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Abstract—Heating, ventilation, and air conditioning (HVAC) systems
of buildings account for a major part of global energy demand and HVAC
optimization offers significant potential to improve energy efficiency. As
a promising optimization technology, Model Predictive Control (MPC)
can reduce the energy demand while maintaining thermal comfort in
buildings, but it also requires a thermal building model. Most existing
models are too complex for a reliable parameter identification from
measurements or too simple to represent thermal comfort. In this paper,
we derive and implement a minimalistic thermal building model that can
be applied to (i) parameter identification from measurements (grey-box
modeling), and (ii) control of thermal parameters for assuring thermal
comfort. We derive our grey-box model from the laws of thermodynamics,
heat transfer, and the electro-thermal RC analogy. As a novelty, we
present not only the detailed theoretical derivation but also the open-
source code for applying the identification to various buildings. The
proposed minimalistic model ensures a reliable parameter estimation and
requires only a few measurements of temperatures, heating, and global
radiation. We identify and validate our model with measurements from
a research building under real-world conditions.

Index Terms—building control, thermal comfort, operative tempera-
ture, thermal building model, grey box model, model identification

I. INTRODUCTION

Buildings are responsible for approximately 40% of energy demand
[1], [2], which creates a significant potential for energy savings and
load shifting. Almost half of this energy is consumed by heating,
ventilation and air conditioning (HVAC) systems [3]. Advanced
control strategies of HVAC, e.g. by model predictive control (MPC),
provide great possibilities for energy savings [4], the integration of
renewable energy [5] or grid stabilization by Demand Response (DR)
[6]–[8]. For instance, DR can help to shift and store the fluctuating
renewable energies of future energy systems [9], [10].

Despite the goal to reduce and shift energy consumption, the
building occupants’ preferences and requirements on the indoor
thermal environment must be taken into account. On one side, the
consideration of occupants’ individual preferences is crucial and
it leads to higher satisfaction and well-being [11]. On the other
side, the occupants’ preferences shape their energy consumption-
related behavior and partially drive the occupant-building interac-
tions. These actions have a direct impact on the buildings’ energy
consumption and should therefore be considered in control. This
bidirectional impact could be summarized as (i) occupant-building

interactions in terms of manual control (e.g. windows openings or
setpoint adjustments) and (ii) the impact of the thermal conditions
on occupants’ well-being and perceived thermal conditions. In that
context, the manual setpoint adjustments have been in the focus
of several existing studies [12], [13]. The thermal conditions that
pose a significant driver for the occupants’ actions have been in
the focus of the thermal comfort research during the past decades
[14]–[16]. Wagner et al. [15] analyzed the correlation between the
occupants’ satisfaction and measured thermal conditions. Langevin
et al. [14] showed that thermal conditions are one of the key drivers
for occupants’ adaptive actions. Frontczak and Wargocki [16] pointed
out that the thermal conditions have the greatest impact on humans’
perceived comfort. In summary, the thermal conditions have an
undoubted impact on the occupants’ actions and therefore, holistic
building energy consumption optimization is required for ensuring a
high-quality indoor thermal environment.

In the context of MPC for assuring thermal comfort and DR, a ma-
jor drawback for the widespread application of MPC is the necessity
of suitable thermal building models. These models should be easily
applicable to a variety of different buildings and computationally effi-
cient. Typically, thermal buildings models rely on physical equations
and material parameters (white box model), on a combination of a
physical structure and measurement data (grey box model), or on
data-driven technologies (black box model). White box models are
complex, require excessive modeling effort, and are computationally
unfriendly for the MPC application. Although black-box models are
easily applicable as they need no prior knowledge of the system,
they might require large data sets and lack reliability. They need to
be estimated individually for each building and are therefore not yet
available immediately after the buildings go into operation. Grey box
models, however, offer a simple physical structure and make use of
parameter identification from measurements. In the context of thermal
building models, grey box models usually apply the electro-thermal
analogy of heat transfer [17], [18] and are hence called RC models.

