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Abstract
Calibrated Explanations is a recently proposed feature importance explanation method
providing uncertainty quantification. It utilises Venn-Abers to generate well-calibrated
factual and counterfactual explanations for binary classification. In this paper, we extend
the method to support multi-class classification. The paper includes an evaluation illus-
trating the calibration quality of the selected multi-class calibration approach, as well as a
demonstration of how the explanations can help determine which explanations to trust.
Keywords: Calibrated Explanations, Multi-Class, Venn-Abers, XAI

1. Introduction

Explaining the process of machine learning models generating their predictions is crucial
for increasing users’ appropriate trust in high-stakes applications, such as defence (Gunning
et al., 2021). A user who trusts the model too much accepts both correct and incorrect
predictions with a risk of making low-quality decisions. With a measure of confidence
attached to the predictions and the features most relevant to the predictions, users are
expected to get an understanding of the internal reasoning of the model, and the possibilities
for high-quality decisions increase. However, both the confidence of the predictions and the
weights attached to the features in the explanations could become misleading due to the
reality of often poorly calibrated underlying models (Löfström et al., 2023).

External calibration methods can help convert internal confidences from poorly cali-
brated machine learning models into well-calibrated probabilities which are useful when
guiding users’ decisions. Two of the most well-known calibration techniques are Platt scal-
ing (Platt, 1999) and isotonic regression (Zadrozny and Elkan, 2001), which fit a logistic or
isotonic function to the confidence measures and the true targets on a calibration set. This
approach requires that the underlying model is a scoring classifier. For scoring classifiers,
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a larger belief in the positive class is indicated by higher scores, making them applicable
to two-class problems only. Another calibration technique applied to scoring classifiers is
Venn-Abers predictors (Vovk and Petej, 2012). The output is multi-probabilistic predictors
with unique validity properties. Although these multi-probabilistic predictors are highly
informative, they only apply to two-class problems.

Multi-class problems are, in contrast to a two-class situation, when more than two
classes exist, although each instance should be given precisely one class label. The standard
approach to multi-class problems has been to use either a one-vs-all or an all-vs-all schema,
requiring training multiple models, before calibrating each class and then aggregating the
results into probability estimates. Additionally, due to this drawback, the possibility to
analyse and explain a single model is no longer available (Johansson et al., 2021a).

In a recently proposed method (Johansson et al., 2021b), multi-class calibration is per-
formed on inherently multi-class models capable of predicting not only a label but also a
confidence measure for each class label. The calibration is done by first calibrating each class
label, one at a turn, in a one-vs-all calibration. The class label with the highest calibrated
probability estimate is used as the predicted class and the multi-probabilistic prediction
from Venn-Abers for the predicted class against all other classes is also returned.

In this study, we integrate the previously proposed method for multi-class calibration
(Johansson et al., 2021b) into Calibrated Explanations, a recently proposed feature impor-
tance explanation method (Löfström et al., 2024) providing well-calibrated explanations
with uncertainty quantification of both prediction and feature weights.

In the next section, we describe the theoretical foundation necessary for the proposed
solution. Section 3 outlines the proposed solution and describes how multi-class support is
integrated into Calibrated Explanations. In Section 4, we introduce the suggested approach
and describe the experimental setup, including the data sets used. In Section 5, we first
demonstrate the approach and then present and analyse the results obtained when using
each of the three types of underlying models. Finally, in Section 6, we give the main
conclusions and outline some directions for future work.

2. Background

2.1 Probabilistic Prediction

A probabilistic predictor outputs a predicted class label and a probability distribution over
the labels. Validity refers to the extent to which the predicted probability distributions
align with the statistical tests, as evidenced by subsequent observations of the labels. Gam-
merman et al. (1998) showed that validity can not, in a general sense, be achieved for
probabilistic prediction. Calibration, on the other hand, is when the following holds:

p(cj | pcj ) = pcj , (1)

where pcj is the probability estimate for class label cj . This implies that predictions with a
probability estimate of 0.95 should be accurate approximately 95% of the time. In essence,
the accuracy of observed outcomes should align with the predicted probabilities. While
most predictive models produce probability estimates, these estimates are often poorly
calibrated. Poor calibration can be handled by applying an external calibration method.
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Platt scaling (Platt, 1999) and isotonic regression (Zadrozny and Elkan, 2001) are the two
most frequently used. The standard procedure for these external methods is to perform the
actual calibration on a separate part of the available labelled data called the calibration set.

