulations to highlight
its performance in our CLOAK-Reduce model. Then we
will conduct a comparative study with distributed processing
architectures using tree structures.
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Decentralized and locality aware replication method for DHT-based P2P
storage systems. Future Generation Computer Systems, 2018, vol. 84,
p. 32-46.

[33] Alberto Montresor and Márk Jelasity. Peersim : A scalable p2p sim-
ulator. In 2009 IEEE Ninth International Conference on Peer-to-Peer
Computing, pages 99–100. IEEE, 2009.

[34] Chen, Ken. Evaluation de performances par simulation et analyse:
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