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Abstract In early 90’s Mandel and coworkers performed an experiment [1] to
examine the significance of quantum phase operators by measuring the phase
between two optical fields. We show that this type of quantum mechanical
phase measurement is possible for matter-waves of ultracold atoms in a double
well. In the limit of low number of atoms quantum and classical phases are
drastically different. However, in the large particle number limit, they are quite
similar. We assert that the matter-wave counterpart of the experiment [1] is
realizable with the evolving technology of atom optics .
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1 Introduction

In quantum optics, unitary phase operators were introduced in the 1980’s
by Barnett and Pegg [2] to describe the phase measurement and quantum
phase-dependent effects. In the definition of two-mode unitary phase-difference
operators [3], it is assumed that the total number of photons is conserved. This
assumption can not be valid always except in closed quantum optical systems
such as two-mode Raman type processes in high-Q cavities [3]. However, for
matter-waves of ultracold atoms in a double-well (DW) trap, the total number
of atoms is conserved during the trap lifetime or duration of any experimental
measurement on the trapped atoms. It is then necessary to formulate the
quantum phase of matter-waves with a fixed number of particles. So, it is
important to study quantum atom optics under the influence of unitary phase
operators in matter-waves [4,5].

Ketterle’s group [6] has first experimentally observed the atom interferome-
try of two-component Bose-Einstein Condensates (BECs) in a DW trap. They
have observed the relative phase between two condensates with matter-wave
interference [7]. In this case the DW is analogous to a coherent beam splitter.
Their group [8] has demonstrated another experimental technique to determine
the relative phase of two condensates by scattering of light. The advantage of
this technique is that neither coherent splitting of BECs is required nor is
recombination of the matter-waves. Matter-wave interferometry has also been
developed using magnetically generated DW traps on an atom chip [9]. Their
has been several experiments to determine the spatial phase of the matter
wave interference by releasing two condensates from spatially separated po-
tential wells [6]. In those experiments the phase is measured classically. Gross
et al. first demonstrated experimentally quantum mechanical homodyne detec-
tion of matter-wave phase [10]. Recently there are some experiments showing
that a few numbers of particles (atomic bosons and fermions) can also be
trapped using optical fields [11,12].

Here we discuss the possibility of quantum phase measurement with matter-
wave interferometry with small number of bosonic atoms in DW. In the ex-
periment performed by Mandel’s group in 1991 [1] two modes of laser were
employed in a interferometric homodyne detection scheme. One of the modes
was treated classically with large number of photons, and the other quantum
mechanically with variable average photon number. They measured the sine
and cosine of quantum phase-difference operator and plotted the results as a
function of average photon number in the second mode. Their results show that
when the average photon numbers in both the modes are small, classical and
quantum mechanical phases differ significantly. However, if the average photon
number in the second mode is increased, classical and average quantum phases
tend to match. Here we discuss the possibility of a matter-wave counterpart
of Mandel’s experiment using ultracold bosonic atoms in a quasi-1D DW.
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2 Phase-operators: A brief review

Here we consider Barnett-Pegg [2] type quantum phase operators for matter-
wave of few bosons or fermions. Matter-wave phase operators were first in-
troduced in 2013 [4]. It is shown that [4,5], for a low number of bosons or
fermions, unitary nature of the phase-difference operators is important. For
large number of photons or quanta, the non-unitary Carruthers-Nieto [13]
phase-difference operators yield almost similar results as those due to Barnett-
Pegg type unitary operator. Since, in the unitary regime, phase operators are
formulated by coupling the vacuum state with the highest number state in
a finite-dimensional Fock space, the effects of the vacuum state becomes sig-
nificant for low number of particles. In early 90’s, Mandel’s group [1] exper-
imentally determined the phase-difference between two optical fields in both
semi-classical and quantum cases. They made use of the sine and cosine of
phase-difference operators of Carruthers and Nieto [13] as well as unitary op-
erational phase-difference operators as they defined.