2.2 Venn-Abers Predictors

Venn predictors are probabilistic predictors that restrict the statistical tests for validity to
calibration and output multiple probabilities for each label, with one of them being the
valid one (Vovk et al., 2004). In Venn prediction, instances are divided into a number
of categories, based on a so-called Venn taxonomy. The relative frequency for each class
label is calculated as the calibrated probability within the category of the test instance. To
achieve validity, the test instance is also included in the calculation. As the true label is
unknown for test instances, every possible label is assigned in turn, resulting in C multi-
probability distribution, where C is the number of possible labels. In order to calibrate an
underlying pre-trained multi-class model, inductive Venn prediction (Lambrou et al., 2015)
is used, setting aside a calibration set that is divided into categories according to the Venn
taxonomy. As outlined below, these multi-probabilistic predictions can be transformed into
probability intervals for each label. The size of these intervals provides a basic measure of
the confidence in the estimation.

Deciding on the taxonomy to use is vital for Venn predictors. Venn-Abers prediction
(Vovk and Petej, 2012) offers automated taxonomy optimisation using isotonic regression,
providing optimised probability intervals for binary classification. One isotonic regressor
is trained for each of the negative and the positive classes, defining the lower and upper
bound of the multi-probability distribution. Since the instance must be one or the other, it
follows that the interval must contain the true probability. Even though the true label is not
known, the width and location of the interval can provide rich support for decision-making.
A smaller interval indicates higher certainty about the prediction, while a larger interval
indicates more uncertainty.

Let us assume a test object xn+1 for which a prediction is sought, let Z = {z1, . . . , zn},
where n = l + q, be a training set. Each instance zi = (xi, yi) consists of two parts,
an object xi and a target yi. Normally, calibration requires a separate calibration set,
motivating a split of the training set into a proper training set Zl with l instances, and
a calibration set Zq = {z1, . . . , zq}1. Use a scoring classifier, i.e., a classifier restricted to
two-class problems that, when predicting a test object xi, outputs a prediction score si,
where a higher value indicates a larger belief in label 1. To predict a class label from a
scoring classifier, the prediction is 1 if s > t, and otherwise 0. A Venn-Abers predictor
requires a scoring classifier as the underlying model. Instead of using a fixed threshold, an
increasing function g is fitted using a number of prediction scores with known true targets.
This function, g(s), can then be interpreted as the probability that the label for x is 1, i.e.,
it is a calibrator. Venn-Abers predictors use isotonic regression (Zadrozny and Elkan, 2001)
for the fitting. Normally, the score s is defined as the probability estimate for the positive
class from a classifier h. Inductive Venn-Abers prediction for binary classification follows
these steps:

1. As we assume random ordering, the calibration set is indexed 1, . . . , q rather than l+1, . . . , n, for indexing
convenience.
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1. To derive the isotonic calibrator g0, use {(s1, y1), . . . , (sq, yq), (sn+1, 0)} and to derive
the isotonic calibrator g1, use {(s1, y1), . . . , (sq, yq), (sn+1, 1)}.

2. The probability interval for yn+1 = 1 is defined as [g0(sn+1), g1(sn+1)] (henceforth
referred to as [plow, phigh], representing the lower and upper bounds of the interval).

3. The regularised probability estimate for yn+1 = 1, minimising the log loss (Vovk and
Petej, 2012), can be defined as:

p = phigh

1 − plow + phigh

In summary, Venn-Abers produces a calibrated (regularised) probability estimate p to-
gether with a probability interval with a lower and upper bound [plow, phigh].

2.3 Multi-Class Calibration

Zadrozny and Elkan (2002) suggested a one-vs-all approach for multi-class calibration where
a binary classifier is trained for each class label before calibrating. This approach is appli-
cable to any underlying model and any binary calibration technique. How to combine the
calibrated estimates is not altogether obvious.

A pair-wise (all-vs-all) approach was suggested by Manokhin (2017). This approach
was applied using standard and cross Venn-Abers for multi-class calibration on models
built by logistic regression, support vector machines and neural networks. They showed
that probabilistic models calibrated with Venn-Abers were generally better calibrated than
the uncalibrated predictors.

Wenger et al. (2020) points out that most modern classifiers are inherently multi-class
and are thus an alternative to the traditional approach with one-vs-all or all-vs-all schemes.
This allows for the predictions from the inherently multi-class model on a calibration set can
be used directly for calibration, avoiding training a number of models before calibrating.

