Counterexample of the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Counterexample of the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

Under the assumption that the Riemann hypothesis is true, von Koch deduced the improved asymptotic formula $\theta(x)=x+O\left(\sqrt{x} \times \log ^{2} x\right)$, where $\theta(x)$ is the Chebyshev function. We obtain a result which contradicts this asymptotic formula. By contraposition, we deduce that the Riemann hypothesis is false.

Keywords: Riemann hypothesis, Nicolas inequality, Chebyshev function, prime numbers 2000 MSC: 11M26, 11A41, 11A25

1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [1]. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems [1]. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems [1]. This problem has remained unsolved for many years [1]. In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

where $p \leq x$ means all the prime numbers p that are less than or equal to x. Say $\operatorname{Nicolas}\left(p_{n}\right)$ holds provided

$$
\prod_{q \leq p_{n}} \frac{q}{q-1}>e^{\gamma} \times \log \theta\left(p_{n}\right) .
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, \log is the natural logarithm, and p_{n} is the $n^{\text {th }}$ prime number. The importance of this property is:
Theorem 1.1. [2], [3]. Nicolas $\left(p_{n}\right)$ holds for all prime numbers $p_{n}>2$ if and only if the Riemann hypothesis is true.

We know the following properties for the Chebyshev function:
Theorem 1.2. [4]. If the Riemann hypothesis holds, then

$$
\theta(x)=x+O\left(\sqrt{x} \times \log ^{2} x\right)
$$

for all $x \geq 10^{8}$.

Theorem 1.3. [5]. For $2 \leq x \leq 10^{8}$

$$
\theta(x)<x
$$

We also know that
Theorem 1.4. [6]. If the Riemann hypothesis holds, then

$$
\left(\frac{e^{-\gamma}}{\log x} \times \prod_{q \leq x} \frac{q}{q-1}-1\right)<\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}
$$

for all numbers $x \geq 13.1$.
Let's define $H=\gamma-B$ such that $B \approx 0.2614972128$ is the Meissel-Mertens constant [7]. We know from the constant H, the following formula:

Theorem 1.5. [8].

$$
\sum_{q}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)=\gamma-B=H
$$

For $x \geq 2$, the function $u(x)$ is defined as follows

$$
u(x)=\sum_{q>x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right) .
$$

We use the following theorems:
Theorem 1.6. [9]. For $x>-1$:

$$
\frac{x}{x+1} \leq \log (1+x)
$$

Theorem 1.7. [10]. For $x \geq 1$:

$$
\log \left(1+\frac{1}{x}\right)<\frac{1}{x+0.4}
$$

Let's define:

$$
\delta(x)=\left(\sum_{q \leq x} \frac{1}{q}-\log \log x-B\right)
$$

Definition 1.8. We define another function:

$$
\varpi(x)=\left(\sum_{q \leq x} \frac{1}{q}-\log \log \theta(x)-B\right) .
$$

Putting all together yields the proof that the inequality $\varpi(x)>u(x)$ is satisfied for a number $x \geq 3$ if and only if $\operatorname{Nicolas}(p)$ holds, where p is the greatest prime number such that $p \leq x$. In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas criterion and deduce some of its consequences.

2. Results

Theorem 2.1. The Riemann hypothesis is true if and only if the inequality $\varpi(x)>u(x)$ is satisfied for all numbers $x \geq 3$.

Proof. In the paper [3] is defined the function:

$$
f(x)=e^{\gamma} \times(\log \theta(x)) \times \prod_{q \leq x} \frac{q-1}{q} .
$$

We know that $f(x)$ is lesser than 1 when $\operatorname{Nicolas}(p)$ holds, where p is the greatest prime number such that $2<p \leq x$. In the same paper, we found that

$$
\log f(x)=U(x)+u(x)
$$

where $U(x)=-\varpi(x)$ [3]. When $f(x)$ is lesser than 1 , then $\log f(x)<0$. Consequently, we obtain that

$$
-\varpi(x)+u(x)<0
$$

which is the same as $\varpi(x)>u(x)$. Therefore, this is a consequence of the theorem 1.1.
Theorem 2.2. If the Riemann hypothesis holds, then

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \theta(x)}>1
$$

for all numbers $x \geq 13.1$.
Proof. Under the assumption that the Riemann hypothesis is true, then we would have

$$
\prod_{q \leq x} \frac{q}{q-1}<e^{\gamma} \times \log x \times\left(1+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}\right)
$$

after of distributing the terms based on the theorem 1.4 for all numbers $x \geq 13.1$. If we apply the logarithm to the both sides of the previous inequality, then we obtain that

$$
\sum_{q \leq x} \log \left(\frac{q}{q-1}\right)<\gamma+\log \log x+\log \left(1+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}\right)
$$