These RC models have gained significant importance for MPC in
buildings because they can address the limitations of white and black
box models thanks to their following benefits: (i) reliability outside
identification range, (ii) requiring few data for model identification,
(iii) high adaptability for MPC (thanks to continuity, linearity, and



differentiability), and (iv) representability for most buildings [17].

A. State of the Art

RC models have been investigated since the 1980s [19]–[25] and
the first models applied two resistors and one capacitor (2R1C)
to model the building envelope. After discovering the model per-
formance drawbacks of these oversimplified models, Gouda et al.
proposed more complex models in 2002 [26]. In 2018, Koeln et
al. [27] remind: “However, a series of simulation tests from [3]1

that compared low order models to a 21R20C benchmark model
demonstrated that a slightly higher-order model, 3R2C, provided
significant model accuracy improvements over the 2R1C model with
a tolerable increase in computational effort”.

In general, Koeln et al. [27] separate the thermal building model
technologies into two different categories: (i) lumped and (ii) con-
structive approaches. The lumped approach utilizes only a few ther-
mal elements, thermal resistors, and capacitors, to represent an entire
building. These elements do not necessarily need to represent single
physical elements such as walls, windows, roofs, or floors; they can
be equivalent parameters to multiple thermal elements and physical
effects. The parameter of lumped models are usually identified by
measurement data, also referred to as grey-box modeling [28]. For
example, Park et al. [29] represent an entire building with only one
resistor and one capacitor (1R1C). Harb et al. [30] developed three
grey-box models and concluded that a 4R2C model performs most
appropriately. Attoue et al. [31] examined the necessary model order
depending on the heating power and conducted a sensitivity analysis
on each parameter; model orders between two and three yielded the
best results. Although the lumped approach is often applied on one-
zone thermal building models that represent the entire building, this
approach is not limited to only one zone and can be used for each
zone of a multi-zone model [32].

In contrast, the constructive approach is often applied for more
complex models. “The constructive approach systematically builds
up a zone model based on the individual building element models”
[27]. Each thermal element, such as walls, roof, floors, or windows,
are individually modeled by resistors and capacitors. This approach,
combined with multiple thermal zones, yields high complexity and
is less applicable for parameter identification (grey box modeling) or
MPC. Instead, it is applied to derive complex white-box models.
Those are capable of delivering the most accurate results [33],
although it is time-consuming and difficult to gather the necessary
data.

In summary, we conclude that data-driven lumped approach models
offer a sufficient balance between modeling effort and model perfor-
mance for MPC.

B. Contribution to the Field

Despite the high availability of RC models and thermal comfort
studies in the literature, there is no – to the best knowledge of
the authors – straightforward explanation of RC models and their
derivation via conservation of energy, including thermodynamic as-
sumptions in internal energy, enthalpy, and heat transfer. Furthermore,
little literature on building control with a focus on thermal comfort
is available as Park et al. [34] state: “We find that building control
focuses predominantly on energy savings rather than incorporating
results from thermal comfort, especially when it comes to occupant
satisfaction. We identify potential research directions in terms of
bridging the two fields”.

1Remark, that [3] is [26] in the present paper.

To incorporate results from thermal comfort with building control,
we answer the following Research Questions:

1) How can we derive a minimalistic RC model for the control of
thermal parameters required for thermal comfort?

2) How can we create a link between the theoretical derivation and
the practical application of the model?

II. THEORETICAL FOUNDATIONS AND DERIVATION OF THERMAL

BUILDING MODEL

We describe the foundations of heat transfer and thermodynamics
that support an understanding of the RC modeling technology and
thermal parameters required for thermal comfort in buildings.

A. Heat Transfer

As a foundation, we explain the basics of heat transfer by conduc-
tion, convection, and radiation, similarly to literature [35], [36].