In two recent papers, two additional approaches were suggested (Johansson et al.,
2021a,b). Both approaches operate on inherently multi-class models, providing a set of
confidence measures for all labels. In the first approach (Johansson et al., 2021a), a prob-
ability estimate for a test instance is produced using the label predicted by the underlying
model as the positive class, and all other labels are regarded as belonging to the negative
class. After this, the actual calibration is performed in the standard way for Venn-Abers,
resulting in a probability estimate for the positive class, i.e., the label predicted by the
underlying model. A drawback of this approach is that the calibrated probability for the
predicted class is not guaranteed to be the highest calibrated probability among all classes.
In the second approach (Johansson et al., 2021b), a one-vs-all calibration is done, calibrat-
ing once for each label, using that label as the positive class and all the remaining classes
as the negative. The label with the highest calibrated probability is used as the predicted
class. It will often be the same class as the class predicted by the underlying model, but
there is no guarantee that the calibrated prediction and the prediction from the underlying
model will be the same.
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2.4 Calibrated Explanations

Löfström et al. (2024) introduced a local explanation method providing feature importance
with uncertainty quantification2. The initial release supported binary classification and
support for regression has been proposed (Löfström et al., 2023). Calibrated Explana-
tions produce instance based explanations, which can be either factual or counterfactual.
A factual explanation is composed of a calibrated prediction from the underlying model
accompanied by an uncertainty interval and a collection of factual feature rules, each com-
posed of a feature weight with an uncertainty interval and a factual condition, covering that
feature’s instance value. Counterfactual explanations contain a collection of counterfactual
feature rules, each composed of a prediction estimate with an uncertainty interval and a
counterfactual condition, covering alternative instance values for the feature. For binary
classification, the explanation explains the calibrated probability estimate (and its level of
uncertainty) for the positive class.

The core of the algorithm is defined based on a numeric estimate and a lower and an
upper bound, defining an uncertainty interval for the numeric estimate. For binary clas-
sification, the probability estimate of the positive class is calibrated using a Venn-Abers
calibrator (Vovk and Petej, 2012), producing a lower and an upper bound for the calibrated
probability estimate (using a regularised mean of these bounds as the numeric estimate).
Slightly more formally, Calibrated Explanations creates its explanations for binary classifi-
cation in the following manner:

1. Use a scoring classifier h, trained using the proper training set Zl, producing score s
when predicting an object h(x).

2. To get a calibrated prediction for a test object3 x, apply a Venn-Abers calibrator to
get a calibrated prediction p and uncertainty interval [plow, phigh] for the positive class.

3. For each feature f :

(a) Change the value of feature f in a systematic way (use each category for cate-
gorical features and a sample of values for numerical values4), producing slightly
perturbed versions of object x. Use the calibrator from step 2 to estimate the
(averaged) prediction p.f and uncertainty intervals [plow.f, phigh.f ].

(b) The feature importance for feature f is defined as the difference between the
calibrated prediction p, achieved on the original object x, and the estimated
(averaged) calibrated prediction p.f , achieved on the perturbed versions of x.

(c) The uncertainty intervals for the feature importance is defined analogously by
calculating the difference between p and the uncertainty intervals [plow.f, phigh.f ]
for the perturbed versions of x.

(d) A factual condition is formed, with feature = categorical instance value
for categorical features and feature ≤ threshold or feature > threshold

2. Calibrated Explanations can be installed using, e.g., pip install calibrated-explanations or ac-
cessed at github.com/Moffran/calibrated explanations.

3. The index n + 1 is omitted to reduce clutter.
4. For details on how the sampling is done, see Löfström et al. (2024).
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for numerical features. The threshold is defined so that the factual condition
incorporates the numerical instance value for that feature. Since the factual
condition must always include the feature value, only one factual condition is
formed for each feature.

As opposed to the calibration performed on the original object x in step 2, where ex-
changeability is expected between calibration and test instances, no guarantees can be given
for the calibration performed on the perturbed instances. Even though the feature values
are defined to match the feature values in the calibration set, the feature values used to
exchange the original feature values may in some cases result in perturbed instances that
are not exchangeable with the calibration set.

2.5 Counterfactual Explanations

The main difference when using Counterfactual Calibrated Explanations is that the condi-
tions are counterfactual rather than factual. This means that the categorical counterfactual
condition is using the ̸= condition. Numerical counterfactual conditions are defined as
≤-conditions and >-conditions but with conditions that exclude the instance value. One
counterfactual condition is formed for each alternative categorical feature value, and numer-
ical counterfactual conditions can allow both counterfactual ≤-conditions and >-conditions
excluding the feature value to be formed.

