
EasyChair Preprint
№ 1731

Machine-Assisted Reformulation for MiniZinc

Huu-Phuc Vo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2019



Machine-Assisted Reformulation for MiniZinc
Huu-Phuc Vo

Dept. of Information Technology
Uppsala University
Uppsala, Sweden

Email: huu-phuc.vo@it.uu.se

Abstract—Model reformulation plays an important role in
improving models and reducing search space so that solutions
can be found faster. In solving Constraint Satisfaction Problems
(CSPs), a model of a CSP may be solved rapidly, while a
different model may take excessively long to solve. The efficient
solution of CSP is significant in real-world applications, such as
air traffic management, resource allocation, production schedul-
ing, and bioinformatics. Many technologies such as constraint
programming (CP), hybrid technologies, mixed integer pro-
gramming (MIP), constraint-based local search (CBLS), boolean
satisfiability (SAT) could have different solvers and backends
to solve the real-time problems. Model reformulation can have
a significant impact on solving time. Techniques from formal
methods will be used to provide machine assistance for MiniZinc,
which is the high-level modelling language to model CSPs. The
verification tool, Isabelle, will be used to verify the correctness
of reformulations. We plan to apply recent results in formal
methods such as program analysis and synthesis to provide semi-
automated frameworks for model analysis. In this paper, we
identify the challenges, implement frameworks, and evaluate our
experimental results in reformulations for future research.

Index Terms—formal methods, implied constraint, reformula-
tions, constraint programming, optimisation, modelling languages

I. MOTIVATION

Model reformulation [1] plays an important role in improv-
ing models and reducing search space so that solutions can
be found faster. In solving Constraint Satisfaction Problems
(CSPs) [2], a model of a CSP may be solved rapidly, while
a different model may take excessively long to solve. The
efficient solution of CSP is significant in real-world applic-
ations, such as air traffic management, resource allocation
[3], production scheduling, and bioinformatics [4]. Because
such problems are often NP-hard, all known algorithms have
exponential-time worst-case behaviour. Many technologies
such as CP, MIP [5], CBLS, satisfiability modulo theories
(SMT) [6], [7], and SAT [6] could have different solvers and
backends to solve the real-time problems. Each technology
has its scope of application, and none of the technology is
dominant all problems. CP [8] is pervasive and widely used
to solve real-time problems which input data could be scaled
up to the enormous sizes, and results are required to be given
efficiently and dynamically.

CSPs can be reformulated automatically or semi-
automatically. The automatic reformulation of CSPs can
be obtained using various methodologies and approaches [9]–
[14]. The automation in modelling has been advanced in five

areas such as (1) generating a kernel, in which the compilation
in a direct or non-direct system, (2) identifying symmetries,
(3) breaking symmetries, (4) adding implied constraints,
and (5) transforming constraints. These five advances are
discussed in an invited talk at the 10th international workshop
on constraint modelling and reformulation [15]. In addition,
the reformulation may be achieved semi-automatically [16]–
[19]. One approach is using a learning-based reformulation
approach [19] or improving and stepping towards the
automatic methods work [20].

The reformulation of a model into a logically equivalent
model is a valuable tool to assist a modeller. A correct
reformulation can significantly improve the solving time with
the confidence of modeller. The Global Constraint Catalogue
[21], the global-constraint library of the MiniZinc system [22],
and the Essence system [23], [24] are a few resources for
reformulation. Both MiniZinc [22] and Essence [23], [24] are
solver-independent languages for modelling CSPs with many
common global constraints. In addition, their reformulations
are used when a target solver does not have the required
globals. Reformulations are inferred in both the Model Seeker
[25] and the Globalizer [26] by testing many combinations of
global constraints on possible input data and then ranking the
possible reformulations.

No proofs of correctness are provided for these reformu-
lations, and the modeller must decide the correctness of the
suggested reformulations. No work has been done on verifying
the correctness of such reformulation rules, although there are
tools [22]–[24] that could generate reformulation rules.

II. OBJECTIVES

Interactive theorem provers are notoriously difficult to use.
Moreover, the development of proof tactics can be difficult in
a new application area such as CP. However, even suggesting
and verifying only a few reformulation rules will remarkably
benefit modellers of CP and will still be a major advance
over state of the art. Machine assistance that provides verified
reformulation rules allows modellers to improve their models
by reformulations with confidence. The contributions of the
Ph.D. project are as follows

• Develop general-purpose tactics for reformulations of
models in CP.

• Propose proof systems to prove soundness and complete-
ness of reformulation rules.



• Provide semi-automated and automated frameworks for
model analysis, synthesis, and refinement.

• Implement a library of automatic generation of verified
reformulation rules for the MiniZinc toolchain.