1) Conduction: Heat conduction describes the heat flow within
a body, which spontaneously occurs from warm to cold and in
absence of an external driving energy source. In a planar wall, one-
dimensional heat transfer Φa→bconduct from temperature Ta to Tb can
be simplified by Fourier’s Law in Eq. (1) [36]:

Φa→bconduct =
kA

L
(Ta − Tb) (1)

k - thermal conductivity, A - plane area, L - plane thickness.
2) Convection: Convective heat transfer is a superposition of heat

conduction and movement of fluids. In contrast to only conduction,
the convective heat transfer is additionally driven by fluid velocity,
e.g. wind, considered by the heat transfer coefficient [36]:

Φa→bconvect = hA(Ta − Tb) (2)

h - heat transfer coefficient, A - contact area.
3) Radiation: Thermal radiation is a form of heat transfer where

a heated surface transmits energy in all directions at the speed of
light. The radiation results from the thermal motion of particles. In
contrast to conduction and convection, the heat transfer depends on
the temperatures in the fourth-order. Eq. (3) presents the radiative
heat transfer over a distance between two grey bodies in sight [36]:

Φa→bradiate =
Aaσ(T

4
a − T 4

b )
1
F
+ 1−ϵa

ϵa
+ Aa(1−ϵb)

Abϵb

(3)

ϵ - emissivity of the surfaces, A - surfaces, σ - Stefan–Boltzmann
constant, F - view factor between two surfaces a and b.

4) Summary and Ohm’s Law: While all types of heat transfer
are driven by temperature differences, the main differences are
that conduction occurs without an external driving energy source,
convection is strongly dependent on a fluid’s velocity and radiation
transmits heat over distances between bodies in sight.

The different types of heat transfer could be superpositioned and
simplified by Ohm’s Law, where equivalent heat flows only depend
on temperature differences and resistors. On the analogy of Ohm’s
law, Eq. (4) simplifies heat flows Φa→b, e.g. from Eq. (1), (2), (3),
with:

Φa→b =
Ta − Tb

Ra,b
(4)

where Ra,b is the thermal resistance between the nodes a and b. For
example, in the case of only convection: Ra,b = 1

hA
(Cf. Eq. (2)). This

thermal resistance approach is an exact approximation for convection
and conduction, while for radiation it is only a linear approximation.



B. Thermal Comfort in Buildings

Modeling thermal comfort in buildings involves all three ther-
mal heat transfer effects (radiation, convection, and conduction,
Cf. Sec. II-A), as illustrated in the thermal environment in Fig. 1. The
thermal environment characterizes the heat transfer between humans
and buildings. Radiating heat transfer results from the surrounding
surfaces and their mean radiant temperature. Convective heat transfer
depends on the air temperature and the air velocity. Conduction
occurs in direct contact between bodies.

Radiation
Convection

Conduction

Building surface

v
Tair

Tr

Fig. 1: Thermal environment and heat transfer effects for thermal
comfort in buildings (inspired by [37], svg icons from svgrepo.com)

Thermal comfort of humans in buildings depends on the thermal
environment and on personal variables, such as clothing, activity, or
metabolic rate [38]. The building control system can usually affect
parameters of the thermal environment, e.g. air temperature Tair,
radiant temperature Tr, or air velocity v.

Combining the thermal parameters and effects into a single in-
dex could equivalently characterize the warmth of an environment,
resulting in the operative Temperature Top in Eq. (5) [38]:

Top =

{
0.56Tair + 0.44Tr for v ≤ 0.1m s−1,
0.44Tr+0.56(5−

√
10v(5−Tair))

0.44+0.56
√
10v

for v > 0.1m s−1.
(5)

In that context, Gaffoor et al. [39] state: “Indoor operative temper-
ature is found to have the most significant influence on occupant’s
thermal comfort [...]. While clothing, air velocity, and relative hu-
midity affect thermal sensation, they have a weak correlation with
TSV [Thermal Sensation Votes] and their influence is much weaker
or statistically insignificant than that of operative temperature”.