That would be equivalent to

$$
\sum_{q \leq x} \frac{1}{q}+\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)<\gamma+\log \log x+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

where we know that

$$
\begin{aligned}
\log \left(1+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}\right) & <\frac{1}{\frac{8 \times \pi \times \sqrt{x}}{3 \times \log x+5}+0.4} \\
& =\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+0.4 \times(3 \times \log x+5)} \\
& =\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
\end{aligned}
$$

according to theorem 1.7 since $\frac{8 \times \pi \times \sqrt{x}}{3 \times \log x+5} \geq 1$ for all numbers $x \geq 13.1$. We use the theorem 1.5 to show that

$$
\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)=H-u(x)
$$

and $\gamma=H+B$. So,

$$
H-u(x)<H+B+\log \log x-\sum_{q \leq x} \frac{1}{q}+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

which is the same as

$$
H-u(x)<H-\delta(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

We eliminate the value of H and thus,

$$
-u(x)<-\delta(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

which is equal to

$$
u(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\delta(x) .
$$

Under the assumption that the Riemann hypothesis is true, we know from the theorem 2.1 that $\varpi(x)>u(x)$ for all numbers $x \geq 13.1$ and therefore,

$$
\varpi(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\delta(x) .
$$

Hence,

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\log \log \theta(x)-\log \log x .
$$

Suppose that $\theta(x)=\epsilon \times x$ for some constant $\epsilon>1$. Then,

$$
\begin{aligned}
\log \log \theta(x)-\log \log x & =\log \log (\epsilon \times x)-\log \log x \\
& =\log (\log x+\log \epsilon)-\log \log x \\
& =\log \left(\log x \times\left(1+\frac{\log \epsilon}{\log x}\right)\right)-\log \log x \\
& =\log \log x+\log \left(1+\frac{\log \epsilon}{\log x}\right)-\log \log x \\
& =\log \left(1+\frac{\log \epsilon}{\log x}\right) .
\end{aligned}
$$

In addition, we know that

$$
\log \left(1+\frac{\log \epsilon}{\log x}\right) \geq \frac{\log \epsilon}{\log \theta(x)}
$$

using the theorem 1.6 since $\frac{\log \epsilon}{\log x}>-1$ when $\epsilon>1$. Certainly, we will have that

$$
\log \left(1+\frac{\log \epsilon}{\log x}\right) \geq \frac{\frac{\log \epsilon}{\log x}}{\frac{\log \epsilon}{\log x}+1}=\frac{\log \epsilon}{\log \epsilon+\log x}=\frac{\log \epsilon}{\log \theta(x)}
$$

Thus,

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\frac{\log \epsilon}{\log \theta(x)} .
$$

If we add the following value of $\frac{\log x}{\log \theta(x)}$ to the both sides of the inequality, then

$$
\begin{aligned}
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \theta(x)} & >\frac{\log \epsilon}{\log \theta(x)}+\frac{\log x}{\log \theta(x)} \\
& =\frac{\log \epsilon+\log x}{\log \theta(x)} \\
& =\frac{\log \theta(x)}{\log \theta(x)} \\
& =1 .
\end{aligned}
$$

We know this inequality is satisfied when $0<\epsilon \leq 1$ since we would obtain that $\frac{\log x}{\log \theta(x)} \geq 1$. Therefore, the proof is done.

Theorem 2.3. The Riemann hypothesis is false.
Proof. If the Riemann hypothesis holds, then

$$
\theta(x)=x+O\left(\sqrt{x} \times \log ^{2} x\right)
$$

for all $x \geq 10^{8}$ due to the theorem 1.2. Now, suppose there is a real number $x \geq 10^{8}$ such that $\theta(x)>x+\sqrt{x} \times \log ^{1.9} x$. That would be equivalent to

$$
\log \theta(x)>\log \left(x+\sqrt{x} \times \log ^{1.9} x\right)
$$

and so,

$$
\frac{1}{\log \theta(x)}<\frac{1}{\log \left(x+\sqrt{x} \times \log ^{1.9} x\right)}
$$

for all numbers $x \geq 10^{8}$. Hence,

$$
\frac{\log x}{\log \theta(x)}<\frac{\log x}{\log \left(x+\sqrt{x} \times \log ^{1.9} x\right)} .
$$