3. Contribution

In order for Calibrated Explanations to explain multi-class problems, the multi-class cali-
bration approach suggested in Johansson et al. (2021b) is applied to step 2 in the description
above. In other words, for each class label c, a Venn-Abers calibrator is initialised using
that label as the positive class and the probability estimate for that label as the score sc

from the underlying model. More formally, the multi-class approach is as follows:

1. For each class label c ∈ C, where C is the set of possible class labels:

(a) Use {(sc
1, y1 = c), . . . , (sc

q, yq = c), (sc
n+1, 1)}, where yi = c is 1 when true and 0

otherwise, to derive the isotonic calibrator gc and use {(sc
1, y1 = c), . . . , (sc

q, yq =
c), (sc

n+1, 0)} to derive the isotonic calibrator g¬c.
(b) The probability interval for yn+1 = c is defined as [g¬c(sc

n+1), gc(sc
n+1)] (hence-

forth referred to as [pc
low, pc

high], representing the lower and upper bounds of the
interval).

(c) The regularised probability estimate for yn+1 = c, minimising the log loss (Vovk
and Petej, 2012), can be defined as:

pc =
pc

high

1 − pc
low + pc

high

2. Output the class label c = argmaxc∈C pc together with the probability interval
[pc

low, pc
high] and the regularised probability pc. Also output the Venn-Abers cali-

brator defined using gc and g¬c to be used in step 3 in the description of Calibrated
Explanations.
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1

2 from calibrated_explanations import CalibratedExplainer
3 # Load and pre - process your data
4 # Divide it into proper training , calibration , and test sets
5

6 # Train your model using the proper training set
7 model.fit( X_proper_training , y_proper_training )
8

9 # Initialize the CalibratedExplainer
10 ce = CalibratedExplainer (model , X_calibration , y_calibration )
11

12 # Create and plot factual explanations
13 factual_explanations = ce. explain_factual ( X_test )
14 factual_explanations . plot_all ()
15 factual_explanations . plot_all ( uncertainty =True)
16

17 # Create and plot counterfactual explanations
18 counterfactual_explanations = ce. explain_counterfactual ( X_test )
19 counterfactual_explanations . plot_all ()
20

Figure 1: Code example on using calibrated-explanations

The proposed solution necessitates the initiation of one Venn-Abers for each class, re-
sulting in a complexity for the initialisation of O(|C| q log q), compared to O(q log q) for
binary classification. For each instance, one Venn-Abers prediction is also made for each
class once. Once the class predicted by Venn-Abers is determined, i.e., the class with the
highest regularised probability, only the Venn-Abers calibrator for that class is used to con-
struct the explanations, making the complexity of Calibrated Explanations for multi-class
only slightly worse than Calibrated Explanations for binary classification. See Löfström
et al. (2024) for further details on the complexity of Calibrated Explanations.

The proposed improvement was introduced into the existing implementation of calibrated-
explanations in version v0.3.2. Calibrated Explanations with multi-class is using identical
function calls as for binary classification. Fig. 1 show an example on how to initialise a
CalibratedExplainer and create factual and counterfactual explanations from a trained
model.

4. Method

In the suggested approach, an underlying model is first trained using a proper training set
before a CalibratedExplainer is initiated using the model and the calibration set. During
the initialisation, one Venn-Abers calibrator is initialised for each class. When explaining
a test object, the one-vs-all calibration procedure described in Section 3 determines the
predicted class c and returns the Venn-Abers calibrator for that class which is used to
generate the factual or counterfactual feature rules.
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T. Löfström, H. Löfström and U. Johansson

The approach is evaluated in two ways. In Section 5.1, the multi-class approach sug-
gested in Johansson et al. (2021b) is evaluated on a number of data sets to illustrate its
ability to calibrate. In Section 5.2, the calibrated-explanations integration of multi-class
calibration is demonstrated on a number of instances.

4.1 Experimental setup

To illustrate the multi-class calibration, two setups were compared, as described below:

• No external calibration (NoCal): Uses the output from the underlying model as prob-
ability estimates. Since this setup requires no calibration set, all available labelled
data were used for inducing the models.