For the material particles, quantum phase operators associated with bosons
and fermions have different character. Unitary quantum phase operators for
bosons are introduced by the analogy of quantum phase operator formalism of
photons. It is difficult to define quantum phase operator for fermions because
more than one fermion can not occupy a single quantum state simultaneously.
A quantum state for fermions can be either filled (by one fermion) or empty
(vacuum state). Therefore, quantum phase-difference between two fermionic
modes becomes well defined when single-particle quantum states of fermions
are half-filled.

To clarify the canonically conjugate nature of number- and phase-difference
operators, one can introduce two commuting operators corresponding to cosine
and sine of the phase-difference. Both of them are canonically conjugate to
the number-difference operator. These two phase operators plus the number-
difference operator forms a closed algebra [4].

To define an appropriate quantum phase operator, a complication arises
from the number operator of a harmonic oscillator which has a lower bound
state. Dirac [14] first postulated the existence of a hermitian phase operator in
his description of quantized electromagnetic fields. Susskind and Glogower [15]
first showed that Dirac’s phase operator was neither unitary nor hermitian. If
someone seeks to construct a unitary operator U by following Dirac’s postulate
then UU † = Î 6= U †U , hence U is not unitary. Thus Susskind and Glogower
[15] concluded that there does not exist any hermitian phase operator. Louisell
[16] first introduced the periodic operator function corresponding to a phase
variable which is conjugate to the angular momentum. Carruthers and Nieto
[13] introduced two-mode phase difference operators of a two-mode radiation
field by using two non-unitary hermitian phase operators C and S, measure
the cosine and sine of the fields. The two-mode phase-difference operators as
defined by Carruthers and Nieto [13] are given by

ĈCN
12 = Ĉ1Ĉ2 + Ŝ1Ŝ2
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ŜCN
12 = Ŝ1Ĉ2 − Ŝ2Ĉ1 (1)

where

Ĉi =
1

2
[(N̂i + 1)−

1

2 âi + â†i (N̂i + 1)−
1

2 ]

Ŝi =
1

2i
[(N̂i + 1)−

1

2 âi − â†i (N̂i + 1)−
1

2 ]

are the phase operators corresponding to the cosine and sine respectively, of i-
th mode, where â†i (âi) denotes the creation(annihilation) operator for a boson

and N̂i = â†i âi. The explicit form of phase-difference operators can be written
(with i=1 or 2) as

ĈCN
12 =

1

2
[(N̂1 + 1)−

1

2 â1â
†
2(N̂2 + 1)−

1

2 + â†1(N̂1 + 1)−
1

2 (N̂2 + 1)−
1

2 â2] (2)

ŜCN
12 =

1

2i
[(N̂1 + 1)−

1

2 â1â
†
2(N̂2 + 1)−

1

2 − â†1(N̂1 + 1)−
1

2 (N̂2 + 1)−
1

2 â2] (3)

In interferometric experiments, only the phase difference between two fields
matters and not the absolute phase of a field. According to Barnett-Pegg
formalism, hermitian and unitarity of phase-difference operators corresponding
to cosine and sine of phase have following explicit form

Ĉ12 = ĈCN
12 + Ĉ

(0)
12 (4)

Ŝ12 = ŜCN
12 + Ŝ

(0)
12 (5)

where

Ĉ
(0)
12 =

1

2
[|N, 0〉〈0, N |+ |0, N〉〈N, 0|]

Ŝ
(0)
12 =

1

2i
[|N, 0〉〈0, N | − |0, N〉〈N, 0|]

are the operators which are constructed by coupling the vacuum state of one
mode with the highest Fock state of the other mode. N = 〈N̂1〉 + 〈N̂2〉 is
total number of bosons which is conserved. |N1, N − N1〉 represents a two-
mode Fock state with N1 and (N −N1) being the atom numbers in modes 1
and 2, respectively. The difference of the number or the population imbalance
between the two wells is Ŵ = N̂1 − N̂2. The commutation relations of the
given operators Ĉ12, Ŝ12 and Ŵ are as follows

[Ĉ12, Ŵ ] = 2i(Ŝ12 − (N + 1)Ŝ
(0)
12 ) (6)