C. Derivation of Thermal Building Model

A thermal building model is based on heat transfer (Cf. Sec. II-A)
and thermodynamic equations. The thermal building model must
satisfy energy conservation by the first law of thermodynamics.
Neglecting changes in kinetic and potential energy, this law yields
Eq. (6) [40]. The derivative of internal energy dU

dt
depends on the

sum of heat flows Φ, work flows Ẇ , and enthalpy flows Ḣ:

dU

dt︸︷︷︸
derivation of

internal energy

=
∑

Φ︸ ︷︷ ︸
heat flows

+
∑

Ẇ︸ ︷︷ ︸
work flows

+
∑

Ḣ︸ ︷︷ ︸
enthalpy

flows

. (6)

1) Internal energy: The internal energy U is the energy within
a thermodynamic system, such as a thermal building element. From
the fundamental thermodynamic relation dU = TdS − pdV with
constant volume yields the inner energy derivative dU

dt
:

dU

dt
= C · dT

dt
. (7)

2) Heat flows: Two types of heat flows occur in RC models: (i)
heat flows due to internal heat generation (e.g. heating system) or
external heat sources (e.g. the sun), and (ii) heat flows driven by a
temperature difference. (i) Heat flows due to internal heat generation
or external sources are widely called “heat gains”. A typical example
is that the power used within a system will be partially converted
into heat, e.g. by lights or appliances such as a printer. (ii) Heat
flows driven by a temperature difference ∆Ta,b are characterized by
the thermal resistance R according to the electro-thermal analogy
(Cf. Eq. (4)). This simplifies conduction, convection, and radiation
between two nodes (Cf. Sec. II-A) into only one equivalent heat flow
[35], [41]:

Φa→bheat flows =
∆Ta,b

Ra,b
=

Ta − Tb

Ra,b
. (8)

3) Enthalpy flows: Enthalpy flows describe by mass flow ṁ
transported energy, e.g. due to ventilation. The difference between
in- and outflowing enthalpy ∆Ḣa,b is equivalent to a heat flow Φa→b

according to Eq. (9),

Φa→benth flows = ∆Ḣa,b = ṁ · c · (Ta − Tb) =
Ta − Tb

Ra,b
(9)

where c is the specific heat capacity. Enthalpy flows occur in buildings
due to ventilation and infiltration of air. Under application of an RC
analogy, we derive the equivalent heat transfer resistor Ra,b = 1

ṁ·c .
4) Work flows: Work can be divided into ”flow work” p · v and

other forms of work across the boundaries of the control volume [40].
Flow work is included in the enthalpy [40] and we neglect any other
form of work: Ẇ = 0.

5) Summary – Lumped Capacitance Model: From the energy
conservation in Eq. (6), with the internal energy from Eq. (7), the
heat flows and enthalpy flows in RC analogy in Eq. (8) and (9), we
obtain the temperature differential equation for each node i,

Ci
dTi

dt︸ ︷︷ ︸
derivation of

internal energy

=

m∑
j=1

Φi,j︸ ︷︷ ︸
heat gains

+

n∑
k=1

∆Ti,k

Ri,k︸ ︷︷ ︸
heat transfer

between nodes

(10)

where the resistor Ri,k combines several thermodynamic and heat
transfer effects: enthalpy flows, conduction, convection, and radiation.
In addition to heat transfer between nodes, heat gains occur, which
are typically a result of the heating system, electrical appliances, and
solar radiation. The heat flows of the lumped capacitance model occur
between thermal elements, such as the wall or the air. Each wall can
be further separated into multiple thermal elements.