• Venn-Abers (VA): The model is induced using the proper training set, setting aside
a calibration set used for calibration. For each test instance, each class label is cali-
brated in a one-vs-all calibration as described above, and the label c with the highest
probability pc is outputted together with the Venn-Abers defined using gc and g¬c.
When comparing Venn-Abers calibrations to the uncalibrated model, the regularised
value pc is used.

The main purpose of the comparison is to provide an insight into how the interval of
the Venn-Abers calibration work. Consequently, the evaluation is limited to the two setups
above, as additional calibration techniques would obfuscate the purpose.

In the experimentation, the RandomForestClassifier from scikit-learn was used and
all parameter values were left at the default settings. The VennAbers from calibrated-
explanations is used as a Venn-Abers calibrator. For the evaluation, standard 10x10-fold
stratified cross-validation was used. For Venn-Abers, the proper training set consisted of
2/3 of all the training instances and the calibration set of 1/3. As mentioned, all training
data was used for generating the non-calibrated models. In the experiments, 19 publicly
available multi-class data sets from the UCI repository (Dua and Graff, 2017) were used.
The data sets characteristics are presented in Table 1, where #class is the number of classes,
#inst. is the number of instances and #attrib. is the number of input attributes.

For the evaluation, accuracy and area under the ROC-curve (AUC) are used to measure
the predictive performance. Log losses and the expected calibration error (ECE) are used
to evaluate the calibration.

The log loss is calculated using

λlog =
{

−log pc if correct
−log(1 − pc) if incorrect

(2)

where log is the binary logarithm and pc the estimate for the label predicted by Venn-
Abers. The log loss function used (from scikit-learn) make sure that the probabilities are
never exactly 0 or 1 to avoid infinite results.

ECE is calculated by dividing the probability estimates for the predicted class into M
(here M = 10) equally sized bins, before taking a weighted average of the absolute differences
between the mean of the prediction probabilities (mop) and the fraction of correct (foc)
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Table 1: Data sets

Data set #class #inst. #attrib.
balance 3 625 4
cars 4 1728 6
cmc 3 1473 9
cool 3 768 8
glass 6 214 9
heat 3 768 8
image 7 2310 19
iris 3 150 4
steel 7 1941 27
tae 3 151 5
user 5 403 5
wave 3 5000 40
vehicle 4 846 18
whole 3 440 7
wine 3 178 13
wineR 6 1599 11
wineW 7 4898 11
vowel 11 990 11
yeast 10 1484 8

predictions, as described in Eq. 3:

ECE =
M∑

i=1

|Bi|
n

∣∣∣mop(Bi) − foc(Bi)
∣∣∣ (3)

where n is the size of the data set and Bi represents bin i.
All demonstrations are done using the glass data set. A similar setup, using a random

forest and dividing data into proper training and calibration sets are the same as above.
The test set is composed of four instances from each class, to ensure coverage of all classes.
A confusion matrix is used to guide the use and interpretation of the explanations provided
by calibrated-explanations.

Code for running the experiments in section 5.1 can be accessed at the GitHub repos-
itory for calibrated-explanations in the evaluation sub-folder. All plots used for demon-
strations in Section 5.2 can be found in calibrated-explanations/notebooks/plots and
code for generating the plots in the notebook demo multiclass glass.ipynb in the note-
books folder. Explanation plots for all data sets used in Section 5.1 can be found in
calibrated-explanations/evaluation/multiclass/plots.

5. Results

5.1 Evaluation of Venn-Abers for Multi-Class

Looking at the predictive performance in Table 2, not surprisingly, it can be seen that access
to more training data is beneficial for the underlying models, as seen for both accuracy and
AUC. The [Low, High] columns show the average lower and upper bounds from the Venn-
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Abers calibrators. The expectation is that the accuracy for Venn-Abers should lie within
the interval, which is the case for all data sets but the CMC data set, which is off by 0.1
percentage point from the lower bound. Considering the calibration results, we see that
Venn-Abers calibration does not affect log loss much but is able to significantly improve the
ECE.