[Ŝ12, Ŵ ] = −2i(Ĉ12 − (N + 1)Ĉ
(0)
12 ) (7)

[Ĉ12, Ŝ12] = 0 (8)



Title Suppressed Due to Excessive Length 5

The first two of the above equations imply

∆C12∆W ≥
∣

∣

∣
S12 − (N + 1)S

(0)
12

∣

∣

∣
(9)

∆S12∆W ≥
∣

∣

∣
C12 − (N + 1)C

(0)
12

∣

∣

∣
(10)

Now, the standard quantum limit of fluctuation ∆SQL in number-difference
or phase-difference quantity is given by [5]

∆SQL =
1

N

√

[S12 − (N + 1)S
(0)
12 ]2 + [C12 − (N + 1)C

(0)
12 ]2 (11)

and the normalized squeezing parameters for both phase- and number-difference
operators, respectively, by

Σp = ∆Eφ
2 −∆SQL (12)

and
Σw = ∆Wn

2 −∆SQL (13)

where ∆Eφ =
√

(∆C12)2 + (∆S12)2 is an average phase fluctuation and Ŵn =
Ŵ
N
, normalized number-difference operator. The system will be squeezed in

number or phase variables when Σw or Σp becomes negative.

3 The Model

To build up the model, we consider a quasi-1D DW trap potential in which
bosonic atoms are confined in the two sites of the DW. The DW has two quasi
degenerate energy eigenfunction in which the ground band is occupied by the
bosons. The idea is to initialize a certain number of bosons in one of the either
site of the DW and let them evolve (tunnel) with time. So, the particle number
in the other well (N2) which was initially empty oscillates with time. We have
taken the quantum mechanical average of N̂2 and Ŝ12 throughout the time
upto which N1(t) = N2(t) = N/2.

To detect the phase, we propose a scheme of using the DW as double slit of
interference experiment. By switching off the optical field, the bosons interfere
as they all under the influence of gravity. From that one can detect the phase
by absorption imaging the interference pattern on screen and analyzing the
density profiles in the pattern.

4 Results and discussions

As the total number of bosons in our case is conserved, we calculate the quan-
tum mechanical average of sine phase-difference operator as a function of num-
ber of bosons in the second well for different total number of particles. We
consider symmetric trap for non-interacting bosons. Although non-interacting
bosons are idealized, we assume the interaction to be very small and our case
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Fig. 1 Schematic of bosons in a quasi-1D DW trap with J being tunneling coefficient.
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Fig. 2 Calculated values of 〈S12〉 as a function of average number of bosons for different
total number of bosons.

closely resembles to that. To begin with, we initialize the system with all
bosons in one well and then the number in the other well (N2) evolves with
time. Throughout the evolution of N2 up to half of the total population we
take quantum mechanical average. Then we have plotted 〈Ŝ12〉 with 〈N̂2〉. Our
results are similar to that obtained by Mandel’s group. For their case they have
changed the photon numbers in both the modes treating one mode classically
and other mode quantum mechanically. They have also changed the ratio of
average photon numbers of two different modes in their experiment. Whereas,
in our case we have only changed the total number of particles to mimic their
experimental finding.
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5 Conclusions

We have studied the sine of quantum phase difference between two sites of
a DW for non-interacting bosons. The cosine operator can also be studied
in the similar way. We have shown that when the total number of bosons is
increased the result has a good agreement with the Mandel’s experimental
results. It is worth noticing how the results modify in presence of interactions
and slight asymmetry of the trap. One can also calculate the fluctuations of
sine and cosine phase operators. Recently, phase fluctuation below the shot-
noise has been demonstrated experimentally with two components BEC’s [17].
The results we obtained suggest that when the particle number is small in
either side of the well unitary phase operators become important. This can be
attributed to the effect of vacuum term in unitary phase operators. In case
of Josephson oscillations in BEC’s the unitary quantum phase has not been
studied so far. It may be possible to measure the quantum phase of these type
of systems by using homodyne detection method.
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