If the Riemann hypothesis holds, then

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \left(x+\sqrt{x} \times \log ^{1.9} x\right)}>1
$$

for those values of x that complies with

$$
\theta(x)>x+\sqrt{x} \times \log ^{1.9} x
$$

due to the theorem 2.2. By contraposition, if there exists some number $y \geq 10^{8}$ such that for all $x \geq y$ the inequality

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \left(x+\sqrt{x} \times \log ^{1.9} x\right)} \leq 1
$$

is satisfied, then the Riemann hypothesis should be false. Let's define the function

$$
v(x)=\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \left(x+\sqrt{x} \times \log ^{1.9} x\right)}-1 .
$$

The Riemann hypothesis would be false when there exists some number $y \geq 10^{8}$ such that for all $x \geq y$ the inequality $v(x) \leq 0$ is always satisfied. We ignore when $2 \leq x \leq 10^{8}$ since $\theta(x)<x$ according to the theorem 1.3. We know that the function $v(x)$ is monotonically decreasing for every number $x \geq 10^{8}$. The derivative of $v(x)$ is negative for all $x \geq 10^{8}$. The derivative of $v(x)$ is

$$
\begin{aligned}
v^{\prime}(x) \approx & -\left(\frac{0.1875 \times(0.3+\pi \sqrt{x}) \times(1.66667+\log (x))}{x \times(0.25+\pi \times \sqrt{x}+0.15 \times \log (x))^{2}}\right)+\frac{3}{2 \times x+8 \times \pi \times x^{\frac{3}{2}}+1.2 \times x \times \log (x)} \\
& -\left(\frac{\sqrt{x} \times \log (x)+1.9 \times \log ^{1.9}(x)+0.5 \times \log ^{2.9}(x)}{x \times\left(\sqrt{x}+\log ^{1.9}(x)\right) \times \log ^{2}\left(x+\sqrt{x} \times \log ^{1.9}(x)\right)}\right)+\frac{1}{x \times \log \left(x+\sqrt{x} \times \log ^{1.9}(x)\right)} .
\end{aligned}
$$

Indeed, a function $v(x)$ of a real variable x is monotonically decreasing in some interval if the derivative of $v(x)$ is lesser than zero and the function $v(x)$ is continuous over that interval [11]. It is enough to find a value of $y \geq 10^{8}$ such that $v(y) \leq 0$ since for all $x \geq y$ we would have that $v(x) \leq v(y) \leq 0$, because of $v(x)$ is monotonically decreasing. We found the value $y=10^{8}$ complies with $v(y) \leq 0$. In this way, we obtain that $v(x) \leq 0$ for every number $x \geq 10^{8}$. Consequently, under the assumption that the Riemann hypothesis is true, then

$$
\theta(x)<x+\sqrt{x} \times \log ^{1.9} x
$$

for all $x \geq 10^{8}$. However, we know that $O\left(\sqrt{x} \times \log ^{2} x\right) \neq \sqrt{x} \times \log ^{1.9} x$. Hence, this implies that the Riemann hypothesis is false using the theorem 1.2.

References

[1] P. B. Borwein, S. Choi, B. Rooney, A. Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Vol. 27, Springer Science \& Business Media, 2008.
[2] J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothese de Riemann, Séminaire de Théorie des nombres DPP, Paris 82 (1981) 207-218.
[3] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, Journal of number theory 17 (3) (1983) 375-388. doi:10.1016/0022-314X(83)90055-0.
[4] H. Von Koch, Sur la distribution des nombres premiers, Acta Mathematica 24 (1) (1901) 159.
[5] J. B. Rosser, L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, Illinois Journal of Mathematics 6 (1) (1962) 64-94. doi:doi:10.1215/ijm/1255631807.
[6] J. B. Rosser, L. Schoenfeld, Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$, Mathematics of computation (1975) 243-269doi:10.1090/S0025-5718-1975-0457373-7.
[7] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie., J. reine angew. Math. 1874 (78) (1874) 46-62. doi:10.1515/crll.1874.78.46. URL https://doi.org/10.1515/crll.1874.78.46
[8] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357-372. doi:10.5802/jtnb.591.
[9] L. Kozma, Useful Inequalities, http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf, accessed on 2022-01-17 (2021).
[10] A. Ghosh, An Asymptotic Formula for the Chebyshev Theta Function, arXiv preprint arXiv:1902.09231.
[11] G. Anderson, M. Vamanamurthy, M. Vuorinen, Monotonicity Rules in Calculus, The American Mathematical Monthly 113 (9) (2006) 805-816. doi:10.1080/00029890.2006.11920367.