Table 2: Predictive performance and calibration results
Accuracy AUC ECE Log loss

NoCal VA [Low, High] NoCal VA NoCal VA NoCal VA
balance 0.831 0.862 [0.797, 0.874] 0.938 0.884 0.064 0.043 0.246 0.280
cars 0.983 0.974 [0.942, 0.982] 0.982 0.962 0.068 0.023 0.104 0.078
cmc 0.521 0.521 [0.522, 0.561] 0.642 0.637 0.131 0.022 0.708 0.648
cool 0.947 0.943 [0.912, 0.963] 0.964 0.937 0.011 0.021 0.099 0.137
glass 0.795 0.736 [0.612, 0.857] 0.763 0.721 0.094 0.039 0.461 0.523
heat 0.986 0.985 [0.933, 0.993] 0.933 0.916 0.023 0.041 0.058 0.079
image 0.981 0.975 [0.932, 0.984] 0.979 0.962 0.040 0.032 0.075 0.083
iris 0.954 0.950 [0.810, 0.985] 0.926 0.917 0.019 0.095 0.122 0.198
steel 0.785 0.770 [0.728, 0.797] 0.820 0.804 0.076 0.022 0.451 0.428
tae 0.666 0.589 [0.518, 0.701] 0.679 0.651 0.055 0.012 0.616 0.645
user 0.905 0.893 [0.802, 0.937] 0.835 0.821 0.074 0.055 0.274 0.290
vehicle 0.754 0.752 [0.712, 0.795] 0.853 0.830 0.056 0.027 0.410 0.413
vowel 0.967 0.931 [0.800, 0.950] 0.933 0.902 0.258 0.091 0.364 0.225
wave 0.852 0.848 [0.836, 0.857] 0.818 0.813 0.113 0.011 0.389 0.340
whole 0.699 0.710 [0.695, 0.729] 0.508 0.498 0.090 0.040 0.653 0.610
wine 0.980 0.970 [0.805, 0.996] 0.972 0.939 0.082 0.114 0.127 0.178
wineR 0.706 0.669 [0.642, 0.689] 0.747 0.707 0.045 0.013 0.528 0.569
wineW 0.701 0.656 [0.643, 0.668] 0.763 0.724 0.054 0.009 0.519 0.554
yeast 0.616 0.599 [0.570, 0.651] 0.679 0.666 0.022 0.015 0.616 0.632
Mean 0.823 0.807 [0.748, 0.841] 0.828 0.805 0.072 0.038 0.359 0.364

For some data sets, like Vowel in Fig. 2, the uncalibrated random forest is extremely
underconfident. Luckily, calibration using Venn-Abers is able to reduce the ECE substan-
tially. In the calibration plot, the low (green) and high (red) bounds are included to indicate
how the uncertainty intervals are distributed. It is evident that Vowel provides fairly wide
uncertainty intervals on average, with the lines for the low and high bounds far apart.

Another similar example is the Wave data set, where the random forest is again clearly
underconfident, see Fig. 3. Here, calibration create a number of very confident predictions,
leading to almost perfect calibration. The intervals are very narrow for this data set.

The random forests are often underconfident, especially for the higher estimates. The
one very different example is the CMC data set, see Fig. 4, where the random forest is
actually overconfident. It is, of course, reassuring to see that Venn-Abers is able to calibrate
these models too, producing generally lower estimates, thus resulting in significantly lower
ECE:s.

One of the data sets where the calibrated models are worse than the uncalibrated is
WINE, see Fig. 5. Similar to the Vowel data set in Fig. 2, the intervals are wide5. As can
be seen, the upper bounds of the interval is aligned with the diagonal, revealing that the
5. As the probabilities are binned into ten equally wide bins, probabilities for Venn-Abers, low, and high

will not be binned identically, explaining why the high bounds only occur in the top four bins. Since
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Venn-Abers is the regularized probability derived from low and high, it is always between these values for

Figure 2: Vowel data set

Figure 3: Wave data set
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Figure 4: CMC data set

confidence intervals are well-calibrated. The regularization will reduce higher probabilities
more, which is clearly detrimental for the ECE in this case.

Summarising the experiment, the main result is that the calibration is able to successfully
calibrate the underlying models in terms of ECE. The price paid is a small loss in predictive
performance.

5.2 Demonstrating Multi-Class Explanations using Calibrated Explanations

All demonstration included in this paper are taken from the glass data set, with a test set of
four instances being explained per class. Knowing the class distribution and which classes
are easiest and which are hardest provides important cues for interpreting the explanations
generated, as only the predicted class is shown in the explanation. The confusion matrix
with the calibrated predictions for the calibration instances from each class is shown in
Table 3. Here, a leave-one-out approach is used, so that the calibration set used for instance
zi is {z1, . . . , zi−1, zi+1, . . . , zq}.