The key objectives of the Ph.D. project are to support
modellers to generate equivalent models that are verified and
solve CSPs faster. The novelty and originality of the project
are that although many constraint modelling toolchains support
to generate reformulation rules [22]–[24], there is not any
work that has been done on verifying the correctness of
such generated reformulation rules. For instance, with possible
input date, the Model Seeker [25] and the Globalizer [26] test
many combinations of global constraints. Then, all possible
reformulations are ranked and finally provided to modellers
without verifying their soundness and completeness. Applying
theorem proving techniques and verifying reformulation rules
crucially differentiate our work from other existing works.
Even though just a few generated reformulation rules is veri-
fied, it could be a significant advance to non-expert modellers
over state of the art.

When writing this paper, it does not exist any model
reformulation system with the auto-generated proof of models
equivalence. The problem consists of several components and
research questions that are needed to solve gradually and incre-
mentally. It requires comprehensive knowledge, which is re-
lated to programming languages, theorem proving techniques,
optimisation methods, and machine learning. In order to solve
the problem, we divide the problems into sub-problems with
corresponding questions. For instances, (1) how to find the
implied constraints in a given model? (2) how to assert that
the improved model with supplemental implied constraints is
better than the original model? (3) how to automatically derive
the formulas of basic and improved models? (4) what and
how the translation between modelling language and proof
language? (5) how to develop an integrated system that takes
the original model, produces an improved model with the proof
of equivalence between these models?

To the engineering aspects, the system should contain four
components as follows

• Preprocessing component: to transform the model to
corresponding theorem prover input and vice versa.

• Reformulation component: to produce an improved model
from a given model.

• Theorem prover component: to prove the soundness and
completeness of two models.

• Intermediate language component: to translate between
modelling language and theorem proving representation.

III. METHODOLOGY

In the scope of the project, we aim to answer all questions
as mentioned above. In the initial phase, we firstly focus on
solving the problem manually. In the second phase, we se-
lectively improve some manual components to semi-automatic
components. In the third phase, we tackle the automated-
components problem. Finally, we accomplish the project by
integrating and benchmarking the system.

In the first phase, MiniZinc’s reformulation rules will be
formalised in Isabelle [?] or a similar system. We take ad-
vantage of Isabelle theorem prover to prove the soundness
and completeness of two models. We aim to develop general-
purpose tactics for the reformulation of models.

We investigate more specialised theories that will be useful
in proving the correctness and soundness in the second phase.
We will investigate logics for proving the correctness and
soundness of reformulation rules and their integration into
MiniZinc.

Finally, we will benchmark the system using several case
studies that could be found from MiniZinc competition [27],
and CSPLib [28].

Our preliminary results are summarised as follows
• a survey of model reformulations that compares, con-

trasts, and systematically categorises several approaches
• a publication which aims to solve a typical CSP us-

ing different solvers such as Gecode, Chuffed, Gurobi,
OscaR.cbls, and Lingeling over two versions of MiniZinc
toolchain.

IV. RESEARCH PLAN

We plan to achieve research goals in Table I. We fully
accomplished Problem relevance and a part of Research rel-
evance such as writing a survey at the moment. Furthermore,
we are partially working on the first Research contribution,
which is to develop general-purpose tactics for reformulations
of models in constraint programming.

Activity 2018 2019 2020 2021
Problem Relevance: Identification
and analysis of challenges in refor-
mulations, program synthesis, and re-
finement. Investigate and study formal
logic, theorem proving techniques, and
proof assistants

X

Research Contribution: Develop
general-purpose tactics for
reformulations of models in constraint
programming. Write the survey of the
fields.

X X

Research Contribution: Develop
proof systems to prove soundness and
completeness of reformulation rules.

X X

Research Contribution: Develop
semi-automated and/or automated
frameworks for model analysis,
synthesis, and refinement

X X

Research Contribution: Develop a
common foundation for automatic gen-
eration of verified reformulation rules,
and integrate to the MiniZinctoolchain.
Ph.D. thesis composition

X X

Research Communication: Bench-
marking: design and applications. The
preliminary and final Ph.D. defense

X

Table I: Timeline for Ph.D. Research



REFERENCES

[1] Barbara M Smith. Modelling. In Francesca Rossi, Peter van Beek, and
Toby Walsh, editors, Handbook of Constraint Programming, chapter 11,
pages 375–404. Elsevier, 2006.

[2] Eugene C. Freuder and Alan K. Mackworth. Constraint satisfaction:
An emerging paradigm. In Francesca Rossi, Peter van Beek, and Toby
Walsh, editors, Handbook of Constraint Programming, chapter 2, pages
11–26. Elsevier, 2006.

[3] Holmes E Miller, William P Pierskalla, and Gustave J Rath. Nurse
scheduling using mathematical programming. Operations Research,
24(5):857–870, 1976.