The number of nodes z inside a wall determines the accuracy of
the wall’s temperature profile. Fig. 2 presents a general wall model
with z nodes. For z = 1, the wall temperature is homogeneous; the
assumption of a homogeneous temperature applies for fast conductive
heat transfer inside the wall in relation to the convective heat transfer
on the wall’s surfaces [36]. A homogeneous wall temperature is rarely
the case for thermal building models, as the evaluation in Sec. I-A
indicates. Typically, z = 2 yields appropriate model performance
inside the wall [26].

CzC2C1

TinTzTamb T1 T2

Ramb,wall Rwall,inR1,2 R2,3 Rz−1,z

Fig. 2: Lumped parameter wall for z layers.



III. RESULTING MODEL FOR CONTROL

Inspired by the state of the art grey box models [30], we illustrate
a lumped thermal building model for control applications that is
easily applicable to a variety of buildings in Fig. 3. After a general
explanation of the model, we describe in the following how this
model enables the control of thermal parameters required for thermal
comfort.

Rair,amb

Tw,in Tw,outTair
Tamb,eq

Tamb

Cw,outCw,inCair

Φh,wall

Rw Rw,amb

Φsol
Φh,air

Rw,air

Fig. 3: RC thermal building model with 3R2C wall.

In contrast to the wall model in Fig. 2, the building model in Fig.
3 represents the thermal dynamics of the entire building. Therefore,
the model contains not only wall elements, but also indoor air and
connections to the ambient.

A. Thermal Building Model

The illustrated model in Fig. 3 consists of three inputs: the heating
Φh, the solar radiation Φsol, and the ambient temperature Tamb.
These inputs affect the building temperatures, which are dynamically
described by states: one state for the indoor air temperature Tair and
two for the walls, an inner wall element Tw,in and an outer Tw,out. The
temperature dynamics are described by the differential Eq. (11) - (13),
based on the Lumped Capacitance Model methodology in Eq. (10):

Cair
dTair

dt
=

Tw,in − Tair

Rw,air
+

Tamb − Tair

Rair,amb
+Φsol +Φh,air (11)

Cw,in
dTw,in

dt
=

Tair − Tw,in

Rw,air
+

Tw,out − Tw,in

Rw
+Φh,wall (12)

Cw,out
dTw,out

dt
=

Tw,in − Tw,out

Rw
+

Tamb,eq − Tw,out

Rw,amb
. (13)

We describe the system inputs more precisely in Eq. (14) and (15).
The heating in Eq. (14) is separated into a radiant and a convective
part by the factor fheat,rad (radiation heat flux contribution), where the
convective part heats the air and the radiant part the inner wall:

Φh,air = (1− fheat,rad)Φh, Φh,wall = fheat,radΦh. (14)

The solar input in Eq. (15) is determined by the global radiation
ϕglobal. The sun directly affects the inside air temperature by Φsol,
which depends on the global radiation ϕglobal and the solar heat gains
factor fsol. The heat transfer on the outside wall results from the
equivalent ambient temperature Tamb,eq, which combines the ambient
temperature Tamb and the global radiation ϕglobal. This equivalent tem-
perature Tamb,eq also depends on the parameters short-wave absorption
coefficient hf, and the exterior heat transfer coefficient hA [30]:

Φsol = fsolϕglobal, Tamb,eq = Tamb + ϕglobal
hf

hA
. (15)

B. Control Variables for Thermal Comfort

For thermal control of buildings, we define the heating Φh as the
control input u and the weather conditions, which is a combination
of ambient temperature Tamb and global solar radiation ϕglobal, as

measureable disturbances z. Instead of the indoor air temperature,
we propose the control output y as the operative temperature from
Eq. (5) by our simplified definition in Eq. (16). Therefore, we use
the inner wall temperature Tw,in as radiant temperature Tr and assume
negligible air flows:

y = Top = 0.56Tair + 0.44Tw,in,

u = Φh, z = (Tamb, ϕglobal)
T .

(16)

For more information about the control application, we refer to our
previous work [42].