As can be seen in Table 3, tableware (t), with only two instances in the calibration set, is
entirely correctly predicted. The least correct class is the vehic wind float (vwf ), with none
of the four instances being correctly predicted. When looking at the precision, vwf has no
predictions whatsoever, while both instances predicted as containers are in fact containers.
For the other classes, both recall and precision varies in the range 0.667 − 0.875.

every instance. When aggregating these plots, one instance may fall into different bins for Venn-Abers,
low and high bounds.

12
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Figure 5: WINE data set

Table 3: Confusion Matrix for the glass data set

Predicted
Full class names Actual bwf bwnf c h t vwf Recall
build wind float bwf 18 4 0 0 0 0 0.818
build wind non-float bwnf 4 18 0 1 1 0 0.750
containers c 0 1 2 0 0 0 0.667
headlamps h 1 0 0 7 0 0 0.875
tableware t 0 0 0 0 2 0 1.000
vehic wind float vwf 2 2 0 0 0 0 0.000

Precision 0.720 0.720 1.000 0.875 0.667 NaN

The most common pattern to expect is an instance predicted as build wind float (bwf )
or build wind non-float (bwnf ), as these are the most commonly predicted classes (as well
as the most common classes). Fig. 6 show two factual explanations for instances predicting
class bwf 6.

6. Instance numbers are indicated in the repository at calibrated-explanations/notebooks/plots.

13

https://github.com/Moffran/calibrated_explanations/tree/multi-class-copa-2024/notebooks/plots
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(a) A factual explanation with uncertainty for instance 2

(b) Factual explanation with uncertainty for instance 22

Figure 6: Factual explanation with uncertainty for Build wind float (instance 22)

The top red bar in Fig. 6a shows the calibrated probability of the class predicted by
Venn-Abers. As can be seen, the probability for the predicted class is very high, with the
uncertainty interval indicated by the lighter red part. The lower box contains the most
important factual conditions with feature importance in bright colour and uncertainty in
lighter colour. The actual feature value of the instance can be seen to the right of each bar
and the factual condition for which the feature importance applies can be seen to the left of
the bar. A red feature importance indicate that a factual condition have a positive impact
on the probability for the predicted class whereas a blue feature importance indicates a
negative impact on the probability of the predicted class. The uncertainty interval provides
an estimate of the lower and upper bounds of the feature importance. As can be seen for
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the last two factual conditions, the uncertainty interval can point in different directions,
indicated by the colour shifting from blue to red. Only the first factual condition, indicating
a positive impact on the probability for class bwf due to Mg > 2.48, is strongly affecting
the prediction.

Another instance also predicted as class bwf can be seen in Fig. 6b. Here, the calibrated
probability of the class predicted by Venn-Abers is much lower, with a wider uncertainty in-
terval. All factual conditions and their feature importance and uncertainty interval indicate
support for the positive class, sometimes with a large degree of uncertainty.

Calibrated Explanations include the option of creating counterfactual explanations, pro-
viding complementary insights. The counterfactual explanations for instances 2 and 22 can
be seen in Fig. 7.

(a) A counterfactual explanation for instance 2

(b) A counterfactual explanation for instance 22

Figure 7: Counterfactual explanations for Build wind float

The explanation in Fig. 7a shows five counterfactual conditions indicating what the
probability interval for the class predicted by Venn-Abers would have been if the instance
would have had a counterfactual feature value, as indicated by the condition. The lighter
coloured area in the background correspond to the prediction interval from Venn-Abers on
the actual instance values. The first counterfactual condition, Mg < 3.34, indicate that the
belief in the predicted class would drop to approximately [0.37, 0.59], i.e., still inconclusive.
All other counterfactual conditions would still provide fairly strong support for the predicted
class. Looking instead on the counterfactual explanation in Fig 7b, all the counterfactual
conditions substantially decrease the already low support for the predicted class.

Considering the knowledge from the confusion matrix in combination with the factual
and counterfactual explanations, it is easy to see that we have strong indication that instance
2 is in fact correctly predicted as class bwf. This is supported both by the fact that bwf is
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one of the most common classes and by the fact that both the factual and counterfactual
explanations strongly support it. For instance 22, on the other hand, the explanations rather
indicate against the prediction being accurate, indicated by low initial probability for the
class predicted by Venn-Abers which is clearly decreased further by all the counterfactual
conditions. As it turns out, the actual class for instance 2 is bwf while the actual class for
instance 22 is vwf.

Considering the confusion matrix in Table 3, with no instances being predicted as vwf,
the explanation in Fig. 8 is particularly interesting.