[4] Francisco Azevedo and Pedro Barahona. Applications of an extended set
constraint solver. In ERCIM / CompulogNet Workshop on Constraints,
2000.

[5] John N. Hooker. Integrated Methods for Optimization. Springer, second
edition, 2011.

[6] Clark Barrett. ” decision procedures: An algorithmic point of view,” by
daniel kroening and ofer strichman, springer-verlag, 2008. J. Autom.
Reasoning, 51(4):453–456, 2013.

[7] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat
and sat modulo theories: from an abstract davis–putnam–logemann–
loveland procedure to dpll (t). Journal of the ACM (JACM), 53(6):937–
977, 2006.

[8] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of
constraint programming. Elsevier, 2006.

[9] Marco Cadoli and Toni Mancini. Automated reformulation of specific-
ations by safe delay of constraints. Artificial Intelligence, 170(8):779–
801, 2006.

[10] Christian Bessiere, Joël Quinqueton, and Gilles Raymond. Mining
historical data to build constraint viewpoints. In 5th International
Workshop on Constraint Modelling and Reformulation, pages 1–16,
2006.

[11] Bernadette Martınez-Hernández and Alan M Frisch. The automatic
generation of redundant representations and channelling constraints. In
Proceedings of the 5th International Workshop on Constraint Modelling
and Reformulation, pages 42–56, 2006.

[12] Christopher Mears and Maria Garcia De La Banda. Towards automatic
dominance breaking for constraint optimization problems. In IJCAI,
pages 360–366, 2015.

[13] Christopher Mears and Maria Garcia De La Banda. Towards automatic
dominance detection in constraint optimisation problems. In ModRef15,
2015.

[14] John Charnley, Simon Colton, and Ian Miguel. Automatic generation of
implied constraints. In ECAI, volume 141, pages 73–77, 2006.

[15] Alan M Frisch. A decade of progress in constraint modelling and
reformulation the quest for abstraction and automation, 2011. Available
at https://www-users.cs.york.ac.uk/∼frisch/Research/decade.pdf.

[16] Remi Coletta, Christian Bessiere, Barry O’Sullivan, Eugene C Freuder,
Sarah O’Connell, and Joel Quinqueton. Semi-automatic modeling by
constraint acquisition. In International Conference on Principles and
Practice of Constraint Programming, pages 812–816. Springer, 2003.

[17] Remi Coletta, Christian Bessiere, Barry O’Sullivan, Eugene C Freuder,
Sarah O’Connell, and Joel Quinqueton. Constraint acquisition as semi-
automatic modeling. In Research and Development in Intelligent Systems
XX, pages 111–124. Springer, 2004.

[18] Özgür Akgün. Extensible automated constraint modelling via refinement
of abstract problem specifications. PhD thesis, University of St Andrews,
2014.

[19] Kiana Zeighami, Kevin Leo, Guido Tack, and Maria Garcia de la
Banda. Towards semi-automatic learning-based model transformation.
In International Conference on Principles and Practice of Constraint
Programming, pages 403–419. Springer, 2018.

[20] Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia
de la Banda. Learning from learning solvers. In Michel Rueher, editor,
Principles and Practice of Constraint Programming, pages 455–472,
Cham, 2016. Springer International Publishing.

[21] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit.
Global constraint catalogue: Past, present and future. Constraints,
12(1):21–62, Mar 2007.

[22] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard
cp modelling language. In Christian Bessière, editor, Principles and

Practice of Constraint Programming – CP 2007, pages 529–543, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[23] Alan M. Frisch, Matthew Grum, Chris Jefferson, Bernadette Mar-
tinez Hernandez, and Ian Miguel. The design of Essence: A constraint
language for specifying combinatorial problems. In IJCAI 2007, pages
80–87. Morgan Kaufmann, 2007.

[24] Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and
Ian Miguel. Automatically improving constraint models in Savile Row
through associative-commutative common subexpression elimination. In
Barry O’Sullivan, editor, CP 2014, volume 8656 of LNCS, pages 590–
605. Springer, 2014.

[25] Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting
global constraint models from positive examples. In International
Conference on Principles and Practice of Constraint Programming,
pages 141–157. Springer, 2012.

[26] Kevin Leo, Christopher Mears, Guido Tack, and Maria Garcia
De La Banda. Globalizing constraint models. In International Con-
ference on Principles and Practice of Constraint Programming, pages
432–447. Springer, 2013.

[27] Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien
Fischer. Minizinc challenge. https://www.minizinc.org/challenge.html.

[28] Barbara M. Smith. All combinatorial satisfaction problems. http://www.
csplib.org/.

https://www-users.cs.york.ac.uk/~frisch/Research/decade.pdf
https://www.minizinc.org/challenge.html
http://www.csplib.org/
http://www.csplib.org/

	Motivation
	Objectives
	Methodology
	Research Plan
	References