C. Model Implementation and Validation

We implement the previously described model in Matlab and iden-
tify the thermal parameters with the Matlab Identification Toolbox
[43]. We publish our model implementation as open-source code
on Github2. Our implementation identifies a thermal building model
from measurements and has two user-defined functions: (i) defining
the model equation, and (ii) defining parameters to be identified.
Given those two functions, our code provides easily applicable
methods for identifying and validating the model with the use of
input and output data.

For the identification, we use measurements with a sample rate of
2min from May 06 – May 18, 2021 in a research building [44] under
real-world conditions. We measure the indoor air temperature Tair, the
heating (power of electrical heater) Φh, the ambient air temperature
Tamb, and the global radiation ϕglobal. While we know that the research
building is used as an office space, we have no information about the
occupancy behavior, such as attendances or windows openings. We
validate the model on the indoor air temperature with measurements
from May 19 – May 31, 2021, without any re-calibration of the
temperature. The results for the identification and validation are
presented in Fig. 4 and Fig. 5.
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Fig. 4: Identification results

Over the entire validation period (May 19 – May 31, 2021), the
model yielded a Mean Absolute Error (MAE) of 0.556 K and a
Root Mean Square Error (RMSE) of 0.705 K. The error increases
considerably on each of the weekends, May 22-24 and May 29-30,
and decreases again on the weekdays, as the model does not account
for occupancy behavior. While the building is used as an office space,
the absence of occupants on the weekend can lead to lower internal
heat gains and thus reduce the measured temperatures, compared to
the simulation.

2https://github.com/Building-Measurement-to-Control-Toolbox/Matlab-
Toolbox-Pub
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Fig. 5: Validation results

D. Discussion of Model

Our derived RC model is identified and validated with measure-
ments from a research building under real-world conditions. There-
fore, we use the Matlab Identification Toolbox and publish our open-
source code. In general, the validation results demonstrate a minor
deviation from the measurement. The most significant contribution to
the mismatch to the measurement occurs on the weekend, resulting in
an overall RMSE of 0.7 K over the validation period of 12 days. This
indicates a different occupancy behavior in the office space during
the weekend. The integration of occupancy behavior into thermal
building models for control should be addressed in future work.

We extend our RC model by a formulation of thermal comfort
based on the operative temperature Top that combines two of the
temperature states: the indoor air temperature Tair and the inside wall
temperature Tw,in. As a result, we obtain a simple modeling approach
to provide thermal parameters required for thermal comfort in a
building. The model is identifiable and requires only measurements
of temperatures, heating, and global solar radiation.

IV. CONCLUSION

The present paper answers 1) how to derive a minimalistic RC
model for the control of thermal parameters required for thermal
comfort, and 2) how to create a link between the theoretical derivation
and the practical application.

Therefore, we derive an RC model from the laws of thermodynam-
ics and heat transfer and also consider thermal comfort in the control
equations. As control output, we propose the operative temperature
Top to represent the thermal comfort of humans in buildings. In that
way, we consider not only convective heat transfer in the thermal
environment, mostly depending on the indoor air temperature Tair,
but also the radiating heat transfer with the surface wall temperature
Tw,in.

We implement the resulting thermal building model as a grey box
model in Matlab and publish this code open source. A grey box
model uses a pre-defined model structure together with measurements
to determine the dynamic thermal parameters (resistors, capacitors,
and solar factor). To identify and validate the model, we measure the
indoor air, outdoor air, and wall temperatures as well as the heating,
and the global radiation. The major benefits of this grey box model
are the high reliability and adaptability for MPC, when compared to
black-box models (Cf. Sec. I).

ACKNOWLEDGMENT

This work was conducted within the project FlexKälte, which is
funded by the German Federal Ministry for Economic Affairs and
Climate Action (BMWK). The authors would like to thank their
colleagues from the Energy Lab 2.0 and the Institute for Automation

and Applied Informatics (IAI) for all the fruitful discussions and
collaborations.

REFERENCES
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