Figure 8: A Calibrated Explanation with uncertainty and conjunctive rules for Vehic wind
float (instance 23)

This instance is predicted as a class which is clearly difficult, as indicated by the con-
fusion matrix. The prediction has strong support for the predicted class, even though the
uncertainty is large. The four first factual conditions clearly support the predicted class.
Only the conjunctive condition show some slight support against the predicted class. Con-
sidering that the confusion matrix revealed that only four instances belonging to the vwf
class exists in the calibration set, the degree of uncertainty in the prediction should not pro-
vide too much concern. Considering that this is a very difficult class and the explanation
show strong support for the predicted class, it is reasonable to trust the prediction. Not
surprisingly, this is a correct assumption for this instance.

As can be seen in the confusion matrix in Table 3, the classes bwf, bwnf and vwf are
the classes most often mistaken for each other. In the final comparison, focus is instead
placed on one of the other classes by showing explanations for headlamps (h). Fig. 9 show
two factual explanations for instances predicted as class h.
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(a) A factual explanation for instance 8

(b) A factual explanation for instance 14

Figure 9: Factual explanations with uncertainty intervals for Headlamps

Both explanations provide strong support for the predicted class, even though instance 8
(in Fig. 9a) indicate more uncertainty by having a wider uncertainty interval at the top bar.
The first four factual conditions for instance 8 provide fairly strong support for the predicted
class h, even though the uncertainty is extremely large. For instance 14 (in Fig 9b), only
two factual conditions provide strong support (with extreme uncertainty) for the predicted
class h. The remaining factual conditions are inconclusive or indicate support against the
predicted class. Nothing in these explanations provide any strong evidence against the
predictions from Venn-Abers for these instances, even though there is a lot of uncertainty.

17
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Looking at the same instances using counterfactual explanations (see Fig. 10), some
further insights might be drawn. Looking first at instance 8 in Fig. 10a, the first four
counterfactual conditions all have 100% uncertainty, i.e., indicating less belief and more un-
certainty in the predicted class h. The final counterfactual condition is also very uncertain,
decreasing the belief in the predicted class. In Fig. 10b, the first two counterfactual condi-
tions are also very uncertain. The three remaining counterfactual conditions for instance 14
are all favouring the predicted class h, even though the uncertainty is increased compared
to the prediction made by Venn-Abers (in lighter red).

(a) A counterfactual explanation for instance 8

(b) A counterfactual explanation for instance 14

Figure 10: Counterfactual explanations for Headlamps

Taking the evidence from both the factual and counterfactual explanations for instances
8 and 14, the already weak evidence in favour of the predicted class h is decreased further
by the counterfactual explanations for instance 8. The combination of more uncertainty
in the probability for the predicted class to begin with, in combination with the extreme
uncertainty in both the factual and counterfactual explanations indicate that the prediction
of instance 8 should not be trusted. For instance 14, on the other hand, the counterfactual
explanation indicates that only two of the suggested changes would potentially change the
support against the predicted class (even though the uncertainty is extreme). When looking
at the ground truth, it turns out that the class for instance 8 is actually container (c), while
the class of instance 14 is h. Looking at other instances also predicted as class h, they are all
correct and very similar to the explanations achieved for instance 14, further corroborating
the reasoning given above.

In summary, a number of examples have been provided where factual and counterfactual
explanations have been analysed with the help of the confusion matrix. The analysis has
focused on the predicted classes and given a number of examples on how to use both fac-
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tual and counterfactual explanations to help determine which instances might be correctly
predicted and which might not when predicted with the same class.

6. Concluding Discussion

The paper provides a solution for how to provide calibrated explanations with uncertainty
estimates for multi-class problems. The proposed solution combine previous work on multi-
class calibration and calibrated explanations, providing a useful tool for analysis and decision
support when working with multi-class problems. The suggested approach is available as
a python library from github.com/Moffran/calibrated explanation installable using pip or
conda.

The paper included experimental results indicating the strength of the calibration method
adopted for multi-class problems on a number of data sets. The experimental results corrob-
orated previously published results on the soundness of the multi-class calibration approach.

The results also included a demonstration of how the factual and counterfactual expla-
nations could be used in combination with a confusion matrix to provide sufficient insights
to enable a decision maker to determine which predictions to trust and which to distrust.

One interesting direction for future work would be to explore possibilities to include
multi-probabilistic predictors with well-calibrated probability intervals for each class instead
of only considering the predicted class. A functional feature worth considering is to add the
possibility to select for which class to extract an explanation.